1. Trang chủ
  2. » Tất cả

Đề ôn toán thpt cao1 (286)

12 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thpt cao1 (286)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 152,17 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 11 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s) Hỏi[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 11 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. Vận tốc chuyển động của máy bay là v(t)= 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ

5 đến giây thứ 15 là bao nhiêu?

Câu 2. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 3. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3√ 2

a3√ 6

a3√ 6

36 .

Câu 4. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Một hình chóp tam giác và một hình chóp tứ giác.

B Một hình chóp tứ giác và một hình chóp ngũ giác.

C Hai hình chóp tứ giác.

D Hai hình chóp tam giác.

Câu 5. [2] Cho hàm số f (x)= x ln2

x Giá trị f0(e) bằng

e.

Câu 6. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y= ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Câu 7. Hàm số f có nguyên hàm trên K nếu

C f (x) có giá trị lớn nhất trên K D f (x) xác định trên K.

Câu 8. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 9. Bát diện đều thuộc loại

Câu 10. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Câu 11. Cho f (x)= sin2

x −cos2x − x Khi đó f0(x) bằng

Câu 12. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1

9

!x là

Câu 13. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. 8a

2a

a

5a

9 .

Trang 2

Câu 14. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

Câu 15. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A (−∞; −2) ∪ (−1; +∞) B −2 ≤ m ≤ −1 C (−∞; −2] ∪ [−1; +∞) D −2 < m < −1.

Câu 16. Khối đa diện đều loại {5; 3} có số mặt

Câu 17. Khối đa diện đều loại {3; 5} có số mặt

Câu 18. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0

(1) bằng

1

2.

Câu 19. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 20. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 21. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Câu 22. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

2

a2+ b2 B. √ 1

a2+ b2 C. ab

a2+ b2 D. √ ab

a2+ b2

Câu 23. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0

A A0(−3; −3; 3) B A0(−3; 3; 1) C A0(−3; −3; −3) D A0(−3; 3; 3)

Câu 24. Dãy số nào sau đây có giới hạn là 0?

A. −5

3

!n

3

!n

3

!n

e

!n

Câu 25. [1] Tập xác định của hàm số y= 4x 2 +x−2là

A. D = R \ {1; 2} B. D = (−2; 1) C. D = R D. D = [2; 1]

Câu 26. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N

và P lần lượt là tâm của các mặt bên ABB0A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

A 8

√ 3

√ 3

3 .

Câu 27. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành

A Bốn tứ diện đều và một hình chóp tam giác đều.

B Một tứ diện đều và bốn hình chóp tam giác đều.

C Năm tứ diện đều.

D Năm hình chóp tam giác đều, không có tứ diện đều.

Trang 3

Câu 28 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

B F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

C Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

D Cả ba đáp án trên.

Câu 29. [1232h] Trong không gian Oxyz, cho đường thẳng d :

x= 1 + 3t

y= 1 + 4t

z= 1

Gọi∆ là đường thẳng đi qua

điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là

A.

x= −1 + 2t

y= −10 + 11t

z= −6 − 5t

B.

x= −1 + 2t

y= −10 + 11t

z= 6 − 5t

C.

x= 1 + 3t

y= 1 + 4t

z= 1 − 5t

x= 1 + 7t

y= 1 + t

z= 1 + 5t

Câu 30. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?

Câu 31. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

Câu 32. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3√6

a3√6

a3√6

48 .

Câu 33. Dãy số nào sau đây có giới hạn khác 0?

A. n+ 1

1

1

sin n

n .

Câu 34. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?

A Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)

B Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)

C Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)

D Hàm số nghịch biến trên khoảng (−2; 1).

Câu 35. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

A 8

Câu 36. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a√39

a√39

a√39

9 .

Câu 37. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]

Câu 38. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A. a

3√

6

a3√5

a3√15

3√ 6

Trang 4

Câu 39. Gọi F(x) là một nguyên hàm của hàm y= ln x

x

p

ln2x+ 1 mà F(1) = 1

3 Giá trị của F

2(e) là:

A. 8

1

1

8

9.

Câu 40. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 41. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là

Câu 42. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 43. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 44. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3

2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?

Câu 45. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

Câu 46. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 47. Khối đa diện đều loại {3; 3} có số mặt

Câu 48 Mệnh đề nào sau đây sai?

A F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

B Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

C.

Z

f(x)dx

!0

= f (x)

D Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

Câu 49. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun

vn bằng

Câu 50. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = S h B V = 1

2S h.

Câu 51. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m

mtan x+ 1 nghịch biến trên khoảng



0;π

4



Trang 5

Câu 52. [2] Cho hàm số y= log3(3x+ x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Câu 53. [3-1133d] Tính lim1

2+ 22+ · · · + n2

n3

A. 1

3.

Câu 54. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019

Câu 55. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 56. [1] Tính lim 1 − n

2

2n2+ 1 bằng?

A. 1

1

1

Câu 57. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là

A. C

10

50.(3)40

40

50.(3)10

20

50.(3)30

20

50.(3)20

450

Câu 58. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

2

a3√ 3

3√

3√ 3

4 .

Câu 59. [1] Đạo hàm của làm số y = log x là

A y0 = ln 10

0 = 1

0 = 1

xln 10. D.

1

10 ln x.

Câu 60. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 61. [3-12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 62. Dãy số nào sau đây có giới hạn là 0?

A un= 1 − 2n

5n+ n2 B un = n2− 3n

n2 C un = n2+ n + 1

(n+ 1)2 D un = n2− 2

5n − 3n2

Câu 63. Khối đa diện đều loại {3; 3} có số cạnh

Câu 64. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng

A. a

6

a

√ 6

a

√ 3

a

√ 6

7 .

Câu 65. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

A lim

x→a + f(x)= lim

x→a − f(x)= +∞ B f (x) có giới hạn hữu hạn khi x → a.

C lim

x→a + f(x)= lim

x→a − f(x)= a

Trang 6

Câu 66. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

3

#

"

−2

3;+∞

! C. " 2

5;+∞

!

5

#

Câu 67. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin 2 x+ 2cos 2 x

lần lượt là

A 2

2 và 3 C 2 và 2

Câu 68. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 69. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối bát diện đều B Khối 12 mặt đều C Khối tứ diện đều D Khối lập phương.

Câu 70. [3-1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m ≥ 1

1

1

1

4.

Câu 71. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 72. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

A. a

3

a3√3

a3√3

3

Câu 73. Khối đa diện đều loại {3; 5} có số cạnh

Câu 74. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 75 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aαbα= (ab)α B. a

α

aβ = aα C aαβ = (aα

D aα+β = aα.aβ

Câu 76. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

Câu 77. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3− 2x2+ 3x − 1

Câu 78. [1] Tập xác định của hàm số y= log3(2x+ 1) là

2

!

2;+∞

!

2

!

2;+∞

!

Câu 79. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là

A. a

3√

3

a3

√ 2

a3√3

a3√3

12 .

Câu 80. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m ≤ 1

1

1

1

4.

Trang 7

Câu 81. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 82. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

A Phần thực là −3, phần ảo là −4 B Phần thực là 3, phần ảo là 4.

Câu 83. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 84. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

A m = ±1 B m= ±√3 C m= ±√2 D m= ±3

Câu 85. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 86. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số đỉnh của khối chóp bằng số cạnh của khối chóp.

B Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

C Số cạnh của khối chóp bằng số mặt của khối chóp.

D Số đỉnh của khối chóp bằng số mặt của khối chóp.

Câu 87. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 88. Tính lim7n

2− 2n3+ 1 3n3+ 2n2+ 1

A -2

7

Câu 89. Tính giới hạn lim

x→ +∞

2x+ 1

x+ 1

A. 1

Câu 90. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 91. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là

Câu 92. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A a

√ 57

a

√ 57

a

√ 57

17 .

Câu 93. Tính limcos n+ sin n

n2+ 1

Câu 94. Tìm giới hạn lim2n+ 1

n+ 1

Câu 95. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 0 B M= e, m = 1 C M = e, m = 1

e. D M = 1

e, m = 0

Trang 8

Câu 96. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ (a; b), ta có f0(x)= F(x)

B Với mọi x ∈ [a; b], ta có F0(x)= f (x)

C Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

D Với mọi x ∈ [a; b], ta có F0(x)= f (x)

Câu 97. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng

A. a

6

√ 6

a√6

2 .

Câu 98. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối bát diện đều B Khối 20 mặt đều C Khối tứ diện đều D Khối 12 mặt đều.

Câu 99. [2] Tổng các nghiệm của phương trình 6.4x− 13.6x+ 6.9x = 0 là

Câu 100. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga

3

abằng

A −1

1

3.

Câu 101. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

Câu 102. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối 12 mặt đều B Khối lập phương C Khối tứ diện đều D Khối bát diện đều.

Câu 103. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 104. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Câu 105. [3-1214d] Cho hàm số y= x −1

x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

A.

Câu 106. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối lập phương B Khối 12 mặt đều C Khối tứ diện đều D Khối bát diện đều.

Câu 107. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số mặt của khối chóp bằng 2n+1.

B Số đỉnh của khối chóp bằng 2n+ 1

C Số cạnh của khối chóp bằng 2n.

D Số mặt của khối chóp bằng số cạnh của khối chóp.

Câu 108. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là

Câu 109. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng

2

a2+ b2 B. ab

a2+ b2 C. √ ab

a2+ b2 D. √ 1

a2+ b2

Câu 110 Hình nào trong các hình sau đây không là khối đa diện?

Trang 9

Câu 111. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

5

a3√ 5

a3√ 5

a3√ 3

12 .

Câu 112. Thể tích của khối lập phương có cạnh bằng a

√ 2

3√ 2

3 .

Câu 113. Trong không gian cho hai điểm A, B cố định và độ dài AB= 4 Biết rằng tập hợp các điểm M sao cho MA= 3MB là một mặt cầu Khi đó bán kính mặt cầu bằng?

3

2.

Câu 114. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

Câu 115. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị

Câu 116. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là

Câu 117. [4-1213d] Cho hai hàm số y= x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y= |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 118. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b) B lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b)

C lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b) D lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b)

Câu 119. Cho

Z 2

1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 120. Tìm m để hàm số y= mx −4

x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]

Câu 121. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?

Câu 122. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?

Câu 123. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 124. Khối đa diện đều loại {4; 3} có số cạnh

Câu 125 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

Trang 10

B Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

= +∞

C Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

D Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

Câu 126. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

Câu 127. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 128. [1] Giá trị của biểu thức log √31

10 bằng

A −1

1

Câu 129. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3√ 3

a3√ 3

a3

4 .

Câu 130. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi

G la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

9.

HẾT

Ngày đăng: 30/03/2023, 23:00

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN