TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:
Câu 2. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
√ 2
Câu 3. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là
C Phần thực là −1, phần ảo là −4 D Phần thực là −1, phần ảo là 4.
Câu 4. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Hai khối chóp tứ giác.
B Hai khối chóp tam giác.
C Một khối chóp tam giác, một khối chóp tứ giác.
D Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 5. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. 5a
3√
3
a3√ 3
2a3√ 3
4a3√ 3
3 .
Câu 6. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
3
a3√ 3
a3√ 2
3√ 3
Câu 7. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2là số ảo là
A Trục ảo.
B Trục thực.
C Đường phân giác góc phần tư thứ nhất.
D Hai đường phân giác y= x và y = −x của các góc tọa độ
Câu 8. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) lần lượt là hình chiếu của B, C lên các cạnh AC, AB Tọa độ hình chiếu của A lên BC là
A. 5
3; 0; 0
!
3; 0; 0
!
3; 0; 0
!
Câu 9. Tập xác định của hàm số f (x)= −x3+ 3x2
− 2 là
Câu 10 Trong các khẳng định sau, khẳng định nào sai?
A Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
B F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
C.
Z
u0(x)
u(x)dx= log |u(x)| + C
D F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
Câu 11. Hàm số y= x3− 3x2+ 4 đồng biến trên:
Trang 2Câu 12. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 13. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 14. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là
√
2, phần ảo là 1 −
√
√
2 − 1, phần ảo là
√ 3
C Phần thực là 1 −
√
2, phần ảo là −
√
√
2 − 1, phần ảo là −
√ 3
Câu 15. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
Câu 16. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 17. Khối đa diện đều loại {3; 5} có số mặt
Câu 18. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a
√ 39
a
√ 39
a
√ 39
16 .
Câu 19. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là
Câu 20. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số đỉnh của khối chóp bằng 2n+ 1
B Số mặt của khối chóp bằng số cạnh của khối chóp.
C Số cạnh của khối chóp bằng 2n.
D Số mặt của khối chóp bằng 2n+1.
Câu 21. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
Câu 22. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Tăng lên n lần B Tăng lên (n − 1) lần C Giảm đi n lần D Không thay đổi.
Câu 23. [4-1213d] Cho hai hàm số y = x −3
x −2 + x −2
x −1 + x −1
x+ 1 và y = |x + 2| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 24. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?
Câu 25. Khối đa diện đều loại {3; 4} có số cạnh
Câu 26. [2-c] Giá trị lớn nhất của hàm số y = xe−2x2 trên đoạn [1; 2] là
2
e2
Trang 3Câu 27. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
Câu 28. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là
Câu 29. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
2x3ln 10. B y
0 = 1 − 2 log 2x
x3 C y0 = 1 − 4 ln 2x
2x3ln 10 . D y
0 = 1 − 2 ln 2x
x3ln 10 .
Câu 30. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
A m = ±√3 B m= ±√2 C m= ±3 D m= ±1
Câu 31. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng
Câu 32. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng
Câu 33. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là
Câu 34. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 35. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 36. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là
Câu 37. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 38. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
A Phần thực là −3, phần ảo là −4 B Phần thực là 3, phần ảo là −4.
Câu 39. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 40. [1] Tính lim1 − 2n
3n+ 1 bằng?
2
1
3.
Câu 41. Khối đa diện đều loại {3; 4} có số mặt
Câu 42. Khối đa diện đều loại {3; 5} có số cạnh
Câu 43. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1
3x
3− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng
√ 24
A m = −3 B m= −3, m = 4 C m= 4 D −3 ≤ m ≤ 4.
Trang 4Câu 44. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
A 8
√
√
√ 2
Câu 45. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0?
Câu 46. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦
; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là
A. a
3√
3
a3√ 2
2√
3√ 3
24 .
Câu 47. Tính lim
x→5
x2− 12x+ 35
25 − 5x
2
5.
Câu 48. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. a
2√
5
a2
√ 2
a2
√ 7
11a2
32 .
Câu 49. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 50. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|
A.
√
√
√
√ 17
17 .
Câu 51. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
2x3ln 10. B y
0 = 1 − 4 ln 2x 2x3ln 10 . C y
0 = 1 − 2 log 2x
x3 D y0 = 1 − 2 ln 2x
x3ln 10 .
Câu 52. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
2
a3√6
a3√6
a3√6
18 .
Câu 53. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị
Câu 54. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 55. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 56. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
Trang 5(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
sai
C Câu (III) sai D Câu (II) sai.
Câu 57. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 58. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 59. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất
Pmincủa P= x + y
A Pmin= 2
√
11 − 3
3 . B Pmin = 18
√
11 − 29
21 C Pmin = 9
√
11+ 19
9 . D Pmin= 9
√
11 − 19
Câu 60. Tính lim7n
2− 2n3+ 1 3n3+ 2n2+ 1
-2
3.
Câu 61. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là
Câu 62. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ (a; b), ta có f0(x)= F(x)
B Với mọi x ∈ [a; b], ta có F0(x)= f (x)
C Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
D Với mọi x ∈ [a; b], ta có F0(x)= f (x)
Câu 63. Khối đa diện đều loại {3; 3} có số mặt
Câu 64. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1
9
!x là
Câu 65. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là
A. 2
9
1
1
5.
Câu 66. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm
đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
Câu 67. [4-1212d] Cho hai hàm số y = x −2
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y = |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 68. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
1
4.
Câu 69. Hàm số y= x + 1
x có giá trị cực đại là
Trang 6Câu 70. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
√ 6
√
√ 6
Câu 71. [2] Phương trình log4(x+ 1)2+ 2 = log√
2
√
4 − x+ log8(4+ x)3 có tất cả bao nhiêu nghiệm?
Câu 72. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra
Câu 73. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?
Câu 74. Tính lim
x→3
x2− 9
x −3
Câu 75. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga
3
√
abằng
A. 1
1
3.
Câu 76. Tính lim
x→1
x3− 1
x −1
Câu 77. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Câu 78. Tính lim
x→2
x+ 2
x bằng?
Câu 79. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 80. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2
x+ 5m đồng biến trên khoảng (−∞; −10)?
Câu 81. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là
A. a
3√
3
3√
3
a3
√ 3
3 .
Câu 82. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. a
√
57
a
√ 57
2a
√ 57
√ 57
Câu 83. Biểu thức nào sau đây không có nghĩa
Trang 7Câu 84. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = e +2
e. B T = 4 + 2
e. C T = e + 3 D T = e + 1
Câu 85. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 86. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1 − 2e
4 − 2e. B m= 1+ 2e
4e+ 2. C m=
1+ 2e
4 − 2e. D m= 1 − 2e
4e+ 2.
Câu 87. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 2ac
3b+ 2ac
3b+ 3ac
3b+ 3ac
c+ 1 .
Câu 88. Khối đa diện đều loại {3; 3} có số cạnh
Câu 89. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau
(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)
(II) kF(x) là một nguyên hàm của k f (x)
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)
Các mệnh đề đúng là
Câu 90. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 91. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối 20 mặt đều B Khối 12 mặt đều C Khối bát diện đều D Khối tứ diện đều.
Câu 92. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?
Câu 93. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Câu 94 Trong các khẳng định sau, khẳng định nào sai?
A Cả ba đáp án trên.
B F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
C F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
D Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 95. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A. a
√
6
a
√ 6
a
√ 6
√ 6
Câu 96. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey+ 1 B xy0 = −ey+ 1 C xy0 = ey
− 1
Trang 8Câu 97. [3-1131d] Tính lim 1
1 + 1
1+ 2 + · · · +
1
1+ 2 + · · · + n
A. 3
5
Câu 98. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là
A M = e2− 2; m = e−2+ 2 B M = e−2+ 1; m = 1
C M = e−2− 2; m= 1 D M = e−2+ 2; m = 1
Câu 99. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =
xy+ x + 2y + 17
Câu 100. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A lim
x→a + f(x)= lim
x→a − f(x)= a
x→a + f(x)= lim
x→a − f(x)= +∞
Câu 101. Dãy số nào sau đây có giới hạn khác 0?
A. sin n
n+ 1
1
√
1
n.
Câu 102. Tứ diện đều thuộc loại
Câu 103. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Một hình chóp tam giác và một hình chóp tứ giác.
B Hai hình chóp tứ giác.
C Hai hình chóp tam giác.
D Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 104. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3
x − m nghịch biến trên khoảng (0;+∞)?
Câu 105. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng
A. 1728
23
1079
1637
4913.
Câu 106. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 107. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. 4a
3√
3
a3
2a3√ 3
a3
6 .
Câu 108. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 5 mặt C 6 đỉnh, 6 cạnh, 6 mặt D 5 đỉnh, 9 cạnh, 6 mặt.
Câu 109. Tính limcos n+ sin n
n2+ 1
Câu 110. [1] Giá trị của biểu thức log √31
10 bằng
A. 1
1
Trang 9Câu 111. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Cả hai câu trên đúng B Chỉ có (I) đúng C Cả hai câu trên sai D Chỉ có (II) đúng.
Câu 112. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦
, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là
A. a
3√
3
a3
√ 2
3√
3√ 2
12 .
Câu 113. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối bát diện đều B Khối tứ diện đều C Khối 12 mặt đều D Khối lập phương.
Câu 114. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x
x trên đoạn [1; e
3] là M = m
en, trong đó n, m là các số tự nhiên Tính S = m2+ 2n3
Câu 115. Cho
Z 2
1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 116. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
2.
C Dãy số unkhông có giới hạn khi n →+∞ D lim un= 0
Câu 117. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 118. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3− 2x2+ 3x − 1
Câu 119. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 120. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0
A A0(−3; −3; −3) B A0(−3; 3; 3) C A0(−3; 3; 1) D A0(−3; −3; 3)
Câu 121. Nhị thập diện đều (20 mặt đều) thuộc loại
Câu 122. Giá trị cực đại của hàm số y = x3
− 3x2− 3x+ 2
√
√ 2
Câu 123. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Trang 10Câu 124. Cho khối lăng trụ đứng ABC.A0B0C0có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
A V = 3a3
√ 3
2 . B V = 3a3√
3 C V = 6a3 D V = a3
√ 3
2 .
Câu 125. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 126. Tìm giới hạn lim2n+ 1
n+ 1
Câu 127. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x) = |x − 1| Biết f (0) = 3 Tính f (2)+ f (4)?
Câu 128. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và
√
3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
A.
√
√ 3
Câu 129. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 130. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
HẾT