Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [1 c] Giá trị của biểu thức log7 16 log7 15 − log7 15 30 bằng A −2 B 2 C 4 D −4 Câu 2 Cho hình chóp S ABC[.]
Trang 1Free LATEX
(Đề thi có 10 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 2. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3
a3
√ 3
a3
√ 3
a3
√ 3
12 .
Câu 3 Hình nào trong các hình sau đây không là khối đa diện?
Câu 4. Khối đa diện đều loại {5; 3} có số cạnh
Câu 5. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b Khoảng cách giữa hai đường thẳng
BB0và AC0bằng
2
√
a2+ b2 B. √ 1
a2+ b2 C. ab
a2+ b2 D. √ ab
a2+ b2
Câu 6 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 3, 03 triệu đồng B 2, 22 triệu đồng C 2, 25 triệu đồng D 2, 20 triệu đồng.
Câu 7. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
√
5.
Câu 8. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là
A. a
3√
3
a3√3
a3√3
a3√2
12 .
Câu 9. [12215d] Tìm m để phương trình 4x+
√ 1−x 2
− 4.2x+
√ 1−x 2
− 3m+ 4 = 0 có nghiệm
3
3
4.
Câu 10 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
Z
dx = x + C, C là hằng số
C.
Z
1
xdx= ln |x| + C, C là hằng số D.
Z
xαdx= α + 1xα+1 + C, C là hằng số
Câu 11. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Câu 12. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 6 cạnh, 4 mặt B 3 đỉnh, 3 cạnh, 3 mặt C 4 đỉnh, 6 cạnh, 4 mặt D 4 đỉnh, 8 cạnh, 4 mặt.
Câu 13. Thập nhị diện đều (12 mặt đều) thuộc loại
Trang 2Câu 14. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= 1
log2a. B log2a= 1
loga2. C log2a= loga2 D log2a= − loga2
Câu 15. [2-c] Cho hàm số f (x) = 9x
9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)
A. 1
Câu 16. Dãy số nào sau đây có giới hạn khác 0?
A. n+ 1
sin n
1
√
1
n.
Câu 17. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3√
15
a3
a3
√ 5
a3
√ 15
25 .
Câu 18. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. 2a
8a
5a
a
9.
Câu 19. Khẳng định nào sau đây đúng?
A Hình lăng trụ tứ giác đều là hình lập phương.
B Hình lăng trụ đứng là hình lăng trụ đều.
C Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 20. Tính lim n −1
n2+ 2
Câu 21. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A (−∞; −1) và (0; +∞) B (−∞; 0) và (1; +∞) C (0; 1) D (−1; 0).
Câu 22. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là
3√ 3
Câu 23. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. 5a
3√
3
2a3√3
a3√3
4a3√3
3 .
Câu 24. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. a
2a
a
a√2
3 .
Câu 25. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
6
a3√2
a3√6
a3√6
36 .
Trang 3Câu 26. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2
√
3 Thể tích khối nón đã cho là
A V = πa3
√ 3
6 . B V = πa3
√ 6
6 . C V = πa3
√ 3
2 . D V = πa3
√ 3
3 .
Câu 27. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 28 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
Câu 29. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 30. [4-1213d] Cho hai hàm số y = x −3
x −2 + x −2
x −1 + x −1
x+ 1 và y = |x + 2| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 31. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)
Câu 32. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 6 cạnh, 6 mặt B 5 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 5 mặt.
Câu 33. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:
Câu 34. Biểu thức nào sau đây không có nghĩa
√
√ 2)0
Câu 35. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là
A. a
3
a3
a3
3
Câu 36. Tính lim
√ 4n2+ 1 − √n+ 2 2n − 3 bằng
A. 3
Câu 37. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. a
2√
5
11a2
a2√ 2
a2√ 7
8 .
Câu 38. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2
− 2 ln x trên [e−1; e] là
A M = e−2+ 1; m = 1 B M = e2− 2; m = e−2+ 2
C M = e−2+ 2; m = 1 D M = e−2− 2; m= 1
Câu 39. [1] Đạo hàm của hàm số y = 2x
là
A y0 = 2x ln 2 B y0 = 2x ln x C y0 = 1
0 = 1
2x ln x.
Trang 4Câu 40. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng
A. abc
√
b2+ c2
√
a2+ b2+ c2 B. a
√
b2+ c2
√
a2+ b2+ c2 C. c
√
a2+ b2
√
a2+ b2+ c2 D. b
√
a2+ c2
√
a2+ b2+ c2
Câu 41. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 42 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
B.
Z
k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
C.
Z
[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R
D.
Z
[ f (x) − g(x)]dx=
Z
f(x)dx −
Z g(x)dx, với mọi f (x), g(x) liên tục trên R
Câu 43. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π
3, x = π Tính giá trị của biểu thức T = a + b√3
Câu 44. Tính lim
x→ +∞
x −2
x+ 3
3.
Câu 45. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 46. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 47. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Cả hai câu trên sai B Cả hai câu trên đúng C Chỉ có (I) đúng D Chỉ có (II) đúng.
Câu 48. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A.
√
√ 13
√
√ 13
Câu 49. Tính lim
x→−∞
x+ 1 6x − 2 bằng
1
1
2.
Câu 50. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 51. Bát diện đều thuộc loại
Trang 5Câu 52. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối bát diện đều C Khối tứ diện đều D Khối 20 mặt đều.
Câu 53. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối lập phương B Khối 12 mặt đều C Khối tứ diện đều D Khối bát diện đều.
Câu 54. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
A Tăng gấp 3 lần B Tăng gấp 27 lần C Tăng gấp 18 lần D Tăng gấp 9 lần.
Câu 55. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 56. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?
Câu 57. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2
A −3 − 4
√
√
Câu 58. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. 1
2;+∞
!
2;+∞
!
2
!
2
!
Câu 59 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
B Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
C Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
D Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
Câu 60. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 61. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Câu 62. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A lim
x→a + f(x)= lim
x→a − f(x)= +∞ B lim
x→af(x)= f (a)
C f (x) có giới hạn hữu hạn khi x → a D lim
x→a + f(x)= lim
x→a − f(x)= a
Câu 63. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
A V = a3
√
3
2 . B V = 3a3
√ 3
2 . C V = 6a3 D V = 3a3√
3
Câu 64. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Trang 6Câu 65. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3abằng
1
3.
Câu 66. [2-c] Giá trị lớn nhất của hàm số y = xe−2x2 trên đoạn [1; 2] là
2
2e3
Câu 67. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 68. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
A. 1
1
Câu 69. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
A −1
1
Câu 70. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A. 20
√
3
√
√ 3
3 .
Câu 71. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 3, 5 triệu đồng B 70, 128 triệu đồng C 50, 7 triệu đồng D 20, 128 triệu đồng.
Câu 72. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7
Câu 73. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là
Câu 74. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
A.
√
√ 2
Câu 75. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị
Câu 76. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 77. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là
A Phần thực là 4, phần ảo là 1 B Phần thực là −1, phần ảo là 4.
C Phần thực là −1, phần ảo là −4 D Phần thực là 4, phần ảo là −1.
Câu 78. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
A |z| = √4
Câu 79. Khối lập phương thuộc loại
Câu 80. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Trang 7Câu 81. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
√ 2
a
√ 2
2 .
Câu 82. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
Câu 83. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos 2 x
lần lượt là
Câu 84. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là
A. a
3
a3√ 3
3√
3√ 3
12 .
Câu 85. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là
A. 8a
3√
3
8a3
√ 3
4a3
√ 3
a3
√ 3
9 .
Câu 86. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 87. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra
Câu 88. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
e.
Câu 89. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 90. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A Hai đường phân giác y= x và y = −x của các góc tọa độ
B Trục thực.
C Đường phân giác góc phần tư thứ nhất.
D Trục ảo.
Câu 91 Phát biểu nào sau đây là sai?
C lim 1
n = 0
Câu 92. Cho
Z 1 0
xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
1
2.
Câu 93. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 log 2x
x3 B y0 = 1 − 4 ln 2x
2x3ln 10 . C y
2x3ln 10. D y
0 = 1 − 2 ln 2x
x3ln 10 .
Trang 8Câu 94. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1
A −5
4 < m < 0 B m ≥ 0 C m ≤ 0 D m > −5
4.
Câu 95. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 96. Khối đa diện đều loại {3; 4} có số mặt
Câu 97. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 98. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3− 2x2+ 3x − 1
Câu 99. [1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 100. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ
A m = 120.(1, 12)3
(1, 12)3− 1 triệu. B m = (1, 01)3
(1, 01)3− 1 triệu.
C m = 100.(1, 01)3
3 triệu.
Câu 101. Cho hình chóp S ABC có dBAC = 90◦,ABCd = 30◦
; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là
A. a
3√
2
a3
√ 3
a3
√ 3
2√ 2
Câu 102. Tính lim7n
2− 2n3+ 1 3n3+ 2n2+ 1
-2
3.
Câu 103. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
A.
"
−2
3;+∞
! B. " 2
5;+∞
!
5
#
3
#
Câu 104. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 105. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng (0;+∞) B Hàm số đồng biến trên khoảng (0; 2).
C Hàm số nghịch biến trên khoảng (−∞; 2) D Hàm số nghịch biến trên khoảng (0; 2).
Câu 106. Khối đa diện đều loại {4; 3} có số cạnh
Trang 9Câu 107. [2] Cho hình lâp phương ABCD.A BC D cạnh a Khoảng cách từ C đến AC bằng
A. a
√
6
a
√ 6
a
√ 3
a
√ 6
2 .
Câu 108. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1+ 2e
4 − 2e. B m= 1+ 2e
4e+ 2. C m=
1 − 2e 4e+ 2. D m=
1 − 2e
4 − 2e.
Câu 109. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 110. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số nghịch biến trên khoảng (0; 1) B Hàm số nghịch biến trên khoảng (−∞; 0).
C Hàm số đồng biến trên khoảng (1; 2) D Hàm số nghịch biến trên khoảng (1;+∞)
Câu 111. [1] Tập xác định của hàm số y= 4x 2 +x−2là
A. D = R B. D = [2; 1] C. D = R \ {1; 2} D. D = (−2; 1)
Câu 112. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
Câu 113. Hàm số y= x3− 3x2+ 4 đồng biến trên:
Câu 114. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s) Tính quãng đường chất điểm đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
Câu 115. Khối đa diện đều loại {3; 5} có số cạnh
Câu 116. [1] Biết log6 √a= 2 thì log6abằng
Câu 117. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2 (e) là:
A. 8
1
8
1
3.
Câu 118. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019
Câu 119. [3] Cho hàm số f (x)= 4x
4x+ 2 Tính tổng T = f
1 2017
! + f 2 2017
! + · · · + f 2016
2017
!
A T = 1008 B T = 2016 C T = 2016
2017. D T = 2017
Câu 120. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 121. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
√ 6
a
√ 6
a
√ 6
3 .
Câu 122. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
Trang 10Câu 123. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?
A Nếu
Z
f0(x)dx =
Z
g0(x)dx thì f (x) = g(x), ∀x ∈ R
B Nếu
Z
f(x)dx=
Z
g(x)dx thì f (x) , g(x), ∀x ∈ R
C Nếu f (x)= g(x) + 1, ∀x ∈ R thì
Z
f0(x)dx=
Z
g0(x)dx
D Nếu
Z
f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R
Câu 124. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦
, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là
A a3
√
3√ 2
a3√3
a3√2
4 .
Câu 125. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và
BC là a
√
3
4 Khi đó thể tích khối lăng trụ là
A. a
3√
3
a3
√ 3
a3
√ 3
a3
√ 3
6 .
Câu 126 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A aαbα= (ab)α B aα+β= aα.aβ C. a
α
aβ = aα D aαβ = (aα
)β
Câu 127. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
B Với mọi x ∈ [a; b], ta có F0(x)= f (x)
C Với mọi x ∈ (a; b), ta có f0(x)= F(x)
D Với mọi x ∈ [a; b], ta có F0(x)= f (x)
Câu 128. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A.
√
3
3
√ 3
√ 3
2 .
Câu 129. Khối đa diện đều loại {4; 3} có số mặt
Câu 130. [3-1133d] Tính lim1
2+ 22+ · · · + n2
n3
2
3.
HẾT