TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [4 1228d] Cho phương trình (2 log2 3 x − log3 x − 1) √ 4x[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. [4-1228d] Cho phương trình (2 log23x −log3x −1)
√
4x − m= 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 2. [1232h] Trong không gian Oxyz, cho đường thẳng d :
x= 1 + 3t
y= 1 + 4t
z= 1
Gọi∆ là đường thẳng đi qua
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là
A.
x= −1 + 2t
y= −10 + 11t
z= 6 − 5t
B.
x= 1 + 3t
y= 1 + 4t
z= 1 − 5t
x= 1 + 7t
y= 1 + t
z= 1 + 5t
x= −1 + 2t
y= −10 + 11t
z= −6 − 5t
Câu 3 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
B Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
C Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
D Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
Câu 4. [3-1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 5. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến∆ Lấy A, B thuộc
∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
A. a
√
2
√
√
√ 2
4 .
Câu 6. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:
Câu 7. Thể tích của khối lập phương có cạnh bằng a√2
3√ 2
3√
2
Câu 8. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Một hình chóp tứ giác và một hình chóp ngũ giác.
B Hai hình chóp tứ giác.
C Một hình chóp tam giác và một hình chóp tứ giác.
D Hai hình chóp tam giác.
Câu 9. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
1
2.
Trang 2Câu 10. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 11. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1
9
!x là
Câu 12 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
k f(x)dx= k
Z
f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
B.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
C.
Z
[ f (x)+ g(x)]dx =
Z
f(x)dx+
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
D.
Z
[ f (x) − g(x)]dx=Z f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
Câu 13. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3
√ 2
a3
√ 2
a3
√ 2
6 .
Câu 14. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4
2x+ 12 log2
2x log2 8
x
Câu 15. [1] Đạo hàm của hàm số y = 2x
là
A y0 = 1
0 = 2x ln x C y0 = 1
2x ln x. D y
0 = 2x ln 2
Câu 16. Tính lim
x→ +∞
x −2
x+ 3
Câu 17. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
A. 1
√
Câu 18. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1
3x
3− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng
√ 24
A m = −3, m = 4 B m= 4 C −3 ≤ m ≤ 4 D m= −3
Câu 19. [4] Xét hàm số f (t)= 9t
9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho
f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S
Câu 20. Dãy số nào sau đây có giới hạn là 0?
A. −5
3
!n
3
!n
3
!n
e
!n
Câu 21. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Câu 22. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2
)?
Trang 3Câu 23. Giá trị cực đại của hàm số y = x3
− 3x2− 3x+ 2
√
√
2 D 3+ 4√2
Câu 24. Khối đa diện đều loại {4; 3} có số cạnh
Câu 25. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R
Câu 26. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số mặt của khối chóp bằng số cạnh của khối chóp.
B Số mặt của khối chóp bằng 2n+1.
C Số cạnh của khối chóp bằng 2n.
D Số đỉnh của khối chóp bằng 2n+ 1
Câu 27. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = 4 +2
e. B T = e + 1 C T = e + 2
e. D T = e + 3
Câu 28. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|
A.
√
√
√
√ 17
17 .
Câu 29. Hàm số y= x + 1
x có giá trị cực đại là
Câu 30. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A. a
3√
5
3√
3√ 6
a3√ 15
3 .
Câu 31. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2(e) là:
A. 1
1
8
8
9.
Câu 32. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
2x3ln 10. B y
0 = 1 − 2 ln 2x
x3ln 10 . C y
0 = 1 − 4 ln 2x 2x3ln 10 . D y
0 = 1 − 2 log 2x
x3
Câu 33. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là
Câu 34. Tính lim7n
2− 2n3+ 1 3n3+ 2n2+ 1
7
Câu 35. Dãy số nào sau đây có giới hạn là 0?
A un= 1 − 2n
5n+ n2 B un = n2− 3n
n2 C un = n2− 2
5n − 3n2 D un = n2+ n + 1
(n+ 1)2
Câu 36. [2] Phương trình log4(x+ 1)2+ 2 = log√
2
√
4 − x+ log8(4+ x)3 có tất cả bao nhiêu nghiệm?
Câu 37. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = R B. D = (−∞; 1) C. D = (1; +∞) D. D = R \ {1}
Trang 4Câu 38. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
Câu 39. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 40. Khối chóp ngũ giác có số cạnh là
Câu 41. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là
Câu 42. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 43. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 44. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 45 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
( f (x) − g(x))dx=Z f(x)dx −
Z g(x)dx B.
Z ( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx
C.
Z
k f(x)dx= f
Z
f(x)dx, k ∈ R, k , 0 D.
Z
f(x)g(x)dx=
Z
f(x)dx
Z g(x)dx
Câu 46. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 47. Khối đa diện đều loại {3; 4} có số cạnh
Câu 48. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0
có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 49. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
A. a
3√
3
2a3√ 6
a3
√ 6
a3
√ 3
2 .
Câu 50. [2-c] Giá trị nhỏ nhất của hàm số y = (x2
− 2)e2xtrên đoạn [−1; 2] là
Câu 51. [1] Đạo hàm của làm số y = log x là
A y0 = 1
xln 10. B y
0 = 1
1
0 = ln 10
x .
Câu 52. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
Trang 5Câu 53. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b) B lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b)
C lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b) D lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b)
Câu 54. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 55. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
A Dãy số unkhông có giới hạn khi n →+∞ B lim un= 1
C lim un= 1
Câu 56. [1-c] Giá trị biểu thức log2240
log3,752 −
log215 log602 + log21 bằng
Câu 57. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3
2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
Câu 58. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= loga2 B log2a= 1
log2a. C log2a= 1
loga2. D log2a= − loga2
Câu 59. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun
vn bằng
Câu 60. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A Hai đường phân giác y= x và y = −x của các góc tọa độ
B Trục thực.
C Đường phân giác góc phần tư thứ nhất.
D Trục ảo.
Câu 61. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ
A m = 100.1, 03
(1, 12)3− 1 triệu.
C m = 100.(1, 01)3
(1, 01)3− 1 triệu.
Câu 62. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
a2+ b2 B. √ ab
2
√
a2+ b2 D. ab
a2+ b2
Câu 63. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Trang 6Câu 64. [1] Tính lim 1 − n
2
2n2+ 1 bằng?
A. 1
1
1
3.
Câu 65. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A. a
√
6
a
√ 6
a
√ 6
√ 6
Câu 66. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 67. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
3
a3√ 2
3√
3√ 3
2 .
Câu 68. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 69. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 70. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?
Câu 71. Bát diện đều thuộc loại
Câu 72. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là
A. 2
1
9
1
5.
Câu 73. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 74. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?
A y = logπ
2x
Câu 75. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 76. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 77. [2] Đạo hàm của hàm số y = x ln x là
A y0 = 1 − ln x B y0 = 1 + ln x C y0 = ln x − 1 D y0 = x + ln x
Câu 78. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 79. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là
A Phần thực là −1, phần ảo là −4 B Phần thực là 4, phần ảo là −1.
C Phần thực là −1, phần ảo là 4 D Phần thực là 4, phần ảo là 1.
Trang 7Câu 80. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
√
√
Câu 81. Biểu thức nào sau đây không có nghĩa
A (−
√
√
Câu 82. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
1
3.
Câu 83. [2] Tổng các nghiệm của phương trình 3x−1.2x2 = 8.4x−2là
Câu 84. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là
Câu 85. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin 2 x+ 2cos 2 x
lần lượt là
A 2
√
2 và 3 B 2 và 2
√
√
2 và 3 D 2 và 3.
Câu 86. Giá trị của lim
x→1(3x2− 2x+ 1)
Câu 87. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
Câu 88. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?
Câu 89. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. −∞; −1
2
!
2;+∞
!
2;+∞
!
2
!
Câu 90. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3− 2x2+ 3x − 1
Câu 91. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z
A P= 2i B P= −1+ i
√ 3
√ 3
Câu 92 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Câu 93. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Trang 8Câu 94. Tính giới hạn lim
x→2
x2− 5x+ 6
x −2
Câu 95. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối tứ diện đều B Khối bát diện đều C Khối 12 mặt đều D Khối 20 mặt đều.
Câu 96. [3-12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 97. Giá trị cực đại của hàm số y = x3− 3x+ 4 là
Câu 98. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
A. a
3√
3
3√ 3
a3
3 .
Câu 99. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
A. 7
5
2.
Câu 100. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]
A. 67
Câu 101. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
d: x+ 1
2 = y −5
2 = z
−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng
dđồng thời cách A một khoảng bé nhất
A ~u = (2; 1; 6) B ~u= (2; 2; −1) C ~u= (3; 4; −4) D ~u= (1; 0; 2)
Câu 102. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là
A. a
3√
3
a3
√ 2
a3√3
a3√3
12 .
Câu 103. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối bát diện đều B Khối 12 mặt đều C Khối tứ diện đều D Khối lập phương.
Câu 104. Khối đa diện đều loại {3; 3} có số mặt
Câu 105. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
A. 27
Câu 106. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
5
a3√3
a3√5
a3√5
12 .
Câu 107. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A F(x)= G(x) trên khoảng (a; b)
B Cả ba câu trên đều sai.
C F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
D G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
Trang 9Câu 108. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 109. [1] Giá trị của biểu thức log √31
10 bằng
A. 1
1
3.
Câu 110. Xác định phần ảo của số phức z= (√2+ 3i)2
A −6
√
√
Câu 111. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 112. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 113. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b, AA0 = c Khoảng cách từ điểm
Ađến đường thẳng BD0bằng
√
b2+ c2
√
a2+ b2+ c2 B. c
√
a2+ b2
√
a2+ b2+ c2 C. b
√
a2+ c2
√
a2+ b2+ c2 D. abc
√
b2+ c2
√
a2+ b2+ c2
Câu 114. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Một khối chóp tam giác, một khối chóp ngữ giác.
B Hai khối chóp tứ giác.
C Hai khối chóp tam giác.
D Một khối chóp tam giác, một khối chóp tứ giác.
Câu 115. [4-1244d] Trong tất cả các số phức z= a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab
23
5
9
25.
Câu 116. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey
Câu 117. [1] Tính lim1 − 2n
3n+ 1 bằng?
2
2
3.
Câu 118. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
x= t
y= −1
z= −t
và hai mặt phẳng (P), (Q)
lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)
A (x+ 3)2+ (y + 1)2+ (z + 3)2= 9
2+ (y + 1)2+ (z + 3)2= 9
4.
C (x+ 3)2+ (y + 1)2+ (z − 3)2= 9
2+ (y − 1)2+ (z − 3)2= 9
4.
Câu 119. Điểm cực đại của đồ thị hàm số y = 2x3
− 3x2− 2 là
Câu 120. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1 thỏa mãn |z1− 2 − i| = 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1gần giá trị nào nhất?
Trang 10Câu 121. Tứ diện đều thuộc loại
Câu 122. [12215d] Tìm m để phương trình 4x+
√ 1−x 2
− 4.2x+
√ 1−x 2
− 3m+ 4 = 0 có nghiệm
A 0 ≤ m ≤ 3
3
9
4.
Câu 123. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 124. [1] Biết log6 √a= 2 thì log6abằng
Câu 125. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 126. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là
Câu 127. Giá trị của lim
x→1(2x2− 3x+ 1) là
Câu 128 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
B F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
C.
Z
u0(x)
u(x)dx= log |u(x)| + C
D Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
Câu 129. Tính lim n −1
n2+ 2
Câu 130. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3√6
a3√6
a3√6
8 .
HẾT