Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng A[.]
Trang 1Free LATEX
(Đề thi có 10 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
A. a
√
6
√
√
√ 6
Câu 2. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 3. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối bát diện đều B Khối tứ diện đều C Khối 12 mặt đều D Khối 20 mặt đều.
Câu 4. Hàm số f có nguyên hàm trên K nếu
A f (x) có giá trị lớn nhất trên K B f (x) có giá trị nhỏ nhất trên K.
Câu 5. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 3
x − m nghịch biến trên khoảng (0;+∞)?
Câu 6. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A.
√
3
2 e
π
2e
π
√ 2
2 e
π
4
Câu 7 Các khẳng định nào sau đây là sai?
A.
Z
k f(x)dx= kZ f(x)dx, k là hằng số B.
Z
f(x)dx
!0
= f (x)
C.
Z
f(x)dx= F(x)+C ⇒
Z
f(u)dx = F(u)+C D.
Z
f(x)dx= F(x) + C ⇒
Z
f(t)dt= F(t) + C
Câu 8. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số nghịch biến trên khoảng (−∞; 0) B Hàm số nghịch biến trên khoảng (1;+∞)
C Hàm số đồng biến trên khoảng (1; 2) D Hàm số nghịch biến trên khoảng (0; 1).
Câu 9. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3√ 2
a3√ 2
a3√ 2
12 .
Câu 10. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = 1
e, m = 0 B M= e, m = 1
e. C M = e, m = 1 D M = e, m = 0
Câu 11. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 12. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 13. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là
Trang 2Câu 14. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
3
a3√ 5
a3√ 5
a3√ 5
4 .
Câu 15. Tính lim
x→ +∞
x −2
x+ 3
Câu 16. Giá trị của lim
x→1(2x2− 3x+ 1) là
Câu 17. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 18. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. a
a√2
a
2a
3 .
Câu 19. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
6
a3
√ 6
a3
√ 2
a3
√ 6
18 .
Câu 20. Cho
Z 2 1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 21. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m
mtan x+ 1 nghịch biến trên khoảng
0;π
4
Câu 22. Dãy số nào sau đây có giới hạn là 0?
A un= n2− 2
5n − 3n2 B un = n2+ n + 1
(n+ 1)2 C un = n2− 3n
n2 D un = 1 − 2n
5n+ n2
Câu 23. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey+ 1 B xy0 = ey
− 1 D xy0 = −ey+ 1
Câu 24. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
3√ 3
a3√3
a3
3 .
Câu 25. Biểu thức nào sau đây không có nghĩa
√
√
−1
Câu 26. Khối lập phương thuộc loại
Câu 27. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦
Khoảng cách từ A đến mặt phẳng (S BC) bằng
Trang 3Câu 28. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 29. Tính lim 5
n+ 3
Câu 30. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun
vn bằng
Câu 31. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
Câu 32. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 33. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 6 cạnh, 6 mặt B 5 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 9 cạnh, 5 mặt D 6 đỉnh, 9 cạnh, 6 mặt.
Câu 34. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là
A. a
3√
3
a3√ 3
a3√ 2
a3√ 3
6 .
Câu 35. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 36. Tính lim
√ 4n2+ 1 − √n+ 2 2n − 3 bằng
Câu 37. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và
BC là a
√
3
4 Khi đó thể tích khối lăng trụ là
A. a
3√
3
a3√3
a3√3
a3√3
12 .
Câu 38. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?
Câu 39. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC
Câu 40. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 41. [3] Cho hàm số f (x)= 4x
4x+ 2 Tính tổng T = f
1 2017
! + f 2 2017
! + · · · + f 2016
2017
!
A T = 2017 B T = 2016 C T = 2016
2017. D T = 1008
Trang 4Câu 42. [4-1214h] Cho khối lăng trụ ABC.A BC , khoảng cách từ C đến đường thẳng BB bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và
√
3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
A. 2
√
3
√ 3
Câu 43. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
Câu 44. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. a
√
3
2a
√ 3
√
√ 3
2 .
Câu 45. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng
Câu 46. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối bát diện đều B Khối lập phương C Khối 12 mặt đều D Khối tứ diện đều.
Câu 47. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Câu 48. Khối đa diện đều loại {3; 3} có số mặt
Câu 49. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
√
Câu 50. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3
abằng
A −1
1
3.
Câu 51. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Câu 52. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 53. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 54. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Câu 55. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là
√
3, 4
√
3, 38 C 6, 12, 24 D 8, 16, 32.
Câu 56. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
2x3ln 10. B y
0 = 1 − 4 ln 2x 2x3ln 10 . C y
0 = 1 − 2 log 2x
x3 D y0 = 1 − 2 ln 2x
x3ln 10 .
Trang 5Câu 57 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
xαdx= α + 1xα+1 + C, C là hằng số B.
Z 1
xdx= ln |x| + C, C là hằng số
C.
Z
Z
dx = x + C, C là hằng số
Câu 58. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là
A. a
3√
3
a3
a3√ 3
3√ 3
Câu 59. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 ln 2x
x3ln 10 . B y
0 = 1 − 2 log 2x
x3 C y0 = 1
2x3ln 10. D y
0 = 1 − 4 ln 2x 2x3ln 10 .
Câu 60. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Hai hình chóp tứ giác.
B Một hình chóp tứ giác và một hình chóp ngũ giác.
C Hai hình chóp tam giác.
D Một hình chóp tam giác và một hình chóp tứ giác.
Câu 61. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2 (e) là:
A. 8
8
1
1
9.
Câu 62. Tính lim
x→3
x2− 9
x −3
Câu 63. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
Câu 64. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z
√ 3
2 . D P= −1 − i
√ 3
Câu 65. [1] Đạo hàm của làm số y = log x là
A y0 = 1
xln 10. B y
0 = ln 10
0 = 1
1
10 ln x.
Câu 66. Cho
Z 1 0
xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
1
4.
Câu 67. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là √2 − 1, phần ảo là
√
√ 3
C Phần thực là
√
2 − 1, phần ảo là −
√
√
2, phần ảo là −
√ 3
Câu 68. Dãy số nào sau đây có giới hạn là 0?
A. −5
3
!n
e
!n
3
!n
3
!n
Trang 6Câu 69. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
A. 3
Câu 70. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1
5
4 < m < 0
Câu 71. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7
Câu 72. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
Câu 73. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
A. " 2
5;+∞
!
"
−2
3;+∞
!
3
#
5
#
Câu 74 Phát biểu nào sau đây là sai?
n = 0
C lim 1
Câu 75. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
1
2.
Câu 76. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Câu 77. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị
Câu 78. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2
Câu 79 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
B F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
C.
Z
u0(x)
u(x)dx= log |u(x)| + C
D Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
Câu 80 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
B Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
C Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
D Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
Trang 7Câu 81. [1] Tập xác định của hàm số y= 4x +x−2là
A. D = R \ {1; 2} B. D = [2; 1] C. D = R D. D = (−2; 1)
Câu 82. [1] Tính lim 1 − n
2 2n2+ 1 bằng?
A −1
1
1
3.
Câu 83. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?
Câu 84. Khẳng định nào sau đây đúng?
A Hình lăng trụ đứng là hình lăng trụ đều.
B Hình lăng trụ tứ giác đều là hình lập phương.
C Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 85. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là
A. 4a
3
2a3
2a3√ 3
4a3√ 3
3 .
Câu 86. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 87. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. 2a
a
5a
8a
9 .
Câu 88. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
a2+ b2 B. √ 1
2√a2+ b2 D. ab
a2+ b2
Câu 89. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:
Câu 90 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R
B.
Z
k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
C.
Z
[ f (x) − g(x)]dx=
Z
f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
D.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
Câu 91. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối tứ diện đều B Khối lập phương C Khối bát diện đều D Khối 12 mặt đều.
Câu 92. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Trang 8Câu 93. Giá trị cực đại của hàm số y = x3
− 3x+ 4 là
Câu 94. Giá trị của lim
x→1(3x2− 2x+ 1)
Câu 95. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
2a3
√ 3
3√
3√ 3
3 .
Câu 96. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
A. 1
Câu 97. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 98. Hàm số y= x3
− 3x2+ 4 đồng biến trên:
Câu 99. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 100. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 101. [4-1212d] Cho hai hàm số y= x −2
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y= |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 102. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2
− 4M)2019
Câu 103. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 104. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Câu 105. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
Câu 106. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1
x
! Tính tổng S = f0
(1)+ f0
(2)+ · · · + f0
(2017)
2017
4035
Câu 107 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
( f (x) − g(x))dx=Z f(x)dx −
Z g(x)dx B.
Z
f(x)g(x)dx=Z f(x)dx
Z g(x)dx
C.
Z
k f(x)dx= f
Z
f(x)dx, k ∈ R, k , 0 D.
Z ( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx
Trang 9Câu 108. Cho lăng trụ đều ABC.ABC có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
A. a
3√
3
3
a3√ 3
2 .
Câu 109. Dãy số nào sau đây có giới hạn khác 0?
A. 1
1
√
n+ 1
sin n
n .
Câu 110. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A.
√
3
√ 3
3
√ 3
12.
Câu 111. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 112. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là
A M = e−2
− 2; m= 1 B M = e−2+ 2; m = 1
C M = e2− 2; m = e−2+ 2 D M = e−2+ 1; m = 1
Câu 113. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 114. Hàm số nào sau đây không có cực trị
A y = x +1
x. B y= x −2
2x+ 1. C y= x4− 2x+ 1. D y= x3− 3x.
Câu 115. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
A a
√
√
√ 2
a√2
3 .
Câu 116. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
B Cả ba câu trên đều sai.
C F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
D F(x)= G(x) trên khoảng (a; b)
Câu 117. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
A. 5
7
2.
Câu 118. Khối đa diện đều loại {3; 4} có số mặt
Câu 119. Khối đa diện đều loại {3; 5} có số cạnh
Câu 120. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 121. [2-c] Giá trị lớn nhất của hàm số f (x)= ex3−3x +3trên đoạn [0; 2] là
Câu 122. [1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Trang 10Câu 123. [2-c] Cho hàm số f (x) = 9
9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)
A. 1
Câu 124. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 125. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =
0 có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 126. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 127. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 128. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2là số ảo là
A Đường phân giác góc phần tư thứ nhất.
B Trục ảo.
C Hai đường phân giác y= x và y = −x của các góc tọa độ
D Trục thực.
Câu 129. Tính giới hạn lim
x→2
x2− 5x+ 6
x −2
Câu 130. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là
A −1
1
HẾT