1. Trang chủ
  2. » Tất cả

Bài tập toán thpt 3 (674)

12 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Bài Tập Toán Thpt
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Bài tập
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 12
Dung lượng 149,25 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 11 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD)[.]

Trang 1

Free LATEX

(Đề thi có 11 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

5

a3√ 5

a3√ 3

a3√ 5

12 .

Câu 2. Cho hình chóp S ABC có dBAC = 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A. a

3√

2

a3√3

a3√3

2√ 2

Câu 3. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 4 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

1

xdx= ln |x| + C, C là hằng số B.

Z 0dx = C, C là hằng số

C.

Z

xαdx= xα+1

α + 1+ C, C là hằng số. D.

Z

dx = x + C, C là hằng số

Câu 5. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey

Câu 6. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

Câu 7. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

Câu 8. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

1

3.

Câu 9. [1] Giá trị của biểu thức 9log3 12bằng

Câu 10. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

A 2a

√ 6

2 .

Câu 11. Khối lập phương thuộc loại

Câu 12. [1-c] Giá trị của biểu thức log716

log715 − log71530 bằng

Câu 13. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Trang 2

Câu 14. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

3

4a3

√ 3

2a3

2a3

√ 3

3 .

Câu 15. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z

A P= −1 − i

√ 3

√ 3

2 . D P= 2

Câu 16 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

Câu 17. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên

S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng

A. a

38

3a

3a√38

3a

√ 58

29 .

Câu 18. Cho f (x)= sin2

x −cos2x − x Khi đó f0(x) bằng

Câu 19. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2

A 3 − 4

√ 2

Câu 20. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 21. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

A. 1

1

Câu 22. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

A. a

3

a3

a3

3

Câu 23. [2] Tập xác định của hàm số y= (x − 1)1

A. D = R B. D = R \ {1} C. D = (1; +∞) D. D = (−∞; 1)

Câu 24. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 25. [1] Tính lim1 − 2n

3n+ 1 bằng?

A −2

2

1

3.

Câu 26 Hình nào trong các hình sau đây không là khối đa diện?

Trang 3

Câu 27. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

√ 13

√ 13

Câu 28 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

B.

Z

[ f (x) − g(x)]dx=

Z

f(x)dx −

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

C.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

D.

Z

[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R

Câu 29. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1 − 2e

4e+ 2. B m=

1+ 2e 4e+ 2. C m=

1 − 2e

4 − 2e. D m= 1+ 2e

4 − 2e.

Câu 30. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 31. Thể tích của tứ diện đều cạnh bằng a

A. a

3√

2

a3

√ 2

a3

√ 2

a3

√ 2

12 .

Câu 32. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

Câu 33. Tìm m để hàm số y= mx −4

x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]

Câu 34. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

A. a

3√

3

a3

a3

√ 3

3

Câu 35. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 36. [3] Cho hàm số f (x)= 4x

4x+ 2 Tính tổng T = f

1 2017

! + f 2 2017

! + · · · + f 2016

2017

!

A T = 2017 B T = 2016 C T = 1008 D T = 2016

2017.

Câu 37. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0

(1) bằng

A. ln 2

1

Câu 38. [1] Đạo hàm của hàm số y = 2x

A y0 = 1

2x ln x. B y

0 = 1

0 = 2x ln x D y0 = 2x ln 2

Câu 39. [4] Xét hàm số f (t)= 9t

9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho

f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S

Trang 4

Câu 40. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Câu 41. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 42. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 43. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 44. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Hai khối chóp tam giác.

B Hai khối chóp tứ giác.

C Một khối chóp tam giác, một khối chóp tứ giác.

D Một khối chóp tam giác, một khối chóp ngữ giác.

Câu 45. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là

A Trục thực.

B Đường phân giác góc phần tư thứ nhất.

C Hai đường phân giác y= x và y = −x của các góc tọa độ

D Trục ảo.

Câu 46. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

A. 7

5

Câu 47. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 48. Khối đa diện đều loại {5; 3} có số mặt

Câu 49. Tìm giới hạn lim2n+ 1

n+ 1

Câu 50. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng

a2+ b2 B. ab

2

a2+ b2 D. √ ab

a2+ b2

Câu 51. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

a3

√ 2

3√

3√ 3

4 .

Câu 52. Giá trị cực đại của hàm số y = x3

− 3x+ 4 là

Câu 53 Các khẳng định nào sau đây là sai?

A.

Z

f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C B. Z k f(x)dx= kZ f(x)dx, k là hằng số

C.

Z

f(x)dx= F(x) + C ⇒

Z

f(t)dt= F(t) + C D.

Z

f(x)dx

!0

= f (x)

Trang 5

Câu 54. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Hai hình chóp tam giác.

B Một hình chóp tam giác và một hình chóp tứ giác.

C Một hình chóp tứ giác và một hình chóp ngũ giác.

D Hai hình chóp tứ giác.

Câu 55. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

A. a

3√

3

a3√3

3

3

3 .

Câu 56. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

Câu 57. Khối đa diện đều loại {5; 3} có số đỉnh

Câu 58. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

3√ 3

3 .

Câu 59. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A (−∞; −2] ∪ [−1; +∞) B (−∞; −2)∪(−1; +∞) C −2 ≤ m ≤ −1 D −2 < m < −1.

Câu 60. Cho I =

Z 3 0

x

4+ 2√x+ 1dx =

a

d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị P= a + b + c + d bằng?

Câu 61 Trong các khẳng định sau, khẳng định nào sai?

A Cả ba đáp án trên.

B F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

C Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

D F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

Câu 62. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

Câu 63. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

A lim un= 1

Câu 64. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 65. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Trang 6

Câu 66. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3abằng

1

3.

Câu 67. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 68. Khối đa diện đều loại {3; 3} có số đỉnh

Câu 69. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 70. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 71. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= ln 10 B f0(0)= 10 C f0(0)= 1 D f0(0)= 1

ln 10.

Câu 72. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 73. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?

A Hàm số đồng biến trên khoảng (0;+∞) B Hàm số nghịch biến trên khoảng (−∞; 2).

C Hàm số đồng biến trên khoảng (0; 2) D Hàm số nghịch biến trên khoảng (0; 2).

Câu 74. Tính lim

x→5

x2− 12x+ 35

25 − 5x

A −2

2

Câu 75. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. a

57

a√57

2a√57

√ 57

Câu 76. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 77. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

2.

Câu 78. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 79. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 80. Tính lim7n

2− 2n3+ 1 3n3+ 2n2+ 1

7

3.

Trang 7

Câu 81. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

Câu 82. Cho

Z 1 0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

A. 1

1

4.

Câu 83. [3-1214d] Cho hàm số y = x −1

x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

A 2

Câu 84. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng

A. a

3

a

a

3.

Câu 85. Tính lim

x→−∞

x+ 1 6x − 2 bằng

A. 1

1

1

Câu 86. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là

A − 1

1

1

Câu 87. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 88. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 89. Tính lim

x→ +∞

x −2

x+ 3

3.

Câu 90. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là

A M = e−2− 2; m= 1 B M = e−2+ 2; m = 1

C M = e2

− 2; m = e−2+ 2 D M = e−2+ 1; m = 1

Câu 91. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là

A. a

3√

3

3√

3√ 3

a3

4 .

Câu 92. [1] Biết log6 √a= 2 thì log6abằng

Câu 93. Thập nhị diện đều (12 mặt đều) thuộc loại

Câu 94 Mệnh đề nào sau đây sai?

A.

Z

f(x)dx

!0

= f (x)

B Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

C Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

D F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

Trang 8

Câu 95. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng

Câu 96. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 97. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

Câu 98. Hàm số f có nguyên hàm trên K nếu

A f (x) có giá trị nhỏ nhất trên K B f (x) xác định trên K.

Câu 99. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

A. " 2

5;+∞

!

3

#

"

−2

3;+∞

!

5

#

Câu 100. [4-1244d] Trong tất cả các số phức z= a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

A − 5

13

23

9

25.

Câu 101. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 102. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 1 B M= 1

e, m = 0 C M = e, m = 0 D M = e, m = 1

e.

Câu 103. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối 12 mặt đều B Khối bát diện đều C Khối tứ diện đều D Khối 20 mặt đều.

Câu 104 Trong các khẳng định sau, khẳng định nào sai?

A Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

B F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

C.

Z

u0(x)

u(x)dx= log |u(x)| + C

D F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

Câu 105. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng

A. 2

Câu 106. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Câu 107. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 2ac

3b+ 3ac

3b+ 3ac

3b+ 2ac

c+ 3 .

Trang 9

Câu 108. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 1

3S h.

Câu 109. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx

B Nếu

Z

f(x)dx=

Z g(x)dx thì f (x) , g(x), ∀x ∈ R

C Nếu

Z

f0(x)dx =

Z

g0(x)dx thì f (x) = g(x), ∀x ∈ R

D Nếu

Z

f(x)dx=

Z g(x)dx thì f (x)= g(x), ∀x ∈ R

Câu 110. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

A a3

3√ 6

a3√ 6

4a3√ 6

3 .

Câu 111. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 112. [2] Cho hàm số y= log3(3x+ x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Câu 113. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của

P= xy + x + 2y + 17

Câu 114. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]

Câu 115. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey+ 1 B xy0 = ey

− 1 D xy0 = ey+ 1

Câu 116. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

2

a3√ 6

a3√ 6

a3√ 6

18 .

Câu 117. Tính giới hạn lim

x→ +∞

2x+ 1

x+ 1

A. 1

Câu 118. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 119 Phát biểu nào sau đây là sai?

A lim un= c (un = c là hằng số) B lim qn= 0 (|q| > 1)

C lim1

nk = 0

Trang 10

Câu 120. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

2 .

Câu 121. Khối đa diện đều loại {3; 5} có số mặt

Câu 122. [1] Giá trị của biểu thức log √31

10 bằng

1

3.

Câu 123. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là

Câu 124. Dãy số nào sau đây có giới hạn là 0?

A. 1

3

!n

e

!n

3

!n

3

!n

Câu 125. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 126 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

C Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

Câu 127. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 128. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

B Số cạnh của khối chóp bằng số mặt của khối chóp.

C Số đỉnh của khối chóp bằng số cạnh của khối chóp.

D Số đỉnh của khối chóp bằng số mặt của khối chóp.

Câu 129. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 130. Cho hai đường thẳng d và d0cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0?

HẾT

Ngày đăng: 27/03/2023, 20:51

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w