Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [2] Tập xác định của hàm số y = (x − 1) 1 5 là A D = R \ {1} B D = (1; +∞) C D = R D D = (−∞; 1) Câu 2 Điể[.]
Trang 1Free LATEX
(Đề thi có 10 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = R \ {1} B. D = (1; +∞) C. D = R D. D = (−∞; 1)
Câu 2. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Câu 3. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2(e) là:
A. 8
1
8
1
9.
Câu 4. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
Câu 5. Giá trị của lim
x→1(3x2− 2x+ 1)
Câu 6. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2
)?
Câu 7. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 8. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2
x+ 5m đồng biến trên khoảng (−∞; −10)?
Câu 9. [1] Tập xác định của hàm số y= 4x 2 +x−2là
A. D = [2; 1] B. D = (−2; 1) C. D = R \ {1; 2} D. D = R
Câu 10. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A a3
√
3√ 3
a3√ 3
a3√ 3
3 .
Câu 11. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1 − 2e
4e+ 2. B m=
1+ 2e
4 − 2e. C m= 1 − 2e
4 − 2e. D m= 1+ 2e
4e+ 2.
Câu 12. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối bát diện đều B Khối lập phương C Khối tứ diện đều D Khối 12 mặt đều.
Câu 13. Dãy số nào sau đây có giới hạn là 0?
A. −5
3
!n
3
!n
3
!n
e
!n
Câu 14. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
13 .
Câu 15. Khối đa diện đều loại {3; 5} có số mặt
Trang 2Câu 16. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
1
4.
Câu 17. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 18. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 19. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab
5
9
23
100.
Câu 20. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
Câu 21. [1-c] Giá trị biểu thức log2240
log3,752 −
log215 log602 + log21 bằng
Câu 22. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0?
Câu 23. Tính lim7n
2− 2n3+ 1 3n3+ 2n2+ 1
A. 7
-2
3.
Câu 24. Dãy số nào sau đây có giới hạn khác 0?
A. √1
n+ 1
sin n
1
n.
Câu 25. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
A. 3a
3a√58
3a√38
a√38
29 .
Câu 26. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?
A Nếu
Z
f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R
B Nếu
Z
f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R
C Nếu
Z
f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R
D Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx
Câu 27. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
A V = 3a3√
3 B V = 6a3 C V = 3a3
√ 3
2 . D V = a3
√ 3
2 .
Trang 3Câu 28. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ (a; b), ta có f0(x)= F(x)
B Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
C Với mọi x ∈ [a; b], ta có F0(x)= f (x)
D Với mọi x ∈ [a; b], ta có F0(x)= f (x)
Câu 29. Tứ diện đều thuộc loại
Câu 30. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
A. a
√
6
√
√
√ 6
Câu 31. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2
A 3 − 4
√
√
Câu 32. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
2
3
a3
√ 3
2 .
Câu 33. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A. a
√
6
a
√ 6
a
√ 6
√ 6
Câu 34. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?
Câu 35. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m
mtan x+ 1 nghịch biến trên khoảng
0;π
4
Câu 36. [4] Xét hàm số f (t)= 9t
9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho
f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S
Câu 37 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
D Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
Câu 38. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 39. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]
Câu 40. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là
Câu 41. Tính lim
√ 4n2+ 1 − √n+ 2 2n − 3 bằng
2.
Trang 4Câu 42. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 43. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
A 8
√
√
√ 2
Câu 44. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 45. Khối đa diện đều loại {3; 4} có số mặt
Câu 46 Hình nào trong các hình sau đây không là khối đa diện?
Câu 47. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey+ 1 B xy0 = −ey
− 1
Câu 48. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
Câu 49. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
Câu 50. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và
BC là a
√
3
4 Khi đó thể tích khối lăng trụ là
A. a
3√
3
a3√ 3
a3√ 3
a3√ 3
6 .
Câu 51. Giá trị cực đại của hàm số y = x3− 3x+ 4 là
Câu 52. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A.
√
2
2 e
π
√ 3
2 e
π
2e
π
3
Câu 53. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
A. 1
ln 2
2 .
Câu 54. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 55. [2] Cho hàm số f (x)= 2x.5x
Giá trị của f0(0) bằng
A f0(0)= ln 10 B f0(0)= 1 C f0(0)= 1
ln 10. D f
0
(0)= 10
Câu 56. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2
Câu 57. Hàm số y= x3− 3x2+ 4 đồng biến trên:
Trang 5Câu 58. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =
xy+ x + 2y + 17
Câu 59. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. a
√
3
√
√ 3
2a√3
2 .
Câu 60. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A. 3
√ 3
√ 3
√ 3
4 .
Câu 61. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?
Câu 62. Cho hàm số y= x3
− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 63. Khối đa diện đều loại {3; 4} có số cạnh
Câu 64. Dãy số nào sau đây có giới hạn là 0?
A un= 1 − 2n
5n+ n2 B un = n2− 3n
n2 C un = n2+ n + 1
(n+ 1)2 D un = n2− 2
5n − 3n2
Câu 65. Khối đa diện đều loại {4; 3} có số cạnh
Câu 66. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là
Câu 67. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A a
√
√ 57
a√57
2a√57
19 .
Câu 68. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Một hình chóp tam giác và một hình chóp tứ giác.
B Một hình chóp tứ giác và một hình chóp ngũ giác.
C Hai hình chóp tứ giác.
D Hai hình chóp tam giác.
Câu 69. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là
Câu 70 Phát biểu nào sau đây là sai?
A lim un= c (Với un = c là hằng số) B lim qn= 1 với |q| > 1
C lim 1
nk = 0 với k > 1 D lim √1
n = 0
Câu 71. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Trang 6Câu 72. Tính lim
x→ +∞
x −2
x+ 3
3.
Câu 73. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 74. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. 2a
8a
5a
a
9.
Câu 75. [1] Tính lim1 − 2n
3n+ 1 bằng?
A. 1
2
2
Câu 76. [2-c] Cho hàm số f (x) = 9x
9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)
2.
Câu 77. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
A. a
a
a√3
2 .
Câu 78. Cho I = Z 3
0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 79. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A Hai đường phân giác y= x và y = −x của các góc tọa độ
B Trục thực.
C Trục ảo.
D Đường phân giác góc phần tư thứ nhất.
Câu 80. [4-1212d] Cho hai hàm số y = x −2
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y = |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 81. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 82. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
A a
√
√
√ 2
a√2
2 .
Câu 83 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A. a
α
aβ = aα B aα+β= aα.aβ C aαbα = (ab)α D aαβ = (aα)β
Trang 7Câu 84. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦
Khoảng cách từ A đến mặt phẳng (S BC) bằng
2 .
Câu 85. Khối đa diện đều loại {3; 3} có số mặt
Câu 86. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3√3
a3
a3√3
4 .
Câu 87. Tính lim 2n
2− 1 3n6+ n4
Câu 88. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành
A Bốn tứ diện đều và một hình chóp tam giác đều.
B Một tứ diện đều và bốn hình chóp tam giác đều.
C Năm tứ diện đều.
D Năm hình chóp tam giác đều, không có tứ diện đều.
Câu 89. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 3ac
3b+ 3ac
3b+ 2ac
3b+ 2ac
c+ 2 .
Câu 90. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 91 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
B.
Z
[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R
C.
Z
k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
D.
Z
[ f (x) − g(x)]dx=Z f(x)dx −
Z g(x)dx, với mọi f (x), g(x) liên tục trên R
Câu 92. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x
x trên đoạn [1; e
3] là M = m
en, trong đó n, m là các
số tự nhiên Tính S = m2+ 2n3
Câu 93. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
6
a√6
a√3
a√6
7 .
Câu 94. Cho
Z 2 1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 95. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. 4a
3
2a3√3
a3
a3
6 .
Trang 8Câu 96. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A lim
x→a + f(x)= lim
x→a − f(x)= +∞ B lim
x→af(x)= f (a)
x→a + f(x)= lim
x→a − f(x)= a
Câu 97. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng
a2+ b2 B. ab
a2+ b2 C. √ 1
2
√
a2+ b2
Câu 98. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 99. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
Câu 100. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019
Câu 101. Tính lim
x→−∞
x+ 1 6x − 2 bằng
1
1
3.
Câu 102. Tính lim 5
n+ 3
Câu 103. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 104. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
2
√
a2+ b2 C. √ 1
a2+ b2 D. ab
a2+ b2
Câu 105 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
B Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
C Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
D Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
Câu 106. Xác định phần ảo của số phức z= (√2+ 3i)2
A −6
√
√ 2
Câu 107. [1] Giá trị của biểu thức 9log3 12bằng
Câu 108 Phát biểu nào sau đây là sai?
n = 0
nk = 0
Trang 9Câu 109. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Câu 110. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = e +2
e. B T = e + 3 C T = e + 1 D T = 4 + 2
e.
Câu 111. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là
A. 4a
3
8a3√ 3
8a3√ 3
a3√ 3
9 .
Câu 112. Tính lim
x→3
x2− 9
x −3
Câu 113. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey+ 1 B xy0 = −ey
Câu 114. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 115. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
Câu 116. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
A. 2a
6
a3√ 3
a3√ 6
a3√ 3
4 .
Câu 117. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|
A.
√
√
√ 17
√ 5
Câu 118. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦
, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là
A. a
3√
3
a3√2
a3√2
3
Câu 119. Cho hình chóp S ABC có dBAC = 90◦,ABCd = 30◦
; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là
A 2a2
√
3√ 3
a3√ 2
a3√ 3
12 .
Câu 120. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 121. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là
√
2 − 1, phần ảo là −
√
√
2, phần ảo là 1 −
√ 3
C Phần thực là √2 − 1, phần ảo là
√
√ 3
Câu 122 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
Trang 10(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Câu 123. [1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 124. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
2.
Câu 125. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
Câu 126. Cho hàm số y= −x3+ 3x2
− 4 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (0; 2) B Hàm số đồng biến trên khoảng (0;+∞)
C Hàm số nghịch biến trên khoảng (−∞; 2) D Hàm số đồng biến trên khoảng (0; 2).
Câu 127. [12210d] Xét các số thực dương x, y thỏa mãn log31 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất Pmincủa P= x + y
A Pmin= 18
√
11 − 29
21 B Pmin = 2
√
11 − 3
3 . C Pmin = 9
√
11+ 19
9 . D Pmin= 9
√
11 − 19
Câu 128 Mệnh đề nào sau đây sai?
A Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
B.
Z
f(x)dx
!0
= f (x)
C F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
D Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
Câu 129. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3√
15
a3√ 5
a3
a3√ 15
5 .
Câu 130. Giá trị lớn nhất của hàm số y= 2mx+ 1
m − x trên đoạn [2; 3] là −
1
3 khi m nhận giá trị bằng
HẾT