1. Trang chủ
  2. » Tất cả

Bài tập toán thpt 2 (544)

12 1 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Bài Tập Toán Thpt
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Bài tập
Định dạng
Số trang 12
Dung lượng 152,71 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu A Với mọi x ∈ (a; b), ta có f ′(x[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ (a; b), ta có f0(x)= F(x)

B Với mọi x ∈ [a; b], ta có F0(x)= f (x)

C Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

D Với mọi x ∈ [a; b], ta có F0(x)= f (x)

Câu 2. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

A a

√ 57

2a√57

a√57

17 .

Câu 3. Khẳng định nào sau đây đúng?

A Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

B Hình lăng trụ đứng là hình lăng trụ đều.

C Hình lăng trụ tứ giác đều là hình lập phương.

D Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

Câu 4. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 5. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey+ 1 B xy0 = ey

− 1 D xy0 = ey+ 1

Câu 6. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 7. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1

A −5

4 < m < 0 B m ≤ 0 C m ≥ 0 D m > −5

4.

Câu 8. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 9. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

Câu 10. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

A.

2

2 e

π

√ 3

2 e

π

2e

π

3

Câu 11. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

√ 3

2 . C V = 3a3√

3 D V = 3a3

√ 3

2 .

Trang 2

Câu 12. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

A. a

3

a3

a3

3

Câu 13. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 14. [2] Đạo hàm của hàm số y = x ln x là

A y0 = ln x − 1 B y0 = 1 + ln x C y0 = 1 − ln x D y0 = x + ln x

Câu 15. Tính limcos n+ sin n

n2+ 1

Câu 16. [1] Biết log6 √a= 2 thì log6abằng

Câu 17. [4-1212d] Cho hai hàm số y = x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y = |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 18. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 19. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?

Câu 20. [1] Tính lim1 − 2n

3n+ 1 bằng?

A −2

2

1

3.

Câu 21. Tìm m để hàm số y= x3

− 3mx2+ 3m2có 2 điểm cực trị

Câu 22. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

Câu 23. Dãy số nào sau đây có giới hạn khác 0?

A. 1

1

n+ 1

sin n

n .

Câu 24. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 25 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?

Câu 26. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun

vn bằng

Câu 27 Hình nào trong các hình sau đây không là khối đa diện?

Trang 3

Câu 28. Giá trị cực đại của hàm số y = x3

− 3x2− 3x+ 2

A 3 − 4

Câu 29. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 4 ln 2x

2x3ln 10 . B y

0 = 1 − 2 log 2x

x3 C y0 = 1 − 2 ln 2x

x3ln 10 . D y

2x3ln 10.

Câu 30. Khối lập phương thuộc loại

Câu 31. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Chỉ có (I) đúng B Cả hai đều đúng C Chỉ có (II) đúng D Cả hai đều sai.

Câu 32. Dãy số nào sau đây có giới hạn là 0?

A un= n2− 2

5n − 3n2 B un = n2− 3n

n2 C un = n2+ n + 1

(n+ 1)2 D un = 1 − 2n

5n+ n2

Câu 33. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

Câu 34. Tứ diện đều thuộc loại

Câu 35. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

11

2 .

Câu 36. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số nghịch biến trên khoảng (−∞; 0).

C Hàm số đồng biến trên khoảng (1; 2) D Hàm số nghịch biến trên khoảng (0; 1).

Câu 37. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất Pmincủa P= x + y

A Pmin= 9

11 − 19

9 . B Pmin = 18

11 − 29

21 C Pmin = 9

11+ 19

9 . D Pmin= 2

11 − 3

Câu 38. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Câu 39. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A. a

3

a√3

√ 3

2 .

Câu 40. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Câu 41. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Trang 4

Câu 42. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

Câu 43. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

2a3√ 3

a3√ 3

3√ 3

Câu 44. [3] Cho hàm số f (x)= 4x

4x+ 2 Tính tổng T = f

1 2017

! + f 2 2017

! + · · · + f 2016

2017

!

A T = 2017 B T = 1008 C T = 2016 D T = 2016

2017.

Câu 45. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 46. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

A m = ±3 B m= ±√3 C m= ±√2 D m= ±1

Câu 47. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

Câu 48. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 49. Tính lim

x→1

x3− 1

x −1

Câu 50. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 51. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =

xy+ x + 2y + 17

Câu 52 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

Câu 53. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 54. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b) B lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b)

C lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b) D lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b)

Câu 55. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

Trang 5

Câu 56. Cho

Z 2 1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 57. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4

2x+ 12 log2

2x log2 8

x

Câu 58. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

A. 4a

3√

6

a3

√ 6

3√

3√ 6

3 .

Câu 59. Khối đa diện đều loại {5; 3} có số mặt

Câu 60. [1] Giá trị của biểu thức 9log3 12bằng

Câu 61. [1] Tập xác định của hàm số y= 4x 2 +x−2là

A. D = R \ {1; 2} B. D = R C. D = (−2; 1) D. D = [2; 1]

Câu 62. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

A lim

x→a + f(x)= lim

x→a − f(x)= +∞ B lim

x→af(x)= f (a)

x→a + f(x)= lim

x→a − f(x)= a

Câu 63. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

A lim un= 1

C Dãy số unkhông có giới hạn khi n →+∞ D lim un= 1

Câu 64. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]

Câu 65. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

6

a3

√ 6

a3

√ 3

a3

√ 6

48 .

Câu 66. Cho

Z 1 0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

1

4.

Câu 67. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối 20 mặt đều B Khối tứ diện đều C Khối bát diện đều D Khối 12 mặt đều.

Câu 68. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

A.

Câu 69. [1] Tập xác định của hàm số y= 2x−1là

A. D = R \ {0} B. D = R \ {1} C. D = R D. D = (0; +∞)

Câu 70. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?

Trang 6

Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 71. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 72 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

B Cả ba đáp án trên.

C Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

D F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

Câu 73. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A a3

3√ 3

a3√ 2

a3√ 3

4 .

Câu 74. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 75. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Câu 76. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = 100.(1, 01)3

3 triệu.

C m = (1, 01)3

(1, 01)3− 1 triệu. D m = 120.(1, 12)3

(1, 12)3− 1 triệu.

Câu 77. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

Câu 78. [1] Đạo hàm của làm số y = log x là

0 = 1

xln 10. C y

0 = ln 10

0 = 1

x.

Câu 79. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7

Câu 80. Tính giới hạn lim2n+ 1

3n+ 2

A. 3

2

1

2.

Câu 81. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Trang 7

Câu 82. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 83. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là

A M = e−2− 2; m= 1 B M = e−2+ 1; m = 1

C M = e−2+ 2; m = 1 D M = e2− 2; m = e−2+ 2

Câu 84. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là

Câu 85. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2

− 6t(m/s) Tính quãng đường chất điểm

đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 86. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là

A a3

3√ 3

a3√ 3

a3

4 .

Câu 87. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là

A − 1

1

1

e2

Câu 88. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Các mệnh đề đúng là

Câu 89. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 1

2S h.

Câu 90. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 91. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

A.

√ 17

17 .

Câu 92. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?

A Hàm số đồng biến trên khoảng (0;+∞) B Hàm số đồng biến trên khoảng (0; 2).

C Hàm số nghịch biến trên khoảng (−∞; 2) D Hàm số nghịch biến trên khoảng (0; 2).

Câu 93. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu

Z

f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R

B Nếu

Z

f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R

C Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx

D Nếu

Z

f0(x)dx =

Z

g0(x)dx thì f (x) = g(x), ∀x ∈ R

Trang 8

Câu 94. Thể tích của khối lập phương có cạnh bằng a

√ 2

A. 2a

3√

2

3√

2

Câu 95. Tính lim 5

n+ 3

Câu 96. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. 4a

3√

3

2a3√ 3

a3

a3

6 .

Câu 97. Thể tích của tứ diện đều cạnh bằng a

A. a

3√

2

a3√2

a3√2

a3√2

12 .

Câu 98. Gọi F(x) là một nguyên hàm của hàm y= ln x

x

p

ln2x+ 1 mà F(1) = 1

3 Giá trị của F

2 (e) là:

A. 1

1

8

8

9.

Câu 99. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3√

15

a3

a3

√ 5

a3

√ 15

25 .

Câu 100. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là

Câu 101. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1+ 2e

4e+ 2. B m=

1 − 2e

4 − 2e. C m= 1 − 2e

4e+ 2. D m=

1+ 2e

4 − 2e.

Câu 102. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

A. 1

3

√ 3

2 .

Câu 103. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 104. Tính lim

x→3

x2− 9

x −3

Câu 105. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

A. 2017

4035

2016

2017.

Câu 106. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2là số ảo là

A Đường phân giác góc phần tư thứ nhất.

B Trục ảo.

C Hai đường phân giác y= x và y = −x của các góc tọa độ

D Trục thực.

Câu 107. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

2√a2+ b2 C. √ ab

a2+ b2 D. ab

a2+ b2

Trang 9

Câu 108. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 109. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

A. 1

1

Câu 110. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0

(1) bằng

A. ln 2

1

Câu 111. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey+ 1 B xy0 = −ey

− 1

Câu 112. Khối đa diện đều loại {3; 3} có số mặt

Câu 113. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng −∞;1

3

! B Hàm số nghịch biến trên khoảng 1

3; 1

!

C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số đồng biến trên khoảng 1

3; 1

!

Câu 114. Khối đa diện đều loại {3; 5} có số cạnh

Câu 115. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 116. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối lập phương B Khối tứ diện đều C Khối 12 mặt đều D Khối bát diện đều.

Câu 117. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3√ 3

a3√ 3

a3√ 3

6 .

Câu 118. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng

e.

Câu 119. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?

Câu 120. [2D1-3] Cho hàm số y = −1

3x

3+mx2+(3m+2)x+1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A (−∞; −2) ∪ (−1; +∞) B (−∞; −2]∪[−1; +∞) C −2 < m < −1 D −2 ≤ m ≤ −1.

Câu 121 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 2, 22 triệu đồng B 2, 20 triệu đồng C 3, 03 triệu đồng D 2, 25 triệu đồng.

Trang 10

Câu 122. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3√3

a3

a3√3

12 .

Câu 123. Cho f (x)= sin2

x −cos2x − x Khi đó f0(x) bằng

Câu 124. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số mặt của khối chóp bằng số cạnh của khối chóp.

B Số đỉnh của khối chóp bằng 2n+ 1

C Số cạnh của khối chóp bằng 2n.

D Số mặt của khối chóp bằng 2n+1.

Câu 125. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

5

a3√3

a3

√ 5

a3

√ 5

12 .

Câu 126. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

Câu 127. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. 4a

3√

3

8a3√3

a3√3

8a3√3

9 .

Câu 128. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

A. 1

1

3.

Câu 129. Tìm giới hạn lim2n+ 1

n+ 1

Câu 130. Khối đa diện đều loại {5; 3} có số đỉnh

HẾT

Ngày đăng: 27/03/2023, 16:00

TỪ KHÓA LIÊN QUAN

w