1. Trang chủ
  2. » Tất cả

Bài tập toán thpt 2 (518)

12 2 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Bài Tập Toán Thpt
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Bài tập
Năm xuất bản 2016
Thành phố Hà Nội
Định dạng
Số trang 12
Dung lượng 150,82 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [1] Đạo hàm của hàm số y = 2x là A y′ = 2x ln x B y′ = 2x ln 2 C y′ = 1 ln 2 D y′ = 1 2x ln x Câu 2 [1 c][.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. [1] Đạo hàm của hàm số y = 2x

A y0 = 2x ln x B y0 = 2x ln 2 C y0 = 1

0 = 1

2x ln x.

Câu 2. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 3. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1

5

4 < m < 0 D m ≤ 0.

Câu 4. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

Câu 5. Dãy số nào sau đây có giới hạn là 0?

A un= n2− 2

5n − 3n2 B un = 1 − 2n

5n+ n2 C un = n2+ n + 1

(n+ 1)2 D un = n2− 3n

n2

Câu 6. Khối đa diện đều loại {4; 3} có số cạnh

Câu 7. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 8. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 9. Tính lim

x→3

x2− 9

x −3

Câu 10. Giá trị cực đại của hàm số y = x3

− 3x2− 3x+ 2

√ 2

Câu 11. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

A. a

3

3√ 3

a3√3

9 .

Câu 12 Trong các khẳng định sau, khẳng định nào sai?

A Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

B F(x)= x2

là một nguyên hàm của hàm số f (x)= 2x

C F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

D Cả ba đáp án trên.

Câu 13. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m < 1

1

1

1

4.

Trang 2

Câu 14. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Hai hình chóp tứ giác.

B Một hình chóp tam giác và một hình chóp tứ giác.

C Một hình chóp tứ giác và một hình chóp ngũ giác.

D Hai hình chóp tam giác.

Câu 15. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos 2 x

lần lượt là

Câu 16. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

5a

2a

a

9.

Câu 17. [1] Tính lim 1 − n

2 2n2+ 1 bằng?

A. 1

1

1

3.

Câu 18. Xét hai câu sau

(I)

Z

( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)

(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)

Trong hai câu trên

A Chỉ có (I) đúng B Cả hai câu trên đúng C Cả hai câu trên sai D Chỉ có (II) đúng.

Câu 19. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 20. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là

Câu 21. [3] Cho hàm số f (x)= 4x

4x+ 2 Tính tổng T = f

1 2017

! + f 2 2017

! + · · · + f 2016

2017

!

A T = 1008 B T = 2016

2017. C T = 2016 D T = 2017

Câu 22. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3 ] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 23. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và √3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2

√ 3

3 Thể tích khối lăng trụ đã cho bằng

√ 3

Câu 24. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số nghịch biến trên khoảng 1

3; 1

!

C Hàm số nghịch biến trên khoảng −∞;1

3

! D Hàm số đồng biến trên khoảng 1

3; 1

!

Trang 3

Câu 25. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng

A. a

6

a√6

√ 6

6 .

Câu 26. [3-1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 4 ln 2x

2x3ln 10 . B y

0 = 1 − 2 ln 2x

x3ln 10 . C y

2x3ln 10. D y

0 = 1 − 2 log 2x

x3

Câu 27. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 28. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= loga2 B log2a= − loga2 C log2a= 1

loga2. D log2a= 1

log2a.

Câu 29. Gọi F(x) là một nguyên hàm của hàm y= ln x

x

p

ln2x+ 1 mà F(1) = 1

3 Giá trị của F

2 (e) là:

A. 8

1

1

8

3.

Câu 30. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:

Câu 31. Khối đa diện đều loại {3; 3} có số đỉnh

Câu 32. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

C lim un= 1

Câu 33 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

B Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

C Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

D Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

Câu 34. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?

A Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)

B Hàm số nghịch biến trên khoảng (−2; 1).

C Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)

D Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)

Câu 35. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Câu 36. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Trang 4

Câu 37. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1+ 2e

4e+ 2. B m=

1 − 2e

4 − 2e. C m= 1 − 2e

4e+ 2. D m=

1+ 2e

4 − 2e.

Câu 38. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng

√ 2

a

√ 2

2 .

Câu 39. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

a3√3

a3√2

a3√6

48 .

Câu 40. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

5

a3√ 5

a3√ 3

a3√ 5

4 .

Câu 41. Hàm số y= x + 1

x có giá trị cực đại là

Câu 42. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số đỉnh của khối chóp bằng số mặt của khối chóp.

B Số đỉnh của khối chóp bằng số cạnh của khối chóp.

C Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

D Số cạnh của khối chóp bằng số mặt của khối chóp.

Câu 43. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

3√

3

4a3

4a3

√ 3

2a3

3 .

Câu 44. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 45. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2

− 6t(m/s) Tính quãng đường chất điểm

đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 46. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

2√a2+ b2 B. √ ab

a2+ b2 C. ab

a2+ b2 D. √ 1

a2+ b2

Câu 47. Tính lim

x→2

x+ 2

x bằng?

Câu 48. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối 12 mặt đều B Khối tứ diện đều C Khối lập phương D Khối bát diện đều.

Câu 49. Cho

Z 2 1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Trang 5

Câu 50. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

A. 1

1

Câu 51. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

2.

Câu 52. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 53. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

3√ 3

3

Câu 54 Hình nào trong các hình sau đây không là khối đa diện?

Câu 55. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?

Câu 56. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 57. [3-1214d] Cho hàm số y = x −1

x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

A 2

√ 2

Câu 58. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = 120.(1, 12)3

(1, 12)3− 1 triệu. B m = 100.1, 03

3 triệu.

C m = (1, 01)3

(1, 01)3− 1 triệu. D m = 100.(1, 01)3

3 triệu.

Câu 59. [1] Giá trị của biểu thức 9log3 12bằng

Câu 60. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

Câu 61. Hàm số y= x3− 3x2+ 4 đồng biến trên:

Câu 62. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng

2√a2+ b2 C. √ 1

a2+ b2 D. ab

a2+ b2

Trang 6

Câu 63. [3-1122h] Cho hình lăng trụ ABC.ABC có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3√ 3

a3√ 3

a3√ 3

6 .

Câu 64. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 65. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối tứ diện đều B Khối 12 mặt đều C Khối lập phương D Khối bát diện đều.

Câu 66. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

A 3

Câu 67. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 68. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N

và P lần lượt là tâm của các mặt bên ABB0A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

3

20√3

√ 3

Câu 69. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối 12 mặt đều B Khối 20 mặt đều C Khối tứ diện đều D Khối bát diện đều.

Câu 70. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

57

a√57

√ 57

19 .

Câu 71. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A.

3

3

√ 3

√ 3

4 .

Câu 72. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là

Câu 73. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên

S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng

A. a

38

3a

3a

√ 38

3a

√ 58

29 .

Câu 74. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 75. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Câu 76. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 77. Cho f (x)= sin2

x −cos2x − x Khi đó f0(x) bằng

A 1+ 2 sin 2x B 1 − sin 2x C −1+ sin x cos x D −1+ 2 sin 2x

Trang 7

Câu 78. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 79. Tìm giới hạn lim2n+ 1

n+ 1

Câu 80. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

A.

"

−2

3;+∞

! B. " 2

5;+∞

!

3

#

5

#

Câu 81. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

!

A. 3

5

Câu 82. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

Câu 83. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Câu 84. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Các mệnh đề đúng là

Câu 85. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

Câu 86 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

Câu 87. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2

f(x3)−√ 6

3x+ 1 Tính

Z 1 0

f(x)dx

Câu 88. Xác định phần ảo của số phức z= (√2+ 3i)2

Câu 89. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương

Trang 8

(II) lim qn= +∞ nếu |q| < 1.

(III) lim qn= +∞ nếu |q| > 1

Câu 90. [2] Đạo hàm của hàm số y = x ln x là

A y0 = 1 + ln x B y0 = x + ln x C y0 = ln x − 1 D y0 = 1 − ln x

Câu 91. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

9

Câu 92. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 93 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aα+β= aα.aβ

α

aβ = aα C aαβ = (aα

D aαbα = (ab)α

Câu 94. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 95. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 96. Tính lim

x→ +∞

x −2

x+ 3

Câu 97. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Câu 98. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

A V = 3a3√

3 B V = 3a3

√ 3

2 . C V = 6a3 D V = a3

√ 3

2 .

Câu 99. Tính lim n −1

n2+ 2

Câu 100. Cho I =Z 3

0

x

4+ 2√x+ 1dx =

a

d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị P= a + b + c + d bằng?

Câu 101. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

2; 3

!

"

2;5 2

!

Trang 9

Câu 102. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

Câu 103. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

A.

3

3

1

2.

Câu 104. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là

A. a

3√

2

a3√3

a3√3

a3√3

4 .

Câu 105. Hàm số nào sau đây không có cực trị

A y = x4− 2x+ 1 B y= x −2

2x+ 1. C y= x3− 3x. D y= x +

1

x.

Câu 106. [12215d] Tìm m để phương trình 4x+

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

A 0 ≤ m ≤ 3

3

9

Câu 107. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4

2x+ 12 log2

2x log2 8

x

Câu 108. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0 là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng vi khuẩn đạt 100.000 con?

Câu 109. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

Câu 110. Khối đa diện đều loại {3; 3} có số cạnh

Câu 111. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

A 2

√ 13

13 .

Câu 112. Tính giới hạn lim2n+ 1

3n+ 2

A. 1

2

3

2.

Câu 113. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

2e

π

√ 2

2 e

π

√ 3

2 e

π

6

Câu 114 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

k f(x)dx= f

Z

f(x)dx, k ∈ R, k , 0 B.

Z

f(x)g(x)dx=

Z

f(x)dx

Z g(x)dx

C.

Z

( f (x)+ g(x))dx =

Z

f(x)dx+

Z g(x)dx D.

Z ( f (x) − g(x))dx=

Z

f(x)dx −

Z g(x)dx

Câu 115. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3

a3√3

a3√3

a3√3

4 .

Trang 10

Câu 116. Khối chóp ngũ giác có số cạnh là

Câu 117. Khối đa diện đều loại {3; 3} có số mặt

Câu 118. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 119. Dãy số nào sau đây có giới hạn là 0?

A. 1

3

!n

3

!n

e

!n

3

!n

Câu 120. Khối đa diện đều loại {3; 5} có số cạnh

Câu 121. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 122. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey+ 1 B xy0 = ey

− 1

Câu 123 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 2, 22 triệu đồng B 3, 03 triệu đồng C 2, 25 triệu đồng D 2, 20 triệu đồng.

Câu 124. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

Câu 125. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 126. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 2ac

3b+ 2ac

3b+ 3ac

3b+ 3ac

c+ 2 .

Câu 127. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 70, 128 triệu đồng B 3, 5 triệu đồng C 50, 7 triệu đồng D 20, 128 triệu đồng.

Câu 128. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2là số ảo là

A Trục ảo.

B Trục thực.

C Hai đường phân giác y= x và y = −x của các góc tọa độ

D Đường phân giác góc phần tư thứ nhất.

Câu 129. Hàm số y= x3

− 3x2+ 3x − 4 có bao nhiêu cực trị?

Câu 130. [4-1212d] Cho hai hàm số y= x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y= |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

HẾT

Ngày đăng: 27/03/2023, 15:56

w