1. Trang chủ
  2. » Tất cả

Bài tập toán thpt 2 (707)

12 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Bài tập toán thpt 2 (707)
Trường học Trường Đại Học Sư Phạm Hà Nội
Chuyên ngành Toán học
Thể loại Bài tập
Thành phố Hà Nội
Định dạng
Số trang 12
Dung lượng 150,19 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Phần thực và phần ảo của số phức z = √ 2 − 1 − √ 3i lần lượt l A Phần thực là √ 2 − 1, phần ảo là − √ 3 B[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. Phần thực và phần ảo của số phức z= √2 − 1 −

√ 3i lần lượt l

A Phần thực là

2 − 1, phần ảo là −

2, phần ảo là −

√ 3

C Phần thực là √2 − 1, phần ảo là

3 D Phần thực là √2, phần ảo là 1 −

√ 3

Câu 2. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 3. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Câu 4. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng

A T = e + 1 B T = e + 2

e. C T = 4 + 2

e. D T = e + 3

Câu 5. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun

vn bằng

Câu 6. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A.

3

3

√ 3

√ 3

12.

Câu 7. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

Câu 8. Hàm số y= x3− 3x2+ 4 đồng biến trên:

Câu 9. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

A. 1

1

Câu 10. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là

3, 38 D 2, 4, 8.

Câu 11. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

√ 13

√ 26

Câu 12. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

2

a2+ b2 C. ab

a2+ b2 D. √ ab

a2+ b2

Câu 13. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?

Câu 14. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Trang 2

Câu 15. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 50, 7 triệu đồng B 20, 128 triệu đồng C 70, 128 triệu đồng D 3, 5 triệu đồng.

Câu 16. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A (−∞; −2) ∪ (−1; +∞) B (−∞; −2]∪[−1; +∞) C −2 < m < −1 D −2 ≤ m ≤ −1.

Câu 17. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 4a

3

4a3√ 3

2a3

2a3√ 3

3 .

Câu 18. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 19. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

Câu 20. Giá trị cực đại của hàm số y = x3− 3x+ 4 là

Câu 21. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3√3

a3

a3√3

8 .

Câu 22. Tính lim

x→ +∞

x −2

x+ 3

3.

Câu 23. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 24. Tính lim

x→3

x2− 9

x −3

Câu 25. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 26. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 27. [3-1214d] Cho hàm số y = x −1

x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

Câu 28. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

1

4.

Trang 3

Câu 29. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 30. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 31. Hàm số f có nguyên hàm trên K nếu

A f (x) có giá trị nhỏ nhất trên K B f (x) liên tục trên K.

C f (x) có giá trị lớn nhất trên K D f (x) xác định trên K.

Câu 32 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx B.

Z ( f (x) − g(x))dx=Z f(x)dx −

Z g(x)dx

C.

Z

k f(x)dx= f Z f(x)dx, k ∈ R, k , 0 D.

Z

f(x)g(x)dx=Z f(x)dx

Z g(x)dx

Câu 33. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

A 3

Câu 34. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b) B lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b)

C lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b) D lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b)

Câu 35. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 36. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

(III) lim qn= +∞ nếu |q| > 1

Câu 37. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 38. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 39. Cho

Z 2 1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 40. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Câu 41. Khối đa diện đều loại {3; 3} có số đỉnh

Câu 42. [1-c] Giá trị biểu thức log236 − log2144 bằng

Trang 4

Câu 43. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

A. a

3

a3

3

3

12.

Câu 44. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Câu 45. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 46. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

Câu 47. Hàm số y= x + 1

x có giá trị cực đại là

Câu 48. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 49. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

A. −∞;2

5

#

"

−2

3;+∞

!

3

# D. " 2

5;+∞

!

Câu 50. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7

Câu 51. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a√39

a√39

a√39

9 .

Câu 52. Tìm m để hàm số y= mx −4

x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]

Câu 53. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối 20 mặt đều B Khối tứ diện đều C Khối 12 mặt đều D Khối bát diện đều.

Câu 54. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019

Câu 55. [2-c] Giá trị lớn nhất của hàm số y = xe−2x2 trên đoạn [1; 2] là

2

e3

Câu 56. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 57. Tính lim

x→−∞

x+ 1 6x − 2 bằng

A. 1

1

1

6.

Trang 5

Câu 58. Cho

1 0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

A. 1

1

Câu 59. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 60. [2] Đạo hàm của hàm số y = x ln x là

A y0 = x + ln x B y0 = ln x − 1 C y0 = 1 + ln x D y0 = 1 − ln x

Câu 61. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 62. Tính lim

x→1

x3− 1

x −1

Câu 63 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

B.

Z

u0(x)

u(x)dx= log |u(x)| + C

C F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

D Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

Câu 64. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Câu 65. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2

Câu 66. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3

− z

A P= −1 − i

√ 3

2 . B P= −1+ i

√ 3

Câu 67. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m < 1

1

1

1

4.

Câu 68. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số đỉnh của khối chóp bằng số cạnh của khối chóp.

B Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

C Số đỉnh của khối chóp bằng số mặt của khối chóp.

D Số cạnh của khối chóp bằng số mặt của khối chóp.

Câu 69. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 70. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

3√ 3

a3√3

a3

3 .

Trang 6

Câu 71. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

A m < 0 ∨ m > 4 B m < 0 C m < 0 ∨ m= 4 D m ≤ 0.

Câu 72. Gọi F(x) là một nguyên hàm của hàm y= ln x

x

p

ln2x+ 1 mà F(1) = 1

3 Giá trị của F

2(e) là:

A. 1

1

8

8

3.

Câu 73. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

!

A. 5

3

Câu 74. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 75. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là

1 2e.

Câu 76. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 77. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3

abằng

1

Câu 78. [1] Tập xác định của hàm số y= log3(2x+ 1) là

A. −∞;1

2

!

2;+∞

!

2

!

2;+∞

!

Câu 79. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 1

2S h. B V = 1

3S h. C V = S h D V = 3S h

Câu 80. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

Câu 81. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

√ 2

Câu 82. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số đồng biến trên khoảng 1

3; 1

!

C Hàm số nghịch biến trên khoảng −∞;1

3

! D Hàm số nghịch biến trên khoảng 1

3; 1

!

Câu 83. Tính lim n −1

n2+ 2

Câu 84. Khối đa diện đều loại {3; 4} có số cạnh

Câu 85. Tứ diện đều thuộc loại

Trang 7

Câu 86. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2

f(x3)−√ 6

3x+ 1 Tính

1 0

f(x)dx

Câu 87. Hàm số y= x3

− 3x2+ 3x − 4 có bao nhiêu cực trị?

Câu 88. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Câu 89. Khối đa diện đều loại {4; 3} có số cạnh

Câu 90. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = 1

e, m = 0 B M= e, m = 0 C M = e, m = 1 D M = e, m = 1

e.

Câu 91. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?

A Hàm số đồng biến trên khoảng (0; 2) B Hàm số nghịch biến trên khoảng (−∞; 2).

C Hàm số nghịch biến trên khoảng (0; 2) D Hàm số đồng biến trên khoảng (0;+∞)

Câu 92. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

Câu 93. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

Câu 94. Cho I =

Z 3 0

x

4+ 2√x+ 1dx =

a

d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị P= a + b + c + d bằng?

Câu 95. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

A. 3a

Câu 96. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2

Câu 97. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là

A Hai đường phân giác y= x và y = −x của các góc tọa độ

B Đường phân giác góc phần tư thứ nhất.

C Trục ảo.

D Trục thực.

Câu 98. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3√3

a3√3

a3√3

24 .

Trang 8

Câu 99 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aαβ = (aα)β B. a

α

aβ = aα C aαbα = (ab)α D aα+β = aα.aβ

Câu 100. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ (a; b), ta có f0(x)= F(x)

B Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

C Với mọi x ∈ [a; b], ta có F0(x)= f (x)

D Với mọi x ∈ [a; b], ta có F0(x)= f (x)

Câu 101. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

√ 5

Câu 102. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 2ac

3b+ 3ac

3b+ 3ac

3b+ 2ac

c+ 3 .

Câu 103 Phát biểu nào sau đây là sai?

A lim un= c (Với un = c là hằng số) B lim 1

nk = 0 với k > 1

n = 0

Câu 104. [1] Giá trị của biểu thức 9log3 12bằng

Câu 105. Hàm số nào sau đây không có cực trị

A y = x −2

2x+ 1. B y= x3− 3x. C y= x4− 2x+ 1. D y= x +

1

x.

Câu 106. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu

Z

f(x)dx=

Z g(x)dx thì f (x)= g(x), ∀x ∈ R

B Nếu

Z

f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R

C Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx

D Nếu

Z

f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R

Câu 107. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A. a

3√

2

a3

√ 3

3√

3√ 2

12 .

Câu 108. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 109. Khối chóp ngũ giác có số cạnh là

Câu 110. Tính lim 5

n+ 3

Câu 111 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

Trang 9

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 2, 20 triệu đồng B 2, 22 triệu đồng C 2, 25 triệu đồng D 3, 03 triệu đồng.

Câu 112. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 113. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng

a2+ b2 B. ab

2

a2+ b2 D. √ 1

a2+ b2

Câu 114. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

A. a

3

a3

√ 3

3√ 3

3 .

Câu 115. Khối đa diện đều loại {5; 3} có số mặt

Câu 116. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

A. 5

7

2.

Câu 117. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối tứ diện đều B Khối 12 mặt đều C Khối bát diện đều D Khối lập phương.

Câu 118. Tìm giới hạn lim2n+ 1

n+ 1

Câu 119. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

A.

3

2 e

π

2e

π

√ 2

2 e

π

4

Câu 120. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 121. Dãy số nào sau đây có giới hạn là 0?

A. −5

3

!n

e

!n

3

!n

3

!n

Câu 122. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3

2a3√ 3

4a3√ 3

a3

3 .

Câu 123. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. 8a

3√

3

4a3√ 3

8a3√ 3

a3√ 3

9 .

Câu 124. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2

và y= x

A. 9

11

Trang 10

Câu 125. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3

2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?

Câu 126. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Tăng lên (n − 1) lần B Không thay đổi C Tăng lên n lần D Giảm đi n lần.

Câu 127. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|

A.

Câu 128. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc

60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

A. a

3√

3

5a3√ 3

2a3√ 3

4a3√ 3

3 .

Câu 129. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 130. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. a

3√

3

2a3√ 6

a3√ 6

a3√ 3

2 .

HẾT

Ngày đăng: 27/03/2023, 15:55

w