1. Trang chủ
  2. » Luận Văn - Báo Cáo

Bài Tập Toán Thpt 2 (117).Pdf

12 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Bài Tập Toán Thpt
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán Học
Thể loại Bài Tập
Năm xuất bản 2019
Thành phố Hà Nội
Định dạng
Số trang 12
Dung lượng 149,96 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Gọi F(x) là một nguyên hàm của hàm y = ln x x √ ln2 x + 1 mà F(1) = 1 3 Giá trị của F2(e) là A 8 9 B 1 9 C[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. Gọi F(x) là một nguyên hàm của hàm y= ln x

x

p

ln2x+ 1 mà F(1) = 1

3 Giá trị của F

2(e) là:

A. 8

1

1

8

3.

Câu 2 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 3, 03 triệu đồng B 2, 20 triệu đồng C 2, 25 triệu đồng D 2, 22 triệu đồng.

Câu 3 Trong các khẳng định sau, khẳng định nào sai?

A Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

B F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

C.

Z

u0(x)

u(x)dx= log |u(x)| + C

D F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

Câu 4. Khối lập phương thuộc loại

Câu 5. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 6. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

6

a3√ 3

a3√ 3

a3√ 2

16 .

Câu 7. Vận tốc chuyển động của máy bay là v(t)= 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ

5 đến giây thứ 15 là bao nhiêu?

Câu 8. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t) = −3

2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?

Câu 9. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Câu 10. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 11. Giá trị cực đại của hàm số y = x3

− 3x2− 3x+ 2

√ 2

Câu 12. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Trang 2

Câu 13. Tính lim 2n

2− 1 3n6+ n4

Câu 14. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

Câu 15. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 16. Cho

Z 1 0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

1

Câu 17. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 18. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A Cả ba câu trên đều sai.

B F(x)= G(x) trên khoảng (a; b)

C G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

D F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

Câu 19. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 20. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 21. Phần thực và phần ảo của số phức z= √2 − 1 −

√ 3i lần lượt l

A Phần thực là

2 − 1, phần ảo là −

2 − 1, phần ảo là

√ 3

C Phần thực là

2, phần ảo là 1 −

2, phần ảo là −

√ 3

Câu 22. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2

)?

Câu 23. Khối chóp ngũ giác có số cạnh là

Câu 24. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng

A. a

2

a

√ 2

√ 2

Câu 25. Cho

Z 2 1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 26. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

2√a2+ b2 C. √ 1

a2+ b2 D. ab

a2+ b2

Trang 3

Câu 27. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

a3√ 3

a3√ 2

3√ 3

Câu 28. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm

đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 29. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

2√e.

Câu 30. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m

mtan x+ 1 nghịch biến trên khoảng



0;π

4



Câu 31. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 32. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 33. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên

S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng

A. a

38

3a√38

3a

3a√58

29 .

Câu 34. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 35. Khối đa diện đều loại {5; 3} có số cạnh

Câu 36. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Câu 37. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

A V = 3a3

√ 3

2 . B V = 3a3√

3 C V = 6a3 D V = a3

√ 3

2 .

Câu 38. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối 20 mặt đều B Khối 12 mặt đều C Khối tứ diện đều D Khối bát diện đều.

Câu 39. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Câu 40. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

A. 1

√ 5

Trang 4

Câu 41. Dãy số nào sau đây có giới hạn là 0?

A. 5

3

!n

3

!n

3

!n

e

!n

Câu 42. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 43. Dãy số nào có giới hạn bằng 0?

A un= n3− 3n

n+ 1 . B un = −2

3

!n C un = n2− 4n D un = 6

5

!n

Câu 44. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

A lim

x→a + f(x)= lim

x→a − f(x)= a

C lim

x→a + f(x)= lim

x→a − f(x)= +∞ D f (x) có giới hạn hữu hạn khi x → a.

Câu 45. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số nghịch biến trên khoảng (−∞; 0) B Hàm số đồng biến trên khoảng (1; 2).

C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số nghịch biến trên khoảng (0; 1).

Câu 46. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

A. 3

√ 3

1

2.

Câu 47. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey

− 1

Câu 48. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

(III) lim qn= +∞ nếu |q| > 1

Câu 49. [3-1133d] Tính lim1

2+ 22+ · · · + n2

n3

1

3.

Câu 50. Tìm giới hạn lim2n+ 1

n+ 1

Câu 51. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. a

57

2a

√ 57

a

√ 57

√ 57

Câu 52. Cho I =

Z 3 0

x

4+ 2√x+ 1dx =

a

d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị P= a + b + c + d bằng?

Câu 53. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey+ 1 B xy0 = ey

− 1 D xy0 = −ey+ 1

Trang 5

Câu 54. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= ln 10 B f0(0)= 10 C f0(0)= 1 D f0(0)= 1

ln 10.

Câu 55. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = 100.(1, 01)3

(1, 12)3− 1 triệu.

C m = 100.1, 03

(1, 01)3− 1 triệu.

Câu 56. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Câu 57. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 58. Hàm số y= x + 1

x có giá trị cực đại là

Câu 59. [3-1214d] Cho hàm số y = x −1

x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

Câu 60. Khối đa diện đều loại {4; 3} có số mặt

Câu 61. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 62. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 63. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Một hình chóp tam giác và một hình chóp tứ giác.

B Hai hình chóp tam giác.

C Hai hình chóp tứ giác.

D Một hình chóp tứ giác và một hình chóp ngũ giác.

Câu 64. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2

− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019

Câu 65. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =

xy+ x + 2y + 17

Trang 6

Câu 66 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

B.

Z

[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R

C.

Z

[ f (x) − g(x)]dx=Z f(x)dx −

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

D.

Z

k f(x)dx= k

Z

f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

Câu 67. Dãy số nào sau đây có giới hạn khác 0?

A. sin n

1

n+ 1

1

n.

Câu 68. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 69. [1] Đạo hàm của làm số y = log x là

A y0 = 1

xln 10. B y

0 = 1

0 = ln 10

1

10 ln x.

Câu 70. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3√3

a3√3

a3√3

6 .

Câu 71. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1+ 2e

4e+ 2. B m=

1 − 2e 4e+ 2. C m=

1+ 2e

4 − 2e. D m= 1 − 2e

4 − 2e.

Câu 72. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 73. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

Câu 74. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 75. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Câu 76. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ [a; b], ta có F0(x)= f (x)

B Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

C Với mọi x ∈ (a; b), ta có f0(x)= F(x)

D Với mọi x ∈ [a; b], ta có F0(x)= f (x)

Trang 7

Câu 77. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 78. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất

Pmincủa P= x + y

A Pmin= 18

11 − 29

21 B Pmin = 9

11+ 19

9 . C Pmin = 2

11 − 3

3 . D Pmin= 9

11 − 19

Câu 79. [2-c] Giá trị lớn nhất của hàm số f (x)= ex3−3x+3trên đoạn [0; 2] là

Câu 80 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aαbα= (ab)α

B aα+β= aα.aβ

α

aβ = aα D aαβ = (aα

Câu 81. Hàm số y= x3− 3x2+ 4 đồng biến trên:

Câu 82. Dãy số nào sau đây có giới hạn là 0?

A un= n2− 2

5n − 3n2 B un = n2− 3n

n2 C un = n2+ n + 1

(n+ 1)2 D un = 1 − 2n

5n+ n2

Câu 83. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 84. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Một khối chóp tam giác, một khối chóp ngữ giác.

B Hai khối chóp tứ giác.

C Hai khối chóp tam giác.

D Một khối chóp tam giác, một khối chóp tứ giác.

Câu 85. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. a

3√

6

2a3√ 6

a3

√ 3

a3

√ 3

2 .

Câu 86. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A −2 ≤ m ≤ −1 B −2 < m < −1 C (−∞; −2) ∪ (−1; +∞) D (−∞; −2]∪[−1; +∞).

Câu 87. Tính lim

x→5

x2− 12x+ 35

25 − 5x

A. 2

5.

Câu 88. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3abằng

A −1

1

3.

Câu 89. Tính lim

x→1

x3− 1

x −1

Câu 90. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Trang 8

Câu 91. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

Câu 92. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

Câu 93. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 94. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

3√ 3

3

Câu 95. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 96. Giá trị cực đại của hàm số y = x3− 3x+ 4 là

Câu 97. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Câu 98. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

Câu 99. Khối đa diện đều loại {5; 3} có số mặt

Câu 100. Tìm m để hàm số y= mx −4

x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]

Câu 101. [1] Tính lim1 − 2n

3n+ 1 bằng?

A −2

2

1

3.

Câu 102. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a

√ 39

a

√ 39

a

√ 39

13 .

Câu 103. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

5

2.

Câu 104 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

( f (x) − g(x))dx=Z f(x)dx −

Z g(x)dx B.

Z

f(x)g(x)dx=Z f(x)dx

Z g(x)dx

C.

Z

( f (x)+ g(x))dx =

Z

f(x)dx+

Z g(x)dx D.

Z

k f(x)dx= f

Z

f(x)dx, k ∈ R, k , 0

Trang 9

Câu 105. [1] Biết log6 √a= 2 thì log6abằng

Câu 106. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 107. Tính lim

x→2

x+ 2

x bằng?

Câu 108. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3+3x2+(m−1)x+2m−3 đồng biến trên khoảng

có độ dài lớn hơn 1

A m > −5

5

4 < m < 0

Câu 109. Khối đa diện đều loại {3; 5} có số cạnh

Câu 110. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 111. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

A. a

3

a3

√ 3

3√ 3

2 .

Câu 112. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Câu 113. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 114. Khẳng định nào sau đây đúng?

A Hình lăng trụ tứ giác đều là hình lập phương.

B Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

C Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

D Hình lăng trụ đứng là hình lăng trụ đều.

Câu 115. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 116. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

Câu 117. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

A.

Câu 118. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

A Phần thực là −3, phần ảo là −4 B Phần thực là −3, phần ảo là 4.

Câu 119 Hình nào trong các hình sau đây không là khối đa diện?

Câu 120. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Trang 10

Câu 121. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 122. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 123. Khối đa diện đều loại {3; 4} có số cạnh

Câu 124 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?

A Tứ diện đều B Nhị thập diện đều C Thập nhị diện đều D Bát diện đều.

Câu 125. [2] Cho hàm số y= log3(3x+ x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Câu 126. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 127. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m ≤ 1

1

1

1

4.

Câu 128. [3] Cho hàm số f (x)= 4x

4x+ 2 Tính tổng T = f

1 2017

! + f 2 2017

! + · · · + f 2016

2017

!

A T = 2016 B T = 2017 C T = 1008 D T = 2016

2017.

Câu 129. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc

45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3√

15

a3

a3√ 15

a3√ 5

25 .

Câu 130. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

HẾT

Ngày đăng: 27/03/2023, 15:27