Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Trong các khẳng định sau, khẳng định nào sai? A Nếu F(x),G(x) là hai nguyên hàm của hàm số f (x) thì F(x)[.]
Trang 1Free LATEX
(Đề thi có 10 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1 Trong các khẳng định sau, khẳng định nào sai?
A Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
C Cả ba đáp án trên.
D F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
n+ 3
Câu 3. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
A Phần thực là 3, phần ảo là −4 B Phần thực là −3, phần ảo là 4.
C Phần thực là 3, phần ảo là 4 D Phần thực là −3, phần ảo là −4.
3x
3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A −2 ≤ m ≤ −1 B (−∞; −2) ∪ (−1; +∞) C −2 < m < −1 D (−∞; −2] ∪ [−1;+∞)
Câu 5. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
x→−∞
x+ 1 6x − 2 bằng
1
1
3.
Câu 7. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
Câu 8. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Tăng lên n lần B Tăng lên (n − 1) lần C Giảm đi n lần D Không thay đổi.
Câu 9. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
A Dãy số unkhông có giới hạn khi n →+∞ B lim un= 1
2.
Câu 10. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A. 1
2e
π
√ 3
2 e
π
√ 2
2 e
π
4
Câu 11. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 12. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:
A Tăng gấp 4 lần B Tăng gấp 8 lần C Tăng gấp 6 lần D Tăng gấp đôi.
Trang 2Câu 13. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là
A. 4a
3√
3
4a3
2a3
2a3√3
3 .
Câu 14. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
6.
Câu 15. Tính giới hạn lim2n+ 1
3n+ 2
2
1
2.
Câu 16. Tìm giới hạn lim2n+ 1
n+ 1
4x+ 2 Tính tổng T = f
1 2017
! + f 2 2017
! + · · · + f 2016
2017
!
A T = 2017 B T = 2016 C T = 1008 D T = 2016
2017.
Câu 18. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
√
√
√ 3
Câu 19. Cho hàm số y= x3
− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số nghịch biến trên khoảng (0; 1) B Hàm số đồng biến trên khoảng (1; 2).
C Hàm số nghịch biến trên khoảng (−∞; 0) D Hàm số nghịch biến trên khoảng (1;+∞)
Câu 20. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =
xy+ x + 2y + 17
x→ +∞
2x+ 1
x+ 1
Câu 22. [1] Tính lim 1 − n
2
2n2+ 1 bằng?
A. 1
1
1
3.
Câu 23. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 24 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A Bát diện đều B Thập nhị diện đều C Nhị thập diện đều D Tứ diện đều.
Câu 25. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
x→ +∞
x −2
x+ 3
Trang 3Câu 27. Cho
1
0
xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
A. 1
1
Câu 28. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là
Câu 29. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Hai khối chóp tứ giác.
B Một khối chóp tam giác, một khối chóp tứ giác.
C Một khối chóp tam giác, một khối chóp ngữ giác.
D Hai khối chóp tam giác.
Câu 30. Thể tích của khối lập phương có cạnh bằng a√2
A 2a3
√
3√ 2
2
x→2
x+ 2
x bằng?
√ 4n2+ 1 − √n+ 2 2n − 3 bằng
2.
Câu 33. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Chỉ có (I) đúng B Chỉ có (II) đúng C Cả hai câu trên đúng D Cả hai câu trên sai.
Câu 34. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là
A M = e−2+ 2; m = 1 B M = e2− 2; m = e−2+ 2
C M = e−2+ 1; m = 1 D M = e−2− 2; m= 1
Câu 35. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A. 20
√
3
√
√ 3
√ 3
Câu 36. Khối đa diện đều loại {3; 4} có số mặt
Câu 37. Tính limcos n+ sin n
n2+ 1
biến d thành d0?
x→−∞
4x+ 1
x+ 1 bằng?
Trang 4Câu 40. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A a
√
√ 6
a√6
a√6
2 .
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 42. Giá trị của giới hạn lim2 − n
n+ 1 bằng
đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
2
a3
√ 6
a3
√ 3
a3
√ 3
48 .
x→ +∞
x+ 1 4x+ 3 bằng
1
3.
Câu 45. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 6 cạnh, 4 mặt B 4 đỉnh, 8 cạnh, 4 mặt C 4 đỉnh, 6 cạnh, 4 mặt D 3 đỉnh, 3 cạnh, 3 mặt.
Câu 46. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3
√ 2
a3
√ 2
a3
√ 2
12 .
một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là
3√ 3
Câu 48. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]
27.
Câu 49. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b) B lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b)
C lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b) D lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b)
Câu 50. Bát diện đều thuộc loại
vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
A. 2a
3√
6
a3√ 6
a3√ 3
a3√ 3
2 .
Câu 52. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= − loga2 B log2a= loga2 C log2a= 1
log2a. D log2a= 1
loga2.
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
Trang 55 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 2, 20 triệu đồng B 3, 03 triệu đồng C 2, 22 triệu đồng D 2, 25 triệu đồng.
Câu 54. [12215d] Tìm m để phương trình 4x+
√ 1−x 2
− 4.2x+
√ 1−x 2
− 3m+ 4 = 0 có nghiệm
A 0 ≤ m ≤ 3
9
3
Câu 55. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun
vn bằng
Câu 56. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 5 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 5 mặt C 6 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 6 cạnh, 6 mặt.
Câu 57. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 58. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. 5a
8a
2a
a
9.
Câu 60. Khối chóp ngũ giác có số cạnh là
hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
2a3
√ 3
3√
3√ 3
3 .
Câu 62. Dãy số nào sau đây có giới hạn là 0?
A. 5
3
!n
3
!n
3
!n
e
!n
x→1
x3− 1
x −1
Câu 64. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 65. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
Câu 66. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦
; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là
A. a
3√
3
a3
√ 3
a3
√ 2
2√ 2
Câu 67. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Trang 6Câu 68 Phát biểu nào sau đây là sai?
A lim 1
nk = 0 với k > 1 B lim √1
n = 0
C lim un= c (Với un = c là hằng số) D lim qn= 1 với |q| > 1
là:
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞
f(x)
g(x) = a
C lim
x→ +∞[ f (x)g(x)]= ab D lim
x→ +∞[ f (x) − g(x)]= a − b
Câu 71. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 72. Khối đa diện loại {3; 4} có tên gọi là gì?
A Khối tứ diện đều B Khối lập phương C Khối 12 mặt đều D Khối bát diện đều.
Câu 73. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
A. a
3
a3√ 3
a3√ 3
3
Câu 74. Khối đa diện đều loại {3; 5} có số cạnh
Câu 75. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
3
3√
3√ 3
a3√ 2
2 .
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 78. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1
A −5
4 < m < 0 B m ≥ 0 C m ≤ 0 D m > −5
4.
thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
A 2a
√
√ 2
a√2
√ 2
Câu 80. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
A. 3a
√
58
a√38
3a
3a√38
29 .
Trang 7Câu 82. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 83. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)
Câu 84. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 85. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. 11a
2
a2√ 7
a2√ 5
a2√ 2
4 .
Câu 87 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
Z
xαdx= α + 1xα+1 + C, C là hằng số
C.
Z
1
xdx= ln |x| + C, C là hằng số D.
Z
dx = x + C, C là hằng số
Câu 88. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 89. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 90. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm
đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
Câu 91. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 92. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối bát diện đều C Khối tứ diện đều D Khối lập phương.
Câu 93. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là
tích của khối chóp S ABCD là
A. a
3
a3√3
3√
3√ 3
3 .
Câu 95 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A aα+β= aα.aβ
B aαβ = (aα
)β C aαbα = (ab)α
α
aβ = aα
Câu 96. [2-c] Cho hàm số f (x) = 9x
9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)
A. 1
Trang 8Câu 97 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
C Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
D Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
Câu 98. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?
A Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx
B Nếu
Z
f0(x)dx =
Z
g0(x)dx thì f (x) = g(x), ∀x ∈ R
C Nếu
Z
f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R
D Nếu
Z
f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
A. a
√
57
√
√ 57
2a√57
19 .
Câu 100. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 101 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
f(x)g(x)dx=Z f(x)dx
Z
Z ( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx
C.
Z
k f(x)dx= f Z f(x)dx, k ∈ R, k , 0 D.
Z ( f (x) − g(x))dx=Z f(x)dx −
Z g(x)dx
Câu 102. [1] Tập xác định của hàm số y= 2x−1là
A. D = (0; +∞) B. D = R \ {1} C. D = R D. D = R \ {0}
Câu 103. [2] Đạo hàm của hàm số y = x ln x là
A y0 = ln x − 1 B y0 = 1 + ln x C y0 = x + ln x D y0 = 1 − ln x
Câu 104. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
A.
√
√
Câu 105. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1 − 2e
4e+ 2. B m=
1 − 2e
4 − 2e. C m= 1+ 2e
4 − 2e. D m= 1+ 2e
4e+ 2.
Câu 107. Khối đa diện đều loại {5; 3} có số cạnh
Câu 108. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
A Tăng gấp 3 lần B Tăng gấp 27 lần C Tăng gấp 18 lần D Tăng gấp 9 lần.
Câu 109. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối tứ diện đều B Khối 12 mặt đều C Khối bát diện đều D Khối 20 mặt đều.
x→3
x2− 9
x −3
Trang 9Câu 111. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2là số ảo là
A Đường phân giác góc phần tư thứ nhất.
B Hai đường phân giác y= x và y = −x của các góc tọa độ
C Trục thực.
D Trục ảo.
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2 (e) là:
A. 1
8
1
8
3.
Câu 113. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A lim
x→a + f(x)= lim
x→a + f(x)= lim
x→a − f(x)= +∞
C f (x) có giới hạn hữu hạn khi x → a D lim
x→af(x)= f (a)
Câu 114. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
B Với mọi x ∈ [a; b], ta có F0(x)= f (x)
C Với mọi x ∈ [a; b], ta có F0(x)= f (x)
D Với mọi x ∈ (a; b), ta có f0(x)= F(x)
60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. a
3√
3
5a3√3
4a3√3
2a3√3
3 .
Câu 116. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
1
Câu 117. Giá trị của lim
x→1(3x2− 2x+ 1)
Câu 118. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1
A. 1
√ 3
3
2.
Câu 119. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 120. Khối đa diện đều loại {5; 3} có số đỉnh
Câu 121. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2
√
3 Thể tích khối nón đã cho là
A V = πa3
√ 3
6 . B V = πa3
√ 3
3 . C V = πa3
√ 3
2 . D V = πa3
√ 6
6 .
Câu 122. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 123. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?
Trang 10Câu 124. [1] Đạo hàm của hàm số y = 2x
là
A y0 = 2x ln 2 B y0 = 1
2x ln x. C y
0 = 1
0 = 2x ln x
Câu 125. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
A m = ±√2 B m= ±3 C m= ±√3 D m= ±1
Câu 126. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
A. 1
√
Câu 127. Khối đa diện đều loại {3; 3} có số cạnh
Câu 128. Khối đa diện đều loại {5; 3} có số mặt
Câu 129. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 130. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A.
√
3
√ 3
3
√ 3
12.
HẾT