Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã ch[.]
Trang 1Free LATEX
(Đề thi có 10 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là
A 2
√
3, 4
√
3, 38 B 2, 4, 8 C 8, 16, 32 D 6, 12, 24.
Câu 2. Bát diện đều thuộc loại
Câu 3. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 4. [1] Tính lim 1 − n
2 2n2+ 1 bằng?
A. 1
1
1
Câu 5. [1-c] Giá trị biểu thức log2240
log3,752 −
log215 log602 + log21 bằng
Câu 6. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
Câu 7. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 8. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD= 60◦
, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là
A a3
√
3√ 3
a3√ 2
a3√ 2
12 .
Câu 9. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng
√
b2+ c2
√
a2+ b2+ c2 B. b
√
a2+ c2
√
a2+ b2+ c2 C. c
√
a2+ b2
√
a2+ b2+ c2 D. abc
√
b2+ c2
√
a2+ b2+ c2
Câu 10. Tìm giá trị nhỏ nhất của hàm số y= (x2
− 2x+ 3)2
− 7
Câu 11. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là
A. 10a
3√
3
Câu 12. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
3
a3√ 3
3√
3√ 2
2 .
Câu 13. [2] Cho hàm số f (x)= 2x.5x
Giá trị của f0(0) bằng
A f0(0)= ln 10 B f0(0)= 10 C f0(0)= 1 D f0(0)= 1
ln 10.
Trang 2Câu 14. Tính lim7n
2− 2n3+ 1 3n3+ 2n2+ 1
7
Câu 15. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4
2x+ 12 log2
2x log2 8
x
Câu 16. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
a3
√ 2
a3
√ 3
a3
√ 6
48 .
Câu 17. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦
Khoảng cách từ A đến mặt phẳng (S BC) bằng
Câu 18. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π
3, x = π Tính giá trị của biểu thức T = a + b√3
Câu 19. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:
Câu 20. Tính giới hạn lim
x→2
x2− 5x+ 6
x −2
Câu 21. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 22. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3
a3√ 3
a3√ 3
8 .
Câu 23. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 24. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 25. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
B Với mọi x ∈ [a; b], ta có F0(x)= f (x)
C Với mọi x ∈ [a; b], ta có F0(x)= f (x)
D Với mọi x ∈ (a; b), ta có f0(x)= F(x)
Câu 26. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
A (+∞; −∞) B [3;+∞) C [1;+∞) D (−∞; 1].
Câu 27. Nhị thập diện đều (20 mặt đều) thuộc loại
Trang 3Câu 28. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
Câu 29. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?
A.
"
2;5
2
!
2; 3
!
Câu 30. [1] Tập xác định của hàm số y= 2x−1là
A. D = (0; +∞) B. D = R \ {1} C. D = R D. D = R \ {0}
Câu 31. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
A. 2a
√
57
a√57
a√57
√ 57
Câu 32. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= 1
loga2. B log2a= 1
log2a. C log2a= − loga2 D log2a= loga2
Câu 33. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
5
a3
√ 5
a3
√ 3
a3
√ 5
12 .
Câu 34. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A Hai đường phân giác y= x và y = −x của các góc tọa độ
B Đường phân giác góc phần tư thứ nhất.
C Trục ảo.
D Trục thực.
Câu 35. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 36. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 37. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
A 2a
√
√ 2
a√2
√ 2
Câu 38. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là
Câu 39. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 40. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0?
Câu 41. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Trang 4Câu 42. Khẳng định nào sau đây đúng?
A Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C Hình lăng trụ tứ giác đều là hình lập phương.
D Hình lăng trụ đứng là hình lăng trụ đều.
Câu 43. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 44. [2-c] Giá trị nhỏ nhất của hàm số y = x2
ln x trên đoạn [e−1; e] là
A − 1
1
1
e2
Câu 45. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2
− 2 ln x trên [e−1; e] là
A M = e2− 2; m = e−2+ 2 B M = e−2+ 2; m = 1
C M = e−2+ 1; m = 1 D M = e−2− 2; m= 1
Câu 46 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A Thập nhị diện đều B Tứ diện đều C Nhị thập diện đều D Bát diện đều.
Câu 47. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2
Câu 48 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A aα+β= aα.aβ B aαβ = (aα
)β C. a
α
aβ = aα D aαbα = (ab)α
Câu 49. Tính giới hạn lim2n+ 1
3n+ 2
A. 3
2
1
2.
Câu 50. Khối đa diện đều loại {4; 3} có số cạnh
Câu 51. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng (0;+∞) B Hàm số đồng biến trên khoảng (0; 2).
C Hàm số nghịch biến trên khoảng (−∞; 2) D Hàm số nghịch biến trên khoảng (0; 2).
Câu 52. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?
Câu 53 Mệnh đề nào sau đây sai?
A F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
B.
Z
f(x)dx
!0
= f (x)
C Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
D Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 54. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
Trang 5(III) lim qn= +∞ nếu |q| > 1.
Câu 55. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 50, 7 triệu đồng B 3, 5 triệu đồng C 70, 128 triệu đồng D 20, 128 triệu đồng.
Câu 56. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
A. 1
1
Câu 57. Khối đa diện đều loại {5; 3} có số cạnh
Câu 58. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
a3√ 3
3√
3√ 3
3 .
Câu 59. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3
x − m nghịch biến trên khoảng (0;+∞)?
Câu 60. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
18.
Câu 61. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
A. a
3√
6
2a3√6
a3√3
a3√3
4 .
Câu 62. Dãy số nào sau đây có giới hạn khác 0?
A. n+ 1
1
√
1
sin n
n .
Câu 63. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất
Pmincủa P= x + y
A Pmin= 9
√
11+ 19
9 . B Pmin = 18
√
11 − 29
21 C Pmin = 2
√
11 − 3
3 . D Pmin= 9
√
11 − 19
Câu 64. [1] Giá trị của biểu thức 9log3 12bằng
Câu 65. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
B Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
C Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
D Hàm số nghịch biến trên khoảng (−2; 1).
Câu 66. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
Trang 6theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?
Câu 67. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối tứ diện đều B Khối 12 mặt đều C Khối lập phương D Khối bát diện đều.
Câu 68. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 69. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 70. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
A.
"
−2
3;+∞
! B. " 2
5;+∞
!
3
#
5
#
Câu 71 Hình nào trong các hình sau đây không là khối đa diện?
Câu 72. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =
xy+ x + 2y + 17
Câu 73. Khối đa diện đều loại {3; 3} có số mặt
Câu 74. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Câu 75. Khối đa diện đều loại {3; 5} có số cạnh
Câu 76. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. 2a
a
a
a√2
3 .
Câu 77. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
Câu 78. Cho I = Z 3
0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 79 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
B Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
Trang 7C Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn = −∞
D Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
Câu 80. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A. 1
2e
π
√ 2
2 e
π
√ 3
2 e
π
6
Câu 81. Tìm giá trị lớn chất của hàm số y= x3
− 2x2− 4x+ 1 trên đoạn [1; 3]
A. 67
Câu 82. [2-c] Cho hàm số f (x) = 9x
9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)
Câu 83. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
sai
D Câu (III) sai.
Câu 84 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
xαdx= xα+1
α + 1+ C, C là hằng số. B.
Z 1
xdx= ln |x| + C, C là hằng số
C.
Z
Z
dx = x + C, C là hằng số
Câu 85. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 86. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
A. a
√
38
3a
√ 38
3a
3a
√ 58
29 .
Câu 87. [1] Đạo hàm của làm số y = log x là
A y0 = 1
xln 10. B y
0 = 1
1
0 = ln 10
x .
Câu 88. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
√ 6
√
Câu 89. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trang 8Trong hai khẳng định trên
A Cả hai đều đúng B Chỉ có (II) đúng C Cả hai đều sai D Chỉ có (I) đúng.
Câu 90. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
Câu 91. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 92. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1+ 2e
4e+ 2. B m=
1 − 2e
4 − 2e. C m= 1 − 2e
4e+ 2. D m=
1+ 2e
4 − 2e.
Câu 93. [3-1131d] Tính lim 1
1 + 1
1+ 2 + · · · +
1
1+ 2 + · · · + n
!
3
Câu 94. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A (−∞; −1) và (0; +∞) B (−1; 0) C (−∞; 0) và (1; +∞) D (0; 1).
Câu 95. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2
− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019
Câu 96. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 97. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2
)?
Câu 98. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số mặt của khối chóp bằng 2n+1.
B Số đỉnh của khối chóp bằng 2n+ 1
C Số mặt của khối chóp bằng số cạnh của khối chóp.
D Số cạnh của khối chóp bằng 2n.
Câu 99. Khối đa diện đều loại {3; 3} có số cạnh
Câu 100. Tính limcos n+ sin n
n2+ 1
Câu 101. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 102. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2
A −3 − 4
√
√
Câu 103. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là
A. a
3√
2
a3√3
a3√3
a3√3
6 .
Trang 9Câu 104. Hàm số y= x3
− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 105. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Câu 106. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ
A m = 120.(1, 12)3
(1, 12)3− 1 triệu. B m = 100.(1, 01)3
3 triệu.
C m = 100.1, 03
(1, 01)3− 1 triệu.
Câu 107. Khối lập phương thuộc loại
Câu 108. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Câu 109. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối 20 mặt đều B Khối bát diện đều C Khối tứ diện đều D Khối 12 mặt đều.
Câu 110. Tính lim
x→2
x+ 2
x bằng?
Câu 111. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra
Câu 112. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x
x trên đoạn [1; e
3] là M = m
en, trong đó n, m là các số tự nhiên Tính S = m2+ 2n3
Câu 113. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
6
a√6
a√3
a√6
2 .
Câu 114. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
Câu 115. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
7
Câu 116. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Trang 10Câu 117. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. 2a
3√
3
4a3√3
a3
a3
6 .
Câu 118. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1
A.
√
3
3
1
2.
Câu 119. Biểu thức nào sau đây không có nghĩa
A. −3
√
√ 2)0 D 0−1
Câu 120 Trong các khẳng định sau, khẳng định nào sai?
A Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B Cả ba đáp án trên.
C F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
D F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
Câu 121. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và
BC là a
√
3
4 Khi đó thể tích khối lăng trụ là
A. a
3√
3
a3√3
a3√3
a3√3
24 .
Câu 122. Hàm số nào sau đây không có cực trị
A y = x −2
2x+ 1. B y= x4− 2x+ 1. C y= x +
1
x. D y= x3− 3x
Câu 123. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3
abằng
1
Câu 124. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và
√
3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
√
√ 3
Câu 125. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?
Câu 126. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 127. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey+ 1 B xy0 = −ey
Câu 128. [1] Tính lim1 − 2n
3n+ 1 bằng?
A. 1
2
2