Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z| A |z| = 17 B |z| = √ 17 C |z| = 10[.]
Trang 1Free LATEX
(Đề thi có 10 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Câu 2. [12212d] Số nghiệm của phương trình 2x−3.3x−2
− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 3. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3− 2x2+ 3x − 1
Câu 4. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số cạnh của khối chóp bằng số mặt của khối chóp.
B Số đỉnh của khối chóp bằng số mặt của khối chóp.
C Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 5. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 6. Khối lập phương thuộc loại
Câu 7. Hàm số nào sau đây không có cực trị
A y = x −2
2x+ 1. B y= x3− 3x. C y= x +
1
x. D y= x4− 2x+ 1
Câu 8. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
√
√
√ 3
Câu 9. Khối đa diện đều loại {3; 5} có số mặt
Câu 10. Dãy số nào sau đây có giới hạn là 0?
A un= n2+ n + 1
(n+ 1)2 B un = n2− 3n
n2 C un = n2− 2
5n − 3n2 D un = 1 − 2n
5n+ n2
Câu 11. [1] Tập xác định của hàm số y= 4x2+x−2là
A. D = R \ {1; 2} B. D = R C. D = (−2; 1) D. D = [2; 1]
Câu 12. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
A. a
√
6
√
√
Câu 13. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 3ac
3b+ 2ac
3b+ 3ac
3b+ 2ac
c+ 2 .
Câu 14. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A. 1
2e
π
√ 2
2 e
π
√ 3
2 e
π
6
Trang 2Câu 15. Biểu thức nào sau đây không có nghĩa
A (−
√
√
Câu 16. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m < 1
1
1
1
4.
Câu 17. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3
2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
Câu 18. Xác định phần ảo của số phức z= (√2+ 3i)2
A −6
√
√ 2
Câu 19. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Câu 20. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 21. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b) B lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b)
C lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b) D lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b)
Câu 22. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là
3√ 3
3 .
Câu 23 Hình nào trong các hình sau đây không là khối đa diện?
Câu 24. Tính lim 5
n+ 3
Câu 25. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 26. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
1
Câu 27. Khối đa diện đều loại {4; 3} có số mặt
Câu 28. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
A Phần thực là −3, phần ảo là 4 B Phần thực là −3, phần ảo là −4.
C Phần thực là 3, phần ảo là 4 D Phần thực là 3, phần ảo là −4.
Câu 29. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 30. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Trang 3Câu 31. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
Câu 32. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1
2x3ln 10. B y
0 = 1 − 2 ln 2x
x3ln 10 . C y
0 = 1 − 2 log 2x
x3 D y0 = 1 − 4 ln 2x
2x3ln 10 .
Câu 33. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
√ 2
a
√ 2
2 .
Câu 34. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
2
a3
√ 6
a3
√ 3
a3
√ 3
48 .
Câu 35. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 36. [3-1133d] Tính lim1
2+ 22+ · · · + n2
n3
1
Câu 37. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?
Câu 38. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 39. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
2
√
a2+ b2 C. √ ab
a2+ b2 D. √ 1
a2+ b2
Câu 40. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra
Câu 41. Tính lim
x→2
x+ 2
x bằng?
Câu 42. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Trang 4Câu 43. [4-1212d] Cho hai hàm số y = x −2
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y = |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 44. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x
A. 11
9
2.
Câu 45. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
5
Câu 46. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
Câu 47. Tính lim7n
2− 2n3+ 1 3n3+ 2n2+ 1
A. 7
-2
Câu 48. [2] Cho hàm số f (x)= 2x.5x
Giá trị của f0(0) bằng
A f0(0)= 10 B f0(0)= 1 C f0(0)= ln 10 D f0(0)= 1
ln 10.
Câu 49. Cho
Z 1 0
xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
1
4.
Câu 50. Giá trị lớn nhất của hàm số y= 2mx+ 1
m − x trên đoạn [2; 3] là −
1
3 khi m nhận giá trị bằng
Câu 51. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1+ 2e
4e+ 2. B m=
1 − 2e
4 − 2e. C m= 1 − 2e
4e+ 2. D m=
1+ 2e
4 − 2e.
Câu 52. Tính lim
x→3
x2− 9
x −3
Câu 53. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 54. Giá trị của lim
x→1(2x2− 3x+ 1) là
Câu 55. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 ln 2x
x3ln 10 . B y
0 = 1 − 2 log 2x
x3 C y0 = 1 − 4 ln 2x
2x3ln 10 . D y
2x3ln 10.
Câu 56. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
A a3
√
3√ 3
a3√ 2
a3√ 3
2 .
Trang 5Câu 57. Dãy số nào sau đây có giới hạn khác 0?
A. 1
sin n
n+ 1
1
√
n.
Câu 58. Khối đa diện đều loại {5; 3} có số mặt
Câu 59. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
9 .
Câu 60. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A.
√
√ 13
√
√ 13
Câu 61. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = e, m = 0 B M= e, m = 1
e. C M = e, m = 1 D M = 1
e, m = 0
Câu 62. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
A. 3a
3a√38
3a√58
a
√ 38
29 .
Câu 63. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1
A m > −5
5
4 < m < 0 D m ≤ 0.
Câu 64. Khối chóp ngũ giác có số cạnh là
Câu 65. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A a3
√
3√ 3
2a3√3
a3√3
6 .
Câu 66. [2] Đạo hàm của hàm số y = x ln x là
A y0 = ln x − 1 B y0 = 1 + ln x C y0 = x + ln x D y0 = 1 − ln x
Câu 67. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π
3, x = π Tính giá trị của biểu thức T = a + b√3
Câu 68. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
1
2.
Câu 69. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0
có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Trang 6Câu 70 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
Z 1
xdx= ln |x| + C, C là hằng số
C.
Z
xαdx= α + 1xα+1 + C, C là hằng số D.
Z
dx = x + C, C là hằng số
Câu 71. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3√
15
a3
√ 5
a3
a3
√ 15
25 .
Câu 72. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 73. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. 4a
3√
3
a3
a3
2a3√3
3 .
Câu 74. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là
Câu 75. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 76 Trong các khẳng định sau, khẳng định nào sai?
A Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
B.
Z
u0(x)
u(x)dx= log |u(x)| + C
C F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
D F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
Câu 77. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm
đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
Câu 78. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?
Câu 79. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
Câu 80. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số mặt của khối chóp bằng số cạnh của khối chóp.
B Số đỉnh của khối chóp bằng 2n+ 1
C Số mặt của khối chóp bằng 2n+1.
D Số cạnh của khối chóp bằng 2n.
Câu 81. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau
(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)
Trang 7(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)
Các mệnh đề đúng là
Câu 82. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞[ f (x)g(x)]= ab B lim
x→ +∞[ f (x) − g(x)]= a − b
C lim
x→ +∞[ f (x)+ g(x)] = a + b D lim
x→ +∞
f(x) g(x) = a
b.
Câu 83. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
6
a
√ 6
a√3
a
√ 6
3 .
Câu 84. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 85. [2D1-3] Cho hàm số y= −1
3x
3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A (−∞; −2] ∪ [−1; +∞) B (−∞; −2)∪(−1; +∞) C −2 ≤ m ≤ −1 D −2 < m < −1.
Câu 86. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z
√ 3
2 . C P= −1 − i
√ 3
2 . D P= 2i
Câu 87. [1] Đạo hàm của làm số y = log x là
0 = 1
xln 10. C y
0 = ln 10
0 = 1
x.
Câu 88. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2
− 4M)2019
Câu 89. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
6
a3√ 3
a3√ 6
a3√ 6
48 .
Câu 90. [1] Biết log6 √a= 2 thì log6abằng
Câu 91. Dãy số nào có giới hạn bằng 0?
A un= −2
3
!n B un = n2
− 4n C un = 6
5
!n D un = n3− 3n
n+ 1 .
Câu 92. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Câu 93. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
A m = ±1 B m= ±√3 C m= ±√2 D m= ±3
Câu 94. [1-c] Giá trị biểu thức log2240
log3,752 −
log215 log602 + log21 bằng
Trang 8Câu 95. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Cả hai đều sai B Chỉ có (I) đúng C Chỉ có (II) đúng D Cả hai đều đúng.
Câu 96. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
√ 2
Câu 97. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2
− 2 ln x trên [e−1; e] là
A M = e−2
− 2; m= 1 B M = e−2+ 2; m = 1
− 2; m = e−2+ 2
Câu 98. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Câu 99. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2√3 Thể tích khối nón đã cho là
A V = πa3
√ 3
3 . B V = πa3
√ 6
6 . C V = πa3
√ 3
2 . D V = πa3
√ 3
6 .
Câu 100 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A Bát diện đều B Nhị thập diện đều C Thập nhị diện đều D Tứ diện đều.
Câu 101. Khối đa diện loại {3; 4} có tên gọi là gì?
A Khối bát diện đều B Khối 12 mặt đều C Khối tứ diện đều D Khối lập phương.
Câu 102. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
A. a
√
57
a√57
√
√ 57
19 .
Câu 103. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
A.
√
√
Câu 104. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 70, 128 triệu đồng B 20, 128 triệu đồng C 3, 5 triệu đồng D 50, 7 triệu đồng.
Câu 105. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
A 3
√
Câu 106. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng
Câu 107. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. 2a
√
57
√
√ 57
a√57
19 .
Trang 9Câu 108. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦
Khoảng cách từ A đến mặt phẳng (S BC) bằng
Câu 109. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 110. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦
, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là
A. a
3√
3
a3
√ 2
3√
3√ 2
4 .
Câu 111. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey
− 1 C xy0 = ey+ 1 D xy0 = −ey+ 1
Câu 112. Tìm giới hạn lim2n+ 1
n+ 1
Câu 113. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|
A. 12
√
17
√
√
√ 34
Câu 114. Hàm số y= x3
− 3x2+ 4 đồng biến trên:
Câu 115. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 116. [12215d] Tìm m để phương trình 4x+
√ 1−x 2
− 4.2x+
√ 1−x 2
− 3m+ 4 = 0 có nghiệm
3
9
4.
Câu 117. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A. a
3√
15
a3√ 5
a3√ 6
3√ 6
Câu 118. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. a
√
3
√
√ 3
a
√ 3
3 .
Câu 119. Tính lim
x→5
x2− 12x+ 35
25 − 5x
2
5.
Câu 120. [12210d] Xét các số thực dương x, y thỏa mãn log31 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất Pmincủa P= x + y
A Pmin= 18
√
11 − 29
21 B Pmin = 2
√
11 − 3
3 . C Pmin = 9
√
11+ 19
9 . D Pmin= 9
√
11 − 19
Câu 121 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
Trang 105 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 3, 03 triệu đồng B 2, 22 triệu đồng C 2, 20 triệu đồng D 2, 25 triệu đồng.
Câu 122. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 123. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
√
Câu 124. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]
Câu 125. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 126. [1] Giá trị của biểu thức 9log3 12bằng
Câu 127. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 128 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
B.
Z
[ f (x) − g(x)]dx=Z f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
C.
Z
k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
D.
Z
[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R
Câu 129. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối lập phương B Khối bát diện đều C Khối tứ diện đều D Khối 12 mặt đều.
Câu 130 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
HẾT