Tài liệu Free pdf LATEX (Đề thi có 4 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho hình chóp S ABC có đáy ABC là tam giác vuông cân t[.]
Trang 1Tài liệu Free pdf LATEX
(Đề thi có 4 trang)
BÀI TẬP ÔN TẬP MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là
A. a
3
a3
3
12.
Câu 2. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
5.
Câu 3. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 4. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 5. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
√ 6
2 .
Câu 6. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
Câu 7. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. a
a
√ 2
a
2a
3 .
Câu 8. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0
có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 9. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 10. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey+ 1 B xy0 = ey
− 1 D xy0 = −ey+ 1
Câu 11. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Câu 12. [2] Phương trình logx4 log2 5 − 12x
12x − 8
!
= 2 có bao nhiêu nghiệm thực?
Câu 13. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối bát diện đều B Khối lập phương C Khối 12 mặt đều D Khối tứ diện đều.
Trang 2Câu 14. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4 Biết rằng tập hợp các điểm M sao cho MA= 3MB là một mặt cầu Khi đó bán kính mặt cầu bằng?
A. 9
3
2.
Câu 15. Bát diện đều thuộc loại
Câu 16. Dãy số nào sau đây có giới hạn là 0?
A un= 1 − 2n
5n+ n2 B un = n2+ n + 1
(n+ 1)2 C un = n2− 3n
n2 D un = n2− 2
5n − 3n2
Câu 17. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 18. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là
Câu 19. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
Câu 20. Hàm số nào sau đây không có cực trị
A y = x −2
2x+ 1. B y= x +
1
x. C y= x4− 2x+ 1 D y= x3− 3x
Câu 21. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là
Câu 22. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
A. a
√
57
√
√ 57
2a√57
19 .
Câu 23. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:
Câu 24. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 3, 5 triệu đồng B 50, 7 triệu đồng C 70, 128 triệu đồng D 20, 128 triệu đồng.
Câu 25. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2f(x3)−√ 6
3x+ 1 Tính
Z 1
0
f(x)dx
Câu 26. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞
f(x)
g(x) = a
C lim
x→ +∞[ f (x)+ g(x)] = a + b D lim
x→ +∞[ f (x)g(x)]= ab
Câu 27. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 28. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
Câu 29. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Trang 2/4 Mã đề 1
Trang 3Câu 30. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A.
√
3
√ 3
3
√ 3
2 .
Câu 31. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2
2 = y −3
3 = z+ 4
−5 và d
0 : x+ 1
3 = y −4
−2 = z −4
−1
A. x −2
2 = y −2
3 = z −3
x −2
2 = y+ 2
2 = z −3
2 .
C. x
1 = y
1 = z −1
x
2 = y −2
3 = z −3
−1 .
Câu 32. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 33. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là
A. 8a
3√
3
8a3√ 3
4a3√ 3
a3√ 3
9 .
Câu 34. Khối đa diện đều loại {3; 4} có số cạnh
Câu 35. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
C lim un= 1
Câu 36. Khối đa diện đều loại {4; 3} có số mặt
Câu 37. Tìm giá trị lớn chất của hàm số y= x3
− 2x2− 4x+ 1 trên đoạn [1; 3]
Câu 38. Tính lim
x→1
x3− 1
x −1
Câu 39. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
A m = ±√3 B m= ±√2 C m= ±1 D m= ±3
Câu 40. Tính lim
√ 4n2+ 1 − √n+ 2 2n − 3 bằng
Câu 41 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
B.
Z
[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R
C.
Z
k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
D.
Z
[ f (x) − g(x)]dx=
Z
f(x)dx −
Z g(x)dx, với mọi f (x), g(x) liên tục trên R
Trang 4Câu 42. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x
x trên đoạn [1; e
3 ] là M = m
en, trong đó n, m là các
số tự nhiên Tính S = m2+ 2n3
Câu 43. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1
x
! Tính tổng S = f0
(1)+ f0
(2)+ · · · + f0
(2017)
A. 2016
4035
2017
2018.
Câu 44. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A a
√
√ 6
a√6
a√6
3 .
Câu 45. Giá trị cực đại của hàm số y = x3− 3x+ 4 là
Câu 46. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 47. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là
A M = e−2+ 1; m = 1 B M = e2− 2; m = e−2+ 2
C M = e−2− 2; m= 1 D M = e−2+ 2; m = 1
Câu 48. Khối đa diện đều loại {3; 4} có số mặt
Câu 49 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
B Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
C Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
D Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
Câu 50. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab +1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
7
HẾT
-Trang 4/4 Mã đề 1
Trang 5ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1