1. Trang chủ
  2. » Tất cả

Structure function studies of the alpha pheromone receptor from yeast

11 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Structure-Function Studies of the Alpha Pheromone Receptor from Yeast
Tác giả Laura Marina Robles, Cộsar Millỏn-Pacheco, Nina Pastor, Gabriel Del Rớo
Trường học Universidad Nacional Autónoma de México
Chuyên ngành Biochemistry and Structural Biology
Thể loại Artículo original
Năm xuất bản 2017
Thành phố Ciudad de México
Định dạng
Số trang 11
Dung lượng 650,3 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

STRUCTURE FUNCTION STUDIES OF THE ALPHA PHEROMONE RECEPTOR FROM YEAST STRUCTURE FUNCTION STUDIES OF THE ALPHA PHEROMONE RECEPTOR FROM YEAST Laura Marina Robles1, César Millán Pacheco3, Nina Pastor2 an[.]

Trang 1

S TRUCTURE - FUNCTION STUDIES OF THE ALPHA

Laura Marina Robles 1 , César Millán-Pacheco 3 ,

Nina Pastor 2 and Gabriel Del Río 1 *

1 Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Deleg Coyoacán, C.P 04510, Ciudad de México, México 2 Centro de Investigación en Dinámica Celular, IICBA, Universidad Autónoma del Estado de Morelos, Av Universidad #1001, Col Chamilpa, Cuernavaca , Morelos, C.P 62209, México 3 Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av Universidad #1001, Col Chamilpa,

Cuernavaca , Morelos, C.P 62209, México E-mail: *gdelrio@ifc.unam.mx

Nota: Artículo recibido el 28 de julio de 2016 y aceptado el

03 de noviembre de 2016

ABSTRACT

Ste2p is a G protein-coupled receptor (GPCR) in Saccharomyces cerevisiae that mediates mating by responding

to the alpha-mating factor pheromone Ste2p belongs to a subfamily of GPCRs with no global sequence similarity

to GPCRs of known atomic three-dimensional structure, yet it shares functional similarities with many of these

To deepen our understanding of the structure-function relationship of this receptor, we built an atomic three-dimensional homology-based model of Ste2p that was used to simulate the docking of the alpha pheromone The Ste2p model is in general agreement with the available experimental data and allowed us to propose that the interface between Ste2p and alpha pheromone is formed by 26 residues, most of which are polar residues located at the three extracellular loops and helices HI, H5, and H6 This interface does not include Ile190, a highly conserved residue among fungal species, located at the second extracellular loop and therefore a potential

binding site residue By performing mutagenesis of STE2 at this position we observed only a small effect of this residue

in receptor signaling Hence, the Ste2p model presented here is consistent in general with current experimental data and constitutes a framework to test hypothesis about the structure-function relationship of this receptor.

Key Words: alpha pheromone receptor, docking, molecular modeling, pheromone, Ste2p.

Estudio de la relación entre la estructura y la función del receptor de la feromona alfa de levadura

RESUMEN

Ste2p es un receptor acoplado a la proteína G (GPCR) en Saccharomyces cerevisiae que se une a la feromona

alfa para mediar el apareamiento Ste2p pertenece a una subfamilia de GPCRs que no presentan homología global en secuencia con los GPCRs de estructura atómica tridimensional conocida, pero comparte propiedades funcionales con muchos de éstos Para profundizar nuestro entendimiento de la relación estructura-función

de este receptor, en este trabajo presentamos un modelo de la estructura atómica tridimensional de Ste2p asociado a su ligando El modelo de Ste2p generado es congruente con la información experimental disponible

y sugiere que la interfaz entre Ste2p y la feromona está compuesta por 26 residuos, en su mayor parte polares, localizados en las tres asas extracelulares y las hélices H1, H5 y H6 La interfaz no incluye a la Ile190, un residuo altamente conservado entre especies de hongos, que se encuentra en el asa extracelular 2 y es un potencial

sitio de anclaje Mutantes en esta posición en STE2 muestran un efecto pequeño en la señalización del receptor

El modelo presentado de Ste2p es consistente en general con los datos de mutagénesis disponibles a la fecha, por lo que constituye un marco de referencia para evaluar hipótesis sobre la relación estructura-función en este receptor.

Palabras Clave: receptor de la feromona alfa, anclado molecular simulado, modelado molecular, feromona, Ste2p

This is an Open Access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0).

TIP Revista Especializada en Ciencias Químico-Biológicas, 20(1): 16-26, 2017.

DOI: 10.1016/j.recqb.2016.11.002

Trang 2

ver the past four decades extensive research has been

carried out about the structure-function relationships

of G protein coupled receptors (GPCRs), promoted

by both basic and applied aspects of this group of

INTRODUCTION

O

receptors; more than 40% of drugs in clinical use target GPCRs1

and many fundamental aspects of cell physiology are regulated

by these receptors2 Relevant to this study, the GPCR Ste2p from

Saccharomyces cerevisiae mediates mating by recognizing the

tridecapeptide mating factor, alpha pheromone

7KH¿UVWVWXGLHVRQ6WHSZHUHUHSRUWHGLQZKHQWKH

PROHFXODUEDVLVRIPDWLQJLQ\HDVWFHOOVZDVGLVFRYHUHG0DQ\

JHQHVUHQGHULQJDVWHULOH 67( SKHQRW\SHZHUHGLVFRYHUHG

DQG DPRQJ WKHVH ZDV STE23,4 WKDW ZDV IXUWKHU FORQHG DQG

characterized5,6$ IHZ \HDUV ODWHU WKH WRSRORJLFDO VWUXFWXUH

RI 6WHS ZDV LQIHUUHG WKURXJK VROYHQW DFFHVVLELOLW\ VWXGLHV

)LJXUH 'XHWRGL൶FXOWLHVWRSXULI\DQGFU\VWDOOL]HLQWHJUDO

membrane proteins, the atomic three-dimensional structure of

6WHSKDVQRW\HWEHHQGHWHUPLQHG+RZHYHU105ZDVXVHG

WRGHWHUPLQHWKHVWUXFWXUHVRIWZRIUDJPHQWVRIWKLVUHFHSWRU

WKH+,+VHJPHQW 3URWHLQ'DWD%DVHHQWU\FRGH.3 DQG

DVHJPHQWRI+ 3'%HQWU\FRGH3-' 

Several residues and regions that are critical for STE2 function

have been determined by site-directed mutagenesis For

H[DPSOHWKH1WHUPLQDOGRPDLQPHGLDWHVROLJRPHUL]DWLRQRI

the receptorZKLOHWKH&WHUPLQDOGRPDLQDFWVDVQHJDWLYH

regulator11-13 7KH WKLUG F\WRSODVPLF ORRS LQWHUDFWV ZLWK WKH

trimeric G protein14DQGWKH¿UVWH[WUDFHOOXODUORRSXQGHUJRHV

a conformational change upon ligand binding15 and also plays

a role in signal transduction16

7KUHHGL൵HUHQW'PRGHOVRI6WHSERXQGWRWKHSKHURPRQHKDYH EHHQSURSRVHGDQGZHUHEXLOWEDVHGRQELRFKHPLFDOGDWDGHULYHG until 2004 in an attempt to recapitulate the structure-function VWXGLHV RI WKLV UHFHSWRU %ULHÀ\ /HH %  DQG FROOHDJXHV SURSRVHG D PRGHO ZKHUH ERWK WKH 1 DQG &WHUPLQL RI WKH pheromone are buried inside the transmembrane helices of Ste2p, ZKHUHDVWKHFHQWUDOUHJLRQLQFOXGLQJDWXUQVWUXFWXUHLQWHUDFWV ZLWKWKHH[WUDFHOOXODUGRPDLQV,QWKDWPRGHOWZRUHVLGXHVRI WKHUHFHSWRU6HUDQG7KUZHUHSURSRVHGWRLQWHUDFWZLWK

*OQRIWKHSKHURPRQH/LQ-&DQGFROOHDJXHV proposed

a model that highlights the role of aromatic residues in the LQWHUDFWLRQEHWZHHQWKHSKHURPRQHDQGWKHSRFNHWIRUPHGE\WKH extracellular ends of the transmembrane helices in the receptor ,QWKLVPRGHODȕEHQGLVIRUPHGDWWKHFHQWUDOUHJLRQRIWKH SKHURPRQH7\URQKHOL[LVRULHQWHGWRZDUGWKHVXUURXQGLQJ OLSLGV DQG LQWHUDFWV ZLWK7US+LV7US RI WKH SKHURPRQH ZKLOH3KHORFDWHGZLWKLQWKHKHOL[EXQGOHEHWZHHQKHOL[

DQGKHOL[LQWHUDFWVZLWK7\URIWKHSKHURPRQH)LQDOO\ Son C D and colleaguesSURSRVHGDPRGHOZKHUH*OQRI WKHSKHURPRQHLQWHUDFWVZLWKUHVLGXHV6HUDQG7KULQ6WH 7\ULQWKHSKHURPRQHLQWHUDFWVZLWKKHOL[ 3KHí$UJ  DQG7USDQG7USLQWKHSKHURPRQHLQWHUDFWZLWKDURPDWLF residues Phe262 and Tyr266 at the extracellular interface of helix 6 All these models have in common that the central region of the pheromone forms a turn structure that is oriented DZD\ IURP WKH WUDQVPHPEUDQDO KHOL[EXQGOH ZKHUHDV ERWK WKH1DQG&WHUPLQLRIWKHSKHURPRQHDUHRULHQWHGWRZDUGWKH binding pocket formed by extracellular ends of helix 1, helix

5, and helix 6

,QWKHSUHVHQWVWXG\ZHEXLOWDQRYHOWKUHHGLPHQVLRQDOPRGHO

of Ste2 bound to the pheromone, incorporating mutagenesis

Figure 1 Topological diagram of Ste2p Every amino acid residue from Ste2p is represented by a single letter code within a gray circle The two horizontal lines separating the extracellular from the intracellular spaces represent the membrane Data derived from 20

Trang 3

/HX/\V3UR*O\*OQ3UR0HW7\UZDVVHQWWRWKHVHUYHULQ )$67$ IRUPDW 7KH PRGHO WKDW ZDV FORVHU WR WKH VWUXFWXUDO FKDUDFWHUL]DWLRQRIWKHSKHURPRQHE\10531ZDVVHOHFWHGIURP WKHUHVXOWVJHQHUDWHGE\WKH3(3)2/'VHUYHU

Docking of Ste2 with alpha pheromone For docking experiments

the ClusPro 2.0 server32ZDVXVHG$PLQRDFLGUHVLGXHVRIWKH 6WHSUHFHSWRUDQGWKHSKHURPRQHLQYROYHGLQELQGLQJZHUHXVHG

to focus the docking on such residues These residues included (Ste2p-pheromone pairs; the secondary structure element of WKH6WHSUHVLGXHLVLQGLFDWHGLQSDUHQWKHVLVIRUFRQYHQLHQFH  6HU + *OQ7KU + *OQ, Phe204(H5)-Tyr13, Asn205(H5)-Trp333, Tyr266(H6)-Trp3 DQG /\V +  Trp134 The energy of the Ste2p-alpha pheromone complex ZDV PLQLPL]HG XVLQJ &+$50035 IRU WKDW HQG WKH &%

&+$500 YHUVLRQ DQG &+$500 SRWHQWLDOV ZHUH XVHG 7KHFRPSOH[WKDWVKRZHGWKHORZHVWLQWHUDFWLRQHQHUJ\ZLWK WKHORZHVWDYHUDJHGLVWDQFHEHWZHHQFRQWDFWVZDVVHOHFWHG$OO WKHVWUXFWXUHVZHUHYLVXDOO\LQVSHFWHGZLWKWKH3\0ROYLHZHU VRIWZDUH36

Site-directed mutagenesis of the STE2 gene0XWDWLRQVZHUH

introduced into the receptor gene (STE2) by PCR using the

NLW³4XLN&KDQJH/LJKWQLQJ´ $JLOHQW7HFKQRORJLHV&DW1R

 

7KHS<(667(SODVPLGZDVXVHGDVWHPSODWHIRU3&5DQG

ZDV FRQVWUXFWHG E\ VXEFORQLQJ WKH  ES STE2 gene into WKHS<(6SODVPLG ,QYLWURJHQ&DW1R9 STE2 ZDV

obtained from the pGRB2.2-STE2 plasmid using the XbaI and EcoRI restriction enzymes The pGRB2.2-STE2 plasmid ZDVNLQGO\SURYLGHGE\'UD,UHQH&DVWDxR ,QVWLWXWR3RWRVLQR GH ,QYHVWLJDFLyQ &LHQWt¿FD \ 7HFQROyJLFD 6DQ /XLV 3RWRVt 0p[LFR  0XWDJHQLF SULPHUV ZHUH GHVLJQHG DFFRUGLQJ WR PDQXIDFWXUHU¶V LQVWUXFWLRQV DQG ZHUH FRPSOHPHQWDU\ WR WKH

STE2VHTXHQFHH[FHSWIRUWKH$88FRGRQRI,OHWKDWZDV

FKDQJHGIRU11*&WRLQWURGXFHWKHPXWDWLRQV6HTXHQFHVRI WKHSULPHUVXVHGDUHGHVFULEHGQH[W

1) 5’GCGCTGTTAAAGGTATG11*&GTGACTTATAAT GATGTTAGTGCCACCC 3’

2) 5’ GGGTGGCACTAACATCATTATAAGTCAC*&11CA TACCTTTAACAGCGC 3’

7KHZKROHYHFWRUS<(667(ZDVDPSOL¿HGXVLQJ3IX7XUEH SRO\PHUDVH7KHQWKH3&5SURGXFWZDVGLJHVWHGZLWK'SQ, UHVWULFWLRQ HQ]\PH DW ƒ& IRU  PLQXWHV WR HOLPLQDWH WKH SDUHQWDO QRQPXWDWHG SODVPLGDQGWKHQWUDQVIRUPHGLQWR'+Į

E coliVWUDLQ7UDQVIRUPHGFHOOVZHUHVHOHFWHGRQDPSLFLOOLQ

FRQWDLQLQJSODWHVDQGSODVPLGVZHUHLVRODWHGIURPWUDQVIRUPHG FHOOV XVLQJ 4,$SUHS 6SLQ 0LQLSUHS LW 4,$*(1 &DW 1R

 ,VRODWHGPXWDQWVZHUHFRQ¿UPHGE\'1$VHTXHQFH DQDO\VLV '1$ VHTXHQFLQJ ZDV FDUULHG RXW LQ WKH 8QLGDG GH%LRORJtD0ROHFXODUORFDWHGDWWKH,QVWLWXWRGH)LVLRORJtD

LQIRUPDWLRQ DERXW 6WHS IXQFWLRQ WKDW ZDV QRW QHFHVVDULO\

incorporated in previous models of this interaction; our model

ZDV EXLOW XVLQJ WKH VWDWH RI DUW WRROV XVHG WR EXLOG WKUHH

GLPHQVLRQDOPRGHOVRISURWHLQV,QRXUPRGHO,OHLQ6WHSD

FRQVHUYHGSRVLWLRQDPRQJIXQJDOVSHFLHVGRHVQRWLQWHUDFWZLWK

WKHSKHURPRQH7RWHVWRXUPRGHOZHSHUIRUPHGDPXWDJHQHVLV

at this residue We choose this residue because it is part of the

VHFRQGH[WUDFHOOXODUORRSZKLFKKDVEHHQSUHYLRXVO\LPSOLHGWR

play a role in ligand recognition and binding in other GPCRs,

such as the dopamine D221 07 PHODWRQLQ22, thyrotropin23

angiotensin24, and histamine H125 receptors Our results indicate

WKDWVRPHPXWDQWVRIWKLVUHVLGXHKDYHDVPDOOH൵HFWRQWKH

6WHSVLJQDOLQJFDVFDGHWKDWOHDGVFHOOVWRDUUHVWFHOOJURZWK

in the presence of the pheromone The structural bases of these

results are discussed using our three-dimensional model

MATERIAL AND METHODS

The construction of a Ste2 model was done using the rhodopsin

crystal as a template.7KHUHFHSWRUPRGHOZDVEXLOWXVLQJWKH

L7$66(59VHUYHU26L7$66(5ZDVFKRVHQEHFDXVHLWZDV

UDQNHGDVWKHVHUYHUZLWKEHVWUHVXOWVLQ&$63WR&$63

(Critical Assessment of Techniques for Protein Structure

3UHGLFWLRQ :HPRGHOHGUHVLGXHVWR7KH1WHUPLQDO

UHVLGXHV   DQG &WHUPLQDO GRPDLQV UHVLGXHV  

ZHUHQRWPRGHOHGEHFDXVHWKHVHGRPDLQVDUHQRWHVVHQWLDOIRU

ligand binding

'HVSLWHWKHIDFWWKDW6WHSDQGUKRGRSVLQKDYHDORZVHTXHQFH

LGHQWLW\   UKRGRSVLQ ZDV XVHG DV D WHPSODWH IRU 6WHS

PRGHOLQJEHFDXVH 6WHSDQGUKRGRSVLQVKDUHVWUXFWXUDODQG

functional properties, 2) available structural and mutational data

VKRZWKDWWKH6WHSDQGUKRGRSVLQVHTXHQFHVDOLJQSURSHUO\

based on a comparison of amino acids that have similar structural

and functional roles in membrane proteins and 3) rhodopsin

has been used as a template for previously developed Ste2p

models7KHVHTXHQFHVIRU6WHSDQGUKRGRSVLQZHUHREWDLQHG

from the UniProt database The crystal structure of rhodopsin

3'%HQWU\FRGH8 ZDVREWDLQHGIURPWKH3URWHLQ'DWD

Bank7KHDOLJQPHQWRI6WHSZLWKUKRGRSVLQZDVFDUULHGRXW

as described previously

7KHPHPEUDQHERXQGDULHVLQWKH6WHSVHTXHQFHZHUHREWDLQHG

from solvent accessibility data20DQGZHUHXVHGLQL7$66(5WR

specify boundaries of secondary structures To guide i-TASSER

RQ WKH FRUUHFW KHOL[ RULHQWDWLRQ GLVWDQFH UHVWUDLQWV EHWZHHQ

VSHFL¿FUHVLGXHVZHUHREWDLQHGIURPWKH3'%¿OHRIUKRGRSVLQ

XVLQJ WKH GLVWDQFH EHWZHHQ WKH DOSKDFDUERQ IURP D UHVLGXH

placed at the end of a helix and the alpha-carbon from the

residues localized at the ends of all the other helices

Construction of the alpha-pheromone three-dimensional

model 7KH3(3)2/'VHUYHU30ZDVXVHGWRGHYHORSDQDWRPLF

three-dimensional model of the alpha pheromone peptide

7KH VHTXHQFH RI DOSKD SKHURPRQH 7US+LV7US/HX*OQ

Trang 4

&HOXODU&RQVWUXFWVZHUHWUDQVIRUPHGLQWRDSTE2 null mutant

0$7DVWUDLQ %<¨<)/2:NDQ0; DVSUHYLRXVO\

GHVFULEHGHOVHZKHUHDQGWUDQVIRUPHGFHOOVZHUHVHOHFWHGE\

WKHLUJURZWKLQPLQLPDOPHGLXPODFNLQJXUDFLO

Growth curves Yeast cultures expressing the mutant receptor

ZHUHLQFXEDWHGIRUKRXUVDWƒ&ZLWKPLQLPDOPHGLXP

ODFNLQJ XUDFLO ZLWK JOXFRVH DQG WKHQ ZHUH LQFXEDWHG IRU 

DGGLWLRQDO KRXUV ZLWK PLQLPDO PHGLXP ODFNLQJ XUDFLO ZLWK

galactose in order to induce the expression of STE2 in the plasmid

$IWHUZDUGV\HDVWFHOOVZHUHGLOXWHGWRRSWLFDOGHQVLW\RI

DQGLQFXEDWHGZLWKSKHURPRQH $QDVSHF DW—0LQWRD

ZHOOKDOIDUHDSODWHLQDWRWDOYROXPHRI—O7KHLQFXEDWLRQ

ZDVFDUULHGRXWDWž&ZLWKVKDNLQJDQGWKH$QPZDV

PHDVXUHGHYHU\KRXUIRUKXVLQJD6\QHUJ\0;SODWHUHDGHU

%LR7HN,QVWUXPHQWV 7KHH[SHULPHQWZDVUHSHDWHGWKUHHWLPHV

HDFKWLPHZLWKDWULSOLFDWH*URZWKFXUYHVGDWDZHUHQRUPDOL]HG

DQGWKHDUHDXQGHUWKHFXUYHZDVFDOFXODWHGIRUHDFKPXWDQW

RESULTS AND DISCUSSION

Three-dimensional model of Ste2p.7KH6WHSPRGHOZLWKWKH

EHVW&VFRUH FRQ¿GHQFHVFRUH ZDVVHOHFWHG )LJXUH LQRXU

FDVHWKH&VFRUHZDVDQGWKH70VFRUHZDV7KH C-score given by i-TASSER estimates the quality of predicted PRGHOVLVLQWKHUDQJHRI>@0RGHOVZLWK&VFRUH!WHQG WREHFORVHWRWKHQDWLYHVWUXFWXUH7KH70VFRUHSURYLGHGE\ i-TASSER estimates the similarity of the protein model and its WHPSODWHDVFRUHEHORZFRUUHVSRQGVWRWZRSURWHLQVWKDW DUHQRWVLPLODUZKLOHDERYHFRUUHVSRQGWRSURWHLQVWKDWDUH VWUXFWXUDOO\KRPRORJXHV7KXVWKH70VFRUHLQGLFDWHVWKH6WHS PRGHOGL൵HUVIURPWKHUKRGRSVLQWHPSODWH 8 DVH[SHFWHG VHH0HWKRGV EXWUHPDLQVVLPLODU,QRXUWKUHHGLPHQVLRQDO model the boundaries of the transmembrane helices matched the solvent accessibility data previously described, except for WKH+7KLVKHOL[KDVEHHQUHSRUWHGWRH[SDQGIURP/HXWR /HX )LJXUH ZKLOHLQRXUPRGHOLWVSDQVIURP3KHWR ,OH7KLVGL൵HUHQFHUHÀHFWVWKHIDFWWKDWWKHORRSFRQQHFWLQJ +WR+SUHVHQWVWZRUHVLGXHV DQG DWWKHHQGRIWKLV ORRSWKDWDUHQRWDFFHVVLEOHWRELRWLQ\ODWLRQIROORZHGE\WZR RWKHUUHVLGXHVWKDWDUHDFFHVVLEOHWRELRWLQ\ODWLRQ DQG  7KHDXWKRUVSURSRVHGWKDW+VKRXOGVWDUWDWUHVLGXHEXW ZHSUHIHUWRXVHWKH¿UVWUHVLGXHVWKDWZHUHLQDFFHVVLEOHDVSDUW

of this helix These authors could not establish the end of this KHOL[VRZHXVHGDVDFULWHULRQWKHVHTXHQFHDOLJQPHQWEHWZHHQ 6WHSDQGUKRGRSVLQJHQHUDWHGZLWKL7$66(5

7KH 6WHS PRGHO VKRZHG KHOL[KHOL[ LQWHUDFWLRQV WKDW ZHUH FRQVLVWHQW ZLWK ELRFKHPLFDO GDWD )RU H[DPSOH 6WHS KDV D GXXXG motif in H1 that includes Gly56 and Gly60 These motifs mediate helix-helix interactions and have been implicated in the dimerization of Ste2p10 To achieve this, these JO\FLQHVPXVWIDFHRXWZDUGVWKHSURWHLQ,QRXUPRGHOWKHVH glycines are properly oriented (see Figure 3)

$V RSSRVHG WR JOREXODU SURWHLQV LQWHUDFWLRQV EHWZHHQ transmembrane helices are generally mediated by polar amino acids located in the transmembrane region These amino acids can form single helix-helix contacts or hydrogen-bonding QHWZRUNV,WKDVEHHQSURSRVHGEDVHGRQVHTXHQFHFRQVHUYDWLRQ that the H1-H2 interaction is mediated by a hydrogen bond EHWZHHQ$UJ +, DQG+LV + +RZHYHULQRXU6WHS PRGHO$UJPD\IRUPDK\GURJHQERQGZLWK7\URQWKH same face of H2 (see Figure 3), so further mutagenesis and structural experiments may test for the relevance of these pairs

of residues in the H1-H2 interaction Similarly, our model SURSRVHGRWKHUQHZKHOL[KHOL[LQWHUDFWLRQV)RULQVWDQFHWKH SUR[LPLW\RIUHVLGXHV6HU + DQG*OX + ZRXOG PHGLDWH++LQWHUDFWLRQV VHH)LJXUH /LNHZLVH6HU DQG7KURIWKHH[WUDFHOOXODUORRSPD\LQWHUDFWZLWK*OQ (H1) (see Figure 3) Our three-dimensional model of Ste2p also GLVSOD\VWKHRULHQWDWLRQRIUHVLGXHVWKDWDUHFRQVLVWHQWZLWKWKHLU IXQFWLRQDOUROHLQRWKHU*3&5V)RULQVWDQFHZHREVHUYHGWKDW

*OQDSSHDUVWREHIXQFWLRQDOO\HTXLYDOHQWWR*OXZKLFK

is part of the ERY motif in rhodopsin Both Glu134 in rhodopsin DQG*OQLQ6WHSDUHORFDOL]HGLQDVLPLODUSRVLWLRQDWWKH HQG RI + DQG DUH UHVLGXHV ZKHUH PXWDWLRQ WR DUJLQLQH RU

Figure 2 Three-dimensional structural model of Ste2p A

ribbon representation of the three-dimensional structure of

Ste2p is presented Ste2p has a central core made of seven

transmembrane helices (HI to H7) connected by three

intracellular (IL1, IL2 and IL3) and three extracellular loops

(EL1, EL2 and EL3) This model shows the counterclockwise

orientation of transmembrane helices used for modeling

GPCRs The image was generated with PyMol.

Trang 5

alanine leads to constitutive activation40-42,QDJUHHPHQWZLWK

WKHVHSUHYLRXVREVHUYDWLRQV*OQLVRULHQWHGLQDSRVLWLRQ

similar to that of Glu134 in rhodopsin and presumably shares

the role of preventing constitutive activation of the receptor;

the reported single point mutations to alanine in positions

*OQ RU $VQ UHQGHUHG D FRQVWLWXWLYH DFWLYDWLRQ RI WKH

6WHSUHFHSWRUDQGDGRXEOHPXWDWLRQWKDWVZDSSHGWKHVLGH

FKDLQVRIWKHVHWZRUHVLGXHVPDLQWDLQHGDZLOGW\SHSKHQRW\SH

suggesting these residues are in close proximity in the 3D

VWUXFWXUHRI6WHS,QRXUPRGHO*OQDQG$VQDUH

cDSDUWDQGIDFLQJDZD\IURPHDFKRWKHULQGLFDWLQJWKDWRXU

PRGHOLVQRWFRQVLVWHQWZLWKWKHVHH[SHULPHQWDOUHVXOWV6LQFH

RXUPRGHOGLGQRWLQFOXGHWKH1DQG&WHUPLQLORFDWHGDWWKH

VLGHZKHUH*OQOLHVLWVHHPVWKDWWKHRULHQWDWLRQRI+DQG

H3 on this side of the transmembrane region of the receptor are

not properly oriented in our model Yet, pheromone binding

takes place at the opposite side of the transmembrane region

DQGSUHVXPDEO\GRHVQRWLQFOXGHWKHVHKHOLFHVVRZHSURFHHG

to analyze the reliability of our model

Docking7KHOLJDQGELQGLQJRULHQWDWLRQVYDU\ZLGHO\EHWZHHQ

the members of the GPCR family43 ,W KDV EHHQ VKRZQ WKDW

ODUJHOLJDQGVELQGWRWKHH[WUDFHOOXODUORRSVRI*3&5VZKLOH

small ligands bind to the transmembrane region of receptor

In the case of peptide ligands it has been proposed that a

combination of both binding modes takes place In such case, WKHOLJDQGELQGV¿UVWWRH[WUDFHOOXODUORRSVDQGODWHUHQWHUVWKH WUDQVPHPEUDQHGRPDLQZKHUHWKHELQGLQJSRFNHWDFWVOLNHDQ epicenter of conformational changes These conformational changes are propagated to intracellular loops through the movement of helices Then, the intracellular domain binds to and activates the trimeric G protein43 In the case of Ste2p, alpha pheromone binding has been mapped to the pocket formed by WKHH[WUDFHOOXODUHQGVRIWKHWUDQVPHPEUDQHKHOLFHVVSHFL¿FDOO\ H1, H5, and H6

7KH *3&5V LQWHUDFW ZLWK WKHLU OLJDQGV YLD K\GURJHQ ERQGV ionic pairs and hydrophobic contacts447KHLQWHUDFWLRQVEHWZHHQ Ste2p and the alpha pheromone responsible for binding and DFWLYDWLRQ DUH QRW ZHOO FKDUDFWHUL]HG +RZHYHU HOHFWURVWDWLF interactions have been suggested to play a critical role in the Ste2p-alpha pheromone complex45

The docking simulation aimed to model the Ste2p-alpha pheromone interaction (Figure 4) In this model all contacts

in the Ste2p-alpha pheromone interaction previously reported DUHSUHVHQW)RULQVWDQFHSUHYLRXVVWXGLHVDERXWWKHD൶QLWLHV and activities of various alpha pheromone analogues have VKRZQ WKDW UHVLGXHV 6HU DQG7KU DUH QHDU *OQ LQ WKH alpha pheromone$VZHVHHLQ)LJXUHRXUELQGLQJPRGHOLV

Figure 3 Residues involved in helix-helix interactions in Ste2p model The transmembrane helices of Ste2p are presented as ribbons and are enumerated from H1 to H7 For convenience, transmembrane helices are displayed in a clockwise orientation Hydrogen bonds are formed between Arg58-Tyr101, Ser170-Glu143, and Ser107-Gln51-Thr110, and are displayed with dots Gly56 and Gly60 are oriented outwards the protein The image was generated with PyMol.

Trang 6

extracellular ends of the helices H5 and H6, respectively These

helices are linked at the opposite end involved in pheromone

ELQGLQJE\WKHWKLUGLQWUDFHOOXODUORRSWKDWLQWHUDFWVZLWKWKH

trimeric G protein and promotes its activation Site-directed

PXWDJHQHVLV VWXGLHV VKRZHG WKDW 3KH LQWHUDFWV ZLWK WKH

&WHUPLQDOUHJLRQRIWKHSKHURPRQH OLNHO\ZLWK7\U ZKLOH

7\ULQWHUDFWVZLWKWKH1WHUPLQDOUHJLRQ OLNHO\ZLWK7US

or Trp3) Both residues, Phe204 and Tyr266, play roles in the transformation of Ste2p into an activated state upon agonist binding$VVKRZQLQ)LJXUHRXUPRGHOLVFRQVLVWHQWZLWK WKHVHH[SHULPHQWDOGDWDGHVSLWHWKHSUHYLRXVO\QRWHGGL൵HUHQFHV

in our model about H6 and the intracellular ends of H2 and + UHVLGXHV$VQDQG*OQ )LQDOO\LQWHUDFWLRQEHWZHHQ

Figure 4 Atomic three-dimensional model of the interaction between Ste2p and the alpha pheromone Ste2p is shown in a light JUH\ULEERQUHSUHVHQWDWLRQ7KHDOSKDSKHURPRQHLVVKRZQDVDGDUNJUH\REMHFW7KHXSSHUSDUWRIWKHÀJXUHLOOXVWUDWHVWKH ELQGLQJSRFNHWIRUPHGE\H[WUDFHOOXODUORRSVDQGH[WUDFHOOXODUHQGVRI++DQG+,QWKHORZHUSDUWRIWKHÀJXUHVHOHFWHG residues of Ste2p and pheromone are shown in a ball-and-stick representation First, the C-terminal region of the pheromone (Gln10) binds to the receptor residues Ser47 and Thr48 (H1) 17 Then, the central region of the pheromone (Pro8-Gly9) forms a ǃWXUQ 46 At this point, Phe204 (H5) is near to Tyr13 in the pheromone 18 , and Lys269 (H6) is near to both the N and C-termini of the pheromone Asn205 is facing toward the outside of Ste2p and away from the binding pocket (left) In our model, Tyr266 (H6) is oriented towards the surrounding lipids and is inaccessible to solvent This orientation is consistent with experimental data from 18 Finally, Tyr266 interacts with Trp3 in the pheromone, mediating the transition to an active state of Ste2 18,47 (right) The image was generated with PyMol.

Trang 7

aromatic residues in the alpha pheromone and Ste2p could be

VWDELOL]HGE\ULQJVWDFNLQJH൵HFWVRUE\K\GURJHQERQGLQJ,Q

RXUPRGHOWKHLQWHUDFWLRQEHWZHHQ7\UDQG7USLVVWDELOL]HG

by hydrogen bonding (Figure 4)

+RZHYHURXUPRGHOGRHVQRWSUHVHQWWKH$VQSKHURPRQH

contact Asn205 has been implicated in the binding of the

1WHUPLQDO GRPDLQ RI WKH SKHURPRQH EHFDXVH PXWDWLRQV DW

WKLV SRVLWLRQ D൵HFW WKH 6WHS ELQGLQJ WR WKH SKHURPRQH33 It

KDVEHHQVKRZQWKDWUHVLGXHVWKDWDUHLPSRUWDQWIRUELQGLQJDUH

not necessarily near the ligand or at the interface in the

three-dimensional structure,QRXU6WHSPRGHO$VQIDFHVDZD\

from the binding pocket (Figure 4) Thus, according to our model,

$VQZRXOGFRQWULEXWHWRELQGLQJQRWE\GLUHFWLQWHUDFWLRQ

ZLWKWKHSKHURPRQH,QVXFKFDVHLWZRXOGEHH[SHFWHGWKDW

Asn205 may contribute to the pheromone binding through a

VHWRILQWHUDFWLRQVZLWKUHVLGXHVWKDWVXSSRUWWKHSRVLWLRQRI

the residues that directly bind to the pheromone Analyzing the

FRQWDFWV FXWR൵GLVWDQFH c RIWKH6WHSUHVLGXHVLQYROYHG

LQWKHSKHURPRQHELQGLQJ 6HU7KU3KHDQG7\U 

DQG FRPSDULQJ WKHVH ZLWK WKH FRQWDFWV RI UHVLGXH $VQ

ZHOHDUQHGWKHVHVKDUHUHVLGXHV 9DO7\U$VQ

7\U3KH$OD6HU7KUDQG,OH ZKLFK

FRUUHVSRQGVWRRIWKHUHVLGXHVWKDWVXSSRUWWKHSRVLWLRQ

of the residues directly binding the pheromone This analysis

further supports the relevance of Asn205 in pheromone binding

WKURXJK LQGLUHFW FRQWDFWV ZLWK WKH OLJDQG ELQGLQJ UHVLGXHV

These results constitute a hypothesis that can be experimentally

WHVWHGE\SHUIRUPLQJGRXEOHVZDSPXWDQWVDW$VQDQGWKH

UHVLGXHVLQWKHSKHURPRQHSURSRVHGWRLQWHUDFWZLWK$VQ

IRULQVWDQFHLQWKHSUHVHQWVWXG\ZHGHFLGHGWRPXWDWHDQRWKHU

UHJLRQRIWKHSURWHLQDVH[SODLQHGEHORZ

Additionally, our three-dimensional model has some

GLVFUHSDQFLHV ZLWK RWKHU FRPSXWDWLRQDO VWXGLHV UHSRUWHG

SUHYLRXVO\)RUH[DPSOH3KHGRHVQRWLQWHUDFWZLWK7\U

of the alpha pheromone in the Umanah model34 The lack of

LQWHUDFWLRQ EHWZHHQ WKHVH UHVLGXHV ZDV PRGHOHG EDVHG RQ

studies of alpha pheromone analogues and chemical

cross-OLQNLQJ H[SHULPHQWV WKDW SURSRVHG DQ LQWHUDFWLRQ EHWZHHQ

7\U RI WKH DOSKD SKHURPRQH ZLWK $UJ RI 6WHS Our

PRGHO RQ WKH RWKHU KDQG LQFOXGHV WKH LQWHUDFWLRQ EHWZHHQ

7\UDQG3KHSURSRVHGE\/HHDQGFROOHDJXHV, based on

site-directed mutagenesis and cross-linking experiments that

ZHUHGLVUHJDUGHGE\WKHJURXSRI8PDQDKDQGFROOHDJXHV:H

prefer to use the Tyr13-Phe204 interaction in the construction of

our Ste2p model because it has more support by other research

groupsWKDQWKH7\U$UJLQWHUDFWLRQ

,Q WKH LQWHUIDFH ZH IRXQG UHVLGXHV ERWK DFFHVVLEOH DQG

inaccessible to solvent This is a feature of many other interfaces

RI SURWHLQV ZKHUH VROYHQW DFFHVVLEOH UHVLGXHV SOD\ UROHV LQ

OLJDQGELQGLQJZKLOHWKRVHQRWDFFHVVLEOHWRVROYHQWPHGLDWH

the transition to an active state52 Additionally, our binding

PRGHODOORZVXVWRSURSRVHWKDWWKHLQWHUIDFHEHWZHHQ6WHS DQGWKHSKHURPRQHLVFRPSRVHGRIUHVLGXHV$VVKRZQLQ Table I, interface residues include both polar and non-polar UHVLGXHV7KLVLVFRQVLVWHQWZLWKSUHYLRXVVWXGLHVLQGLFDWLQJWKDW both hydrophobic and hydrophilic residues form the binding pocket of Ste2p53 The interface residues that are structurally and functionally important tend to be conserved residues or WKH\KDYHDORZHUUDWHRIPXWDWLRQFRPSDUHGZLWKWKHUHVWRI the residues of the protein547KLVLVWKHFDVHIRU7\UZKLFK LVDFULWLFDOUHVLGXHIRUELQGLQJDVZHOODVVLJQDOWUDQVGXFWLRQ DQGVKRZVDODUJHSHUFHQWDJHRIVHTXHQFHLGHQWLW\FRQVHUYDWLRQ VHH7DEOH, +RZHYHUWKLVLVQRWDOZD\VWKHFDVHDQGPDQ\ residues that are important for binding are not conserved55 ,QDJUHHPHQWZLWKWKLVLGHD7DEOH,VKRZVWKDWIHZLQWHUIDFH UHVLGXHV DUH FRQVHUYHG DPRQJ 6WHS RUWKRORJXHV 9DO 6HU/HX7KU7\U )XUWKHUPRUH6HUDQG 7KURIWKH¿UVWH[WUDFHOOXODUORRSIRXQGLQWKHLQWHUIDFHRI 6WHDQGWKHDOSKDSKHURPRQHLQWKLVVWXG\ZHUHSUHYLRXVO\ proposed as critical for signaling16*OQDQG6HUDOVR found at the interface, are hydrogen bonded as suggested by WKH6WHSPRGHOGHYHORSHGLQWKLVZRUN\HWWKHVHSRVLWLRQV

do not preserve the same side chain as Ste2p in other fungal RUWKRORJXHV&RQVLGHULQJWKDWWKH¿UVWH[WUDFHOOXODUORRSKDV been observed to undergo a conformational change upon ligand binding15 WKLV K\GURJHQ ERQG FRXOG EH PRGL¿HG GXULQJ WKH

signaling process Other non-conserved residues (e.g9DO

$VS  ZHUH DOVR IRXQG LQ WKH LQWHUIDFH WKDW FRXOG SOD\ D critical role in Ste2p function Site-directed mutagenesis on these residues may help to test the role of these residues in ligand binding or signaling

Site-directed mutagenesis of STE26HYHUDOVWXGLHVKDYHVKRZQ

that the second extracellular loop of GPCRs plays an important role in ligand binding21-25 Since no mutation for Ste2p at this ORRSKDVEHHQUHSRUWHGZHGLGQRWXVHWKLVLQIRUPDWLRQWRJXLGH the docking of the pheromone to Ste2p A sequence conservation DQDO\VLV SHUIRUPHG DPRQJ IXQJDO UHFHSWRUV KWWSZZZ

\HDVWJHQRPHRUJFDFKHIXQJL<)/:KWPO  LQGLFDWHG WKDW UHVLGXH,OHRIH[WUDFHOOXODUORRSPLJKWEHUHOHYDQWIRU6WHS DFWLYLW\,QWKLVVWXG\,OHZDVPXWDWHGWRWHVWIRULWVUROHLQ 6WHSIXQFWLRQ)LYHPXWDQWV ,OH$UJ,OH+LV,OH3UR ,OH/HXDQG,OH6HU ZHUHREWDLQHGDQGWKHLUDELOLW\WR UHVSRQGWRWKHSKHURPRQHZDVWHVWHG)LJXUHVKRZVWKHFHOO JURZWKRIDOOVWUDLQVH[SUHVVLQJWKHVHPXWDQWV7ZRPXWDWLRQV WKDWLQWURGXFHGDULQJLQWRWKDWSRVLWLRQ ,OH+LV,OH3UR  RUDUJLQLQHUHGXFHGVOLJKWO\WKHFHOOJURZWKDUUHVWLQGXFHGE\WKH SKHURPRQHZKLOHWZRRWKHUPXWDWLRQV ,OH/HX,OH6HU  GLGQRWUHGXFHWKHFHOOJURZWKDUUHVWLQGXFHGE\WKHSKHURPRQH These results indicate that this position is not critical for receptor function, but ring and positively-charged side chains are tolerated OHVVDWWKLVSRVLWLRQ,QRXU6WHSDOSKDSKHURPRQHPRGHO,OH LVRULHQWHGDZD\IURPWKHELQGLQJSRFNHWEHKLQG/\VD direct ligand of the pheromone (Table I) Placing an arginine DWSRVLWLRQFRXOGUHVXOWLQDQH[FHVVRISRVLWLYHFKDUJHDW

Trang 8

WKLVVLWHDOWHULQJWKHFRQIRUPDWLRQRI/\VDQGGHELOLWDWLQJ WKHLQWHUDFWLRQZLWKWKHSKHURPRQH3ODFLQJDQRWKHUULQJVXFK DV 3UR RU +LV DW SRVLWLRQ  FRXOG PRGLI\ WKH SRVLWLRQ RI 7\UDQRWKHUUHVLGXHLQGLUHFWFRQWDFWZLWKWKHSKHURPRQH DQGRULQWHUDFWZLWK+LVDWWKH1WHUPLQXVRI+ )LJXUH

 DOWHULQJWKHWLOWRI+ZLWKDOORVWHULFFRQVHTXHQFHVDWWKH cytoplasmic loops that could impair signaling

9DOLGDWLQJ D PRGHO UHTXLUHV WHVWLQJ IRXU GL൵HUHQW VWDWLVWLFDO SDUDPHWHUV WUXH SRVLWLYH 73  WUXH QHJDWLYH 71  IDOVH SRVLWLYH )3 DQGIDOVHQHJDWLYH )1 SUHGLFWLRQV<HWPRVW modeling studies of protein structure commonly test for TP; IRULQVWDQFHWKHZRUOGFRQWHVWRQSURWHLQVWUXFWXUHSUHGLFWLRQ only tests for TP by establishing a score that accounts for the fraction of the model that may be superimposed to the real SURWHLQVWUXFWXUHZLWKQRPRUHWKDQFHUWDLQFXWR൵506'YDOXH56 The relevance of the other 3 parameters becomes apparent ZKHQLWLVUHFRJQL]HGWKDWH[SHULPHQWDOSURWHLQ'VWUXFWXUHV should also be considered a model to test for the critical role RIUHVLGXHVLQSURWHLQIXQFWLRQ,QWKHSUHVHQWZRUNZHWHVWHG

4 parameters in our model, thus providing a more complete test about the quality of the generated structure Particularly, ZHVKRZHGWKDW

Figure 5 Area under the growth curve for each mutant strain

7KHSRSXODWLRQJURZWKRI\HDVWVWUDLQVH[SUHVVLQJDQ\RIÀYH

mutants at Ile190 (I190L, I190S, I190R, I190H and I190P) is

represented by the Area Under the growth curve (Y axis) both in

the presence and absence of the alpha pheromone (indicated

E\WKHDEEUHYLDWLRQ´SKHUµLQWKHÀJXUH $VFRQWUROWKHJURZWK

of wild type strain (BY4741) and a strain carrying a deletion of

STE2 gene are presented.

H1 Extracellular loop 1 Extracellular loop 2 and H5 Extracellular loop 3 and H6 Ser47



Accessible to solvent

Ser107

(16%) Accessible to solvent

Asn194



Ala265



Inaccessible to solvent

Thr48



Accessible to solvent

Ser108 (27%)

Asp195

(12%)

Tyr266 (45%)

Inaccessible to solvent

Val49

(32%)

Accessible to solvent

Leu113 (26%)

Val196

(13%)

Ser267

(10%) Inaccessible to solvent

Thr50



Inaccessible to solvent

Thr114 (30%)

Gln200



Accessible to solvent

Lys269

(3%) Accessible to solvent

Gln51



unaccessible to solvent

Phe116

(12%)

Asp201

(5%) Accessible to solvent

Pro270

(5%) Accessible to solvent

Met54

(6%)

Inaccessible to solvent

Pro117

(11%)

Lys202



Accessible to solvent

Gly273



Accessible to solvent

Tyr203



Accessible to solvent

Phe204

(10%) Accessible to solvent

7DEOH,&RPSRVLWLRQRIWKHLQWHUIDFHEHWZHHQ6WHDQGDOSKDSKHURPRQH,QWHUIDFHUHVLGXHVZHUHGH¿QHGDVWKRVHUHVLGXHVLQ6WHSWKDWZHUH

no more than 5 Å apart from the pheromone Solvent accessibility data were obtained from Lin, J.C., et al., 200453 Percentage of conservation (indicated in parenthesis for each residue; this percentage represents the fraction of 214 orthologue sequences that have an identical residue to Ste2p at that position) was derived from the multiple sequence alignment for all the Ste2p orthologues reported for PFAM family PF02116 Those positions with the largest percentage of sequence identity conservation are marked in bold.

Trang 9

TP are residues predicted critical and indeed are critical for

SURWHLQIXQFWLRQVWUXFWXUH)RULQVWDQFHZHVKRZWKDWUHVLGXHV

Phe204 and Tyr266 that are close to the pheromone in our model

are indeed important for binding

FP are residues predicted critical but are not truly relevant for

SURWHLQIXQFWLRQVWUXFWXUH+HUHZHVKRZWKDWUHVLGXH,OHLV

predicted by sequence conservation to be relevant for protein

VWUXFWXUHIXQFWLRQ\HWRXUH[SHULPHQWDOUHVXOWVSURYLGHHYLGHQFH

against this hypothesis

71DUHUHVLGXHVSUHGLFWHGQRWFULWLFDODQGDUHQRWWUXO\UHOHYDQWIRU

SURWHLQIXQFWLRQVWUXFWXUH2XU'PRGHOSUHGLFWHGWKDW,OH

ZDVQRWFULWLFDODQGKHUHZHVKRZWKDWLQGHHGWKLVLVWKHFDVH

)1 DUH UHVLGXHV WKDW DUH SUHGLFWHG QRW FULWLFDO EXW DUH WUXO\

UHOHYDQWIRUSURWHLQIXQFWLRQVWUXFWXUH2XUPRGHOSUHGLFWVWKDW

UHVLGXHV*OQDQG$VQDUHIDUDSDUWIURPHDFKRWKHU\HW

H[SHULPHQWDOHYLGHQFHKDVVKRZQRWKHUZLVH

1RWHWKDW71DQG)1DUHGL൶FXOWWRWHVWLQSURWHLQVWUXFWXUH

IXQFWLRQ VWXGLHV EHFDXVH LQ PRVW FDVHV RQO\ UHVLGXHV ZLWK

DQH൵HFWRQSURWHLQVWUXFWXUHRUIXQFWLRQDUHUHSRUWHGLQWKH

OLWHUDWXUH<HWZHDUJXHWKLVLQIRUPDWLRQLVSDUWLFXODUO\UHOHYDQW

in testing for structure-function prediction models, such as in

WKHFDVHRIUHVLGXHVOLNH,OH

CONCLUSIONS

The present study presents an atomic three-dimensional structure

model of the alpha pheromone receptor from S cerevisiae,

Ste2p, based on state-of-the-art modeling methods and current

DYDLODEOHH[SHULPHQWDOGDWD7KH6WHSPRGHOLVFRQVLVWHQWZLWK

PRVWDYDLODEOHELRFKHPLFDOLQIRUPDWLRQDQGDOORZVXVWRSURSRVH

VSHFL¿FLQWHUDFWLRQVWKDWFRXOGVWDELOL]HWKHQDWLYHFRQIRUPDWLRQ

RIWKHUHFHSWRU)XUWKHUPRUHDPRGHORIWKHLQWHUDFWLRQEHWZHHQ

6WHSDQGWKHDOSKDSKHURPRQHZDVJHQHUDWHGEDVHGRQZKDWLV

NQRZQDERXWWKHELQGLQJFRQWDFWV7KH6WHSDOSKDSKHURPRQH

PRGHODOORZHGXVWRLGHQWLI\UHVLGXHVWKDWDUHSUHVXPDEO\

IRXQGLQWKHLQWHUIDFHEXWGLGQRWLQFOXGH,OHDFRQVHUYHG

UHVLGXHVDPRQJIXQJLVSHFLHV0XWDJHQHVLVRI,OHLQ6WHS

KDGVPDOORUQRH൵HFWRQUHFHSWRUIXQFWLRQDQGLQWKHPRGHOWKLV

UHVLGXHSRLQWVDZD\IURPWKHSKHURPRQH7KXVWKHPRGHOPD\

serve as a starting point for further site-directed mutagenesis to

test the structure-function relationship of this receptor

7KLV ZRUN ZDV LQ SDUW VXSSRUWHG E\ 3$3,,7 JUDQW QXPEHU

,1WR*DEULHOGHO5tR/DXUD0DULQD5REOHV IHOORZVKLS

QXPEHU ZDVVXSSRUWHGLQSDUWE\&RQVHMR1DFLRQDOGH

&LHQFLD\7HFQRORJtD &21$&<7 ZKLOHVKHZDVVWXGHQWRI

WKH3URJUDPDGH0DHVWUtDHQ&LHQFLDV%LRTXtPLFDV81$0

:HWKDQN0DUtD7HUHVD/DUD2UWL]DWWKH,QVWLWXWHRI&HOOXODU

3K\VLRORJ\8QLYHUVLGDG 1DFLRQDO$XWyQRPD GH 0p[LFR IRU

KHUWHFKQLFDODVVLVWDQFHLQWKLVZRUN

REFERENCES

1 /XQGVWURP $Q RYHUUHYLHZ RQ *3&5V DQG GUXJ GLVFRYHU\ structure-based drug design and structural biology on GPCRs

Methods Mol Biol.     '2, 

B

2 5RVHQEDXP'05DVPXVVHQ6*) .RELOND%.7KHVWUXFWXUH

and function of G-protein-coupled receptors Nature, 459(7245),

  '2,QDWXUH

3 0DFND\9 0DQQH\750XWDWLRQVD൵HFWLQJVH[XDOFRQMXJDWLRQ

and related processes in Saccharomyces cerevisiae I Isolation and phenotypic characterization of nonmating mutants Genetics,

76(2)  

4 +DUWZHOO/+0XWDQWVRISaccharomyces cerevisiae unresponsive

to cell division control by polypeptide mating hormone J Cell

Biol 85±  

5 -HQQHVV '' %XUNKROGHU$&  +DUWZHOO /+ %LQGLQJ RI ĮIDFWRUSKHURPRQHWR\HDVWDFHOOVFKHPLFDODQGJHQHWLFHYLGHQFH

IRUDQĮIDFWRUUHFHSWRUCell, 35(2)  

6 %XUNKROGHU$& +DUWZHOO/+7KH\HDVWĮIDFWRUUHFHSWRU Structural properties deduced from the sequence of the STE2 gene

Nucleic Acids Res 13±  

 1HXPRLQ$ &RKHQ /6$UVKDYD % 7DQWU\ 6 %HFNHU - 0=HUEH2 1DLGHU)6WUXFWXUHRIDGRXEOHWUDQVPHPEUDQH

fragment of a G-protein-coupled receptor in micelles Biophysical

Journal, 96(8)  '2,MESM

 9DOHQWLQH.*/LX6)0DUDVVL)09HJOLD*2SHOOD6-'LQJ ); 1DLGHU)6WUXFWXUHDQGWRSRORJ\RIDSHSWLGHVHJPHQWRIWKH

6th transmembrane domain of the Saccharomyces cerevisae

alpha-factor receptor in phospholipid bilayers Biopolymers, 59(4),

243-256 (2001) '2,  $,'

%,3!&2+

 8GGLQ 06 LP + 'H\R $ 1DLGHU )  %HFNHU -0 ,GHQWL¿FDWLRQRIUHVLGXHVLQYROYHGLQKRPRGLPHUIRUPDWLRQORFDWHG ZLWKLQDȕVWUDQGUHJLRQRIWKH1WHUPLQXVRID<HDVW*SURWHLQ

coupled receptor Journal of Receptors and Signal Transduction

Research 32(2)  '2,

10 2YHUWRQ0& %OXPHU.-7KHH[WUDFHOOXODU1WHUPLQDOGRPDLQ and transmembrane domains 1 and 2 mediate oligomerization of a

yeast G protein-coupled receptor Journal of Biological Chemistry,

277(44)  '2,MEF0

11 6FKDQGHO.$ -HQQHVV'''LUHFWHYLGHQFHIRUOLJDQGLQGXFHG

LQWHUQDOL]DWLRQRIWKH\HDVWĮIDFWRUSKHURPRQHUHFHSWRUMol Cell

Biol 14  

12 +LFNH /  5LH]PDQ + 8ELTXLWLQDWLRQ RI D \HDVW SODVPD

membrane receptor signals its ligand-stimulated endocytosis Cell

84(2)  

13 5RKUHU-%HQHGHWWL+=DQRODUL% 5LH]PDQ+,GHQWL¿FDWLRQ

of a novel sequence mediating regulated endocytosis of the G

SURWHLQFRXSOHGĮSKHURPRQHUHFHSWRULQ\HDVWMol Biol Cell

4  

14 6WHIDQ&- %OXPHU.-7KHWKLUGF\WRSODVPLFORRSRID\HDVW

*SURWHLQFRXSOHG UHFHSWRU FRQWUROV SDWKZD\ DFWLYDWLRQ OLJDQG

discrimination, and receptor internalization Mol Cell Biol 14(5),

  

15 +DXVHU0.DX൵PDQ6/HH%.1DLGHU) %HFNHU-0 7KH ¿UVW H[WUDFHOOXODU ORRS RI WKH 6DFFKDURP\FHV FHUHYLVLDH * protein-coupled receptor Ste2p undergoes a conformational change

upon ligand binding Journal of Biological Chemistry, 282(14),

Trang 10

16 $NDO6WUDGHU$ KDUH 6 ;X ' 1DLGHU )  %HFNHU -0

5HVLGXHV LQ WKH ¿UVW H[WUDFHOOXODU ORRS RI D * SURWHLQFRXSOHG

receptor play a role in signal transduction J Biol Chem 277(34),

  '2,MEF0

/HH %. KDUH 6 1DLGHU )  %HFNHU -0 ,GHQWL¿FDWLRQ

of residues of the Saccharomyces cerevisiae G protein-coupled

receptor contributing to alpha-factor pheromone binding J

Biol Chem 276(41)    '2, MEF

0

/LQ-&3DUULVK:(LOHUV06PLWK62 .RQRSND-%

Aromatic residues at the extracellular ends of transmembrane

domains 5 and 6 promote ligand activation of the G protein-coupled

alpha-factor receptor Biochemistry, 42(2)  '2,

ELR

6RQ&'6DUJV\DQ+1DLGHU) %HFNHU-0,GHQWL¿FDWLRQRI

ligand binding regions of the Saccharomyces cerevisiae alpha-factor

SKHURPRQHUHFHSWRUE\SKRWRD൶QLW\FURVVOLQNLQJBiochemistry,

43(41)  '2,EL

20 &KRL <  RQRSND -% $FFHVVLELOLW\ RI F\VWHLQH UHVLGXHV

substituted into the cytoplasmic regions of the alpha-factor receptor

LGHQWL¿HVWKHLQWUDFHOOXODUUHVLGXHVWKDWDUHDYDLODEOHIRU*SURWHLQ

interaction Biochemestry 45(51)    '2,

EL

21 6KL/ -DYLWFK-$7KHVHFRQGH[WUDFHOOXODUORRSRIWKHGRSDPLQH

D2 receptor lines the binding-site crevice Proc Natl Acad Sci

USA, 101(2)  '2,SQDV

22 0D]QD3%HUND.-HOLQNRYD,%DOLN$6YRERGD32EVLORYD

92EVLO7 7HLVLQJHU-/LJDQGELQGLQJWRWKHKXPDQ07

PHODWRQLQUHFHSWRUWKHUROHRIUHVLGXHVLQWUDQVPHPEUDQHGRPDLQV

DQGBiochem Biophys Res Commun 332(3)

 '2,MEEUF

23 .OHLQDX* .UDXVH*7K\URWURSLQDQGKRPRORJRXVJO\FRSURWHLQ

KRUPRQHUHFHSWRUVVWUXFWXUDODQGIXQFWLRQDODVSHFWVRIH[WUDFHOOXODU

signaling mechanisms Endocr Rev 30(2)  '2,

HU

24 Unal, H., -DJDQQDWKDQ5%KDW0% .DUQLN66/LJDQG

VSHFL¿FFRQIRUPDWLRQRIH[WUDFHOOXODUORRSLQWKHDQJLRWHQVLQ

II type 1 receptor J Biol Chem 285(21)±  

'2,MEF0

25 :LÀLQJ'%HUQKDUGW*'RYH6%XVFKDXHU$3HHWHUV0

:HVWHQ*YDQ/L4$3,:KHDWOH\0:RRWWHQ'&RQQHU

06LPPV-.HQGULFN50DVVRWWH'.LH൵HU%.OFR-

:LHJDQG&1DU]LQVNL.%DUDQVNL76XP&7LNKRQRYD,

&RVWDQ]L6*HUVKHQJRUQ01DQHYLF]7:DQJ/&KHQ0

,VKLL0&RXJKOLQ66FDUVHOOL0/L%.LP6:HVV-

%UXQVNROH,6WUDVVHU$6HLIHUW5%XVFKDXHU$:LÀLQJ'

/|൵HO.1RUGHPDQQ86WUDVVHU$%HUQKDUGW*'DYLGVRQ

)/RHZHQ3.KRUDQD+6KL/-DYLWFK-1RGD.6DDG

<*UDKDP5.DUQLN6&RRN-(LGQH.6KL/-DYLWFK

-$YODQL9 *UHJRU\  0RUWRQ & 3DUNHU 0 6H[WRQ 3

/HINRZLW]5&RWHFFKLD66DPDPD3&RVWD70LOOLJDQ*

6HLIHUW5:HQ]HO6HLIHUW./HH7*HWKHU86DQGHUV%XVK

( 6FKQHOO ' %UXQVNROH , /DGRYD  6FKQHLGHU ( ,JHO

36HLIHUW56WUDVVHU$6FKQHLGHU(1HXPDQQ''RYH

6/LP+-RQJHMDQ$%DNNHU5+DDNVPD((VFK,GH

+DJD..UXVH$$VDGD+<XUXJL.RED\DVKL76KLURLVKL

05DVPXVVHQ6&KRL+)XQJ-3DUGRQ(&DVDURVD3

6KLPDPXUD76KLURLVKL0:H\DQG67VXMLPRWR+:LQWHU

G., Schneider, E., Schnell, D., Papa, D., Seifert, R., Igel, P., Geyer, R., Strasser, A., Dove, S., Seifert, R., Igel, P., Schneider, E., Schnell, '(O]66HLIHUW5/DQJH-:DOV+9DQGHQKRRJHQEDQG$ 9DQGHNXLOHQ$'HQKDUWRJ--DEORQRZVNL-*ULFH&&KDL: 'YRUDN&9HQDEOH-/LP+6PLWV5%DNNHU5'DP& YDQ(VFK,GH6FKPXW]-.XHQ]OH*+XQ]LNHU)*DXFK5 6PLWV5/LP+6WHJLQN%%DNNHU5(VFK,GH*HWKHU8 /LQ6.RELOND%&KHQJ<3UXVR൵:6FKQHLGHU(6FKQHOO '6WUDVVHU$'RYH66HLIHUW5.RRLVWUD$.XKQH6(VFK ,GH/HXUV5*UDDI&GH/LP+*UDDI&GH-LDQJ: 6DGHN30F*RYHUQ36FKXOWHV61LMPHLMHU6(QJHOKDUGW+ RRLVWUD$9LVFKHU+:LWWPDQQ+-6HLIHUW56WUDVVHU$

$OHZLMQVH$7LPPHUPDQ+-DFREV(6PLW05RRYHUV(

%DOOHVWHURV- :HLQVWHLQ+7KH([WUDFHOOXODU/RRS (&/ 

of the Human Histamine H 4 Receptor Substantially Contributes

WR /LJDQG %LQGLQJ DQG &RQVWLWXWLYH$FWLYLW\ PloS One, 10(1),

H  '2,MRXUQDOSRQH

26 <DQJ-<DQ55R\$;X'3RLVVRQ- =KDQJ<7KH

,7$66(56XLWHSURWHLQVWUXFWXUHDQGIXQFWLRQSUHGLFWLRQNature

Methods, 12(1)  '2,QPHWK

(LOHUV0+RUQDN96PLWK62 .RQRSND-%&RPSDULVRQ RI&ODVV$DQG'*3URWHLQ&RXSOHG5HFHSWRUV&RPPRQ)HDWXUHV

in Structure and Activation Biochemistry 2005, 44

 '2,ELX

3DOF]HZVNL..XPDVDND7+RUL7%HKQNH&$0RWRVKLPD H., Fox, B.A., /H7URQJ,7HOOHU'&2NDGD76WHQNDPS 5(<DPDPRWR0 0L\DQR0&U\VWDOVWUXFWXUHRIUKRGRSVLQ

AG protein-coupled receptor Science, 289(5480)  

%HUPDQ +0:HVWEURRN - )HQJ = *LOOLODQG * %KDW7 1:HLVVLJ+6KLQG\DORY,1 %RXUQH3(7KH3URWHLQ'DWD

Bank Nucleic Acids Res 28(1)  '2,

QDU

30 0DXSHWLW-'HUUHXPDX[3 7X൵pU\3$IDVWPHWKRGIRUODUJH

scale de novo peptide and miniprotein structure prediction J

Comput Chem 31(4)  '2,MFF

31 +LJDVKLMLPD70DVXL<&KLQR16DNDNLEDUD6.LWD+  0L\D]DZD 7 1XFOHDUPDJQHWLFUHVRQDQFH VWXGLHV RQ WKH conformations of tridecapeptide alpha-mating factor from yeast Saccharomyces cerevisiae and analog peptides in aqueous solution

Conformation-activity relationship Eur J Biochem 140(1),

±  

32 &RPHDX65*DWFKHOO':9DMGD6 &DPDFKR&-&OXV3UR

an automated docking and discrimination method for the prediction

of protein complexes Bioinformatics, 20(1), 45-50 (2004)

33 1DLGHU)%HFNHU-0/HH<+ +RURYLW]$'RXEOHPXWDQW cycle scanning of the interaction of a peptide ligand and its G

protein-coupled receptor Biochemistry, 46(11)  

'2,ELX

34 8PDQDK*.(+XDQJ/'LQJ)$UVKDYD%)DUOH\$5 /LQN$-1DLGHU) %HFNHU-0,GHQWL¿FDWLRQRIUHVLGXHWR UHVLGXHFRQWDFWEHWZHHQDSHSWLGHOLJDQGDQGLWV*SURWHLQFRXSOHG receptor using periodate-mediated dihydroxyphenylalanine

cross-linking and mass spectrometry J Biol Chem., 285(50)

  '2,MEF0

35 %URRNV %5 %UXFFROHUL 5( 2ODIVRQ %' 6WDWHV '- 6ZDPLQDWKDQ 6  DUSOXV 0 &+$500 $ SURJUDP IRU macromolecular energy, minimization, and dynamics calculations

Journal of Computational Chemistry, 4(2)  '2,

MFF

... UHVLGXH

placed at the end of a helix and the alpha- carbon from the

residues localized at the ends of all the other helices

Construction of the alpha- pheromone three-dimensional...

SUHYLRXVO\)RUH[DPSOH3KHGRHVQRWLQWHUDFWZLWK7\U

of the alpha pheromone in the Umanah model34 The lack of

LQWHUDFWLRQ EHWZHHQ WKHVH UHVLGXHV ZDV PRGHOHG EDVHG RQ

studies of alpha pheromone analogues... residues of Ste2p and pheromone are shown in a ball-and-stick representation First, the C-terminal region of the pheromone (Gln10) binds to the receptor residues Ser47 and Thr48 (H1) 17 Then, the

Ngày đăng: 19/03/2023, 15:46

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
1. /XQGVWURP .$Q RYHUUHYLHZ RQ *3&amp;5V DQG GUXJ GLVFRYHU\structure-based drug design and structural biology on GPCRs.Methods Mol. Biol. '2, B Sách, tạp chí
Tiêu đề: Methods Mol. Biol
2. 5RVHQEDXP'05DVPXVVHQ6*) .RELOND%.7KHVWUXFWXUH and function of G-protein-coupled receptors. Nature, 459(7245), '2,QDWXUH Sách, tạp chí
Tiêu đề: Nature
3. 0DFND\9 0DQQH\750XWDWLRQVD൵HFWLQJVH[XDOFRQMXJDWLRQand related processes in Saccharomyces cerevisiae. I. Isolation and phenotypic characterization of nonmating mutants. Genetics, 76(2) Sách, tạp chí
Tiêu đề: Saccharomyces cerevisiae". I. Isolation and phenotypic characterization of nonmating mutants. "Genetics
4. +DUWZHOO/+0XWDQWVRISaccharomyces cerevisiae unresponsive to cell division control by polypeptide mating hormone. J. Cell Biol. 85± Sách, tạp chí
Tiêu đề: Saccharomyces cerevisiae" unresponsive to cell division control by polypeptide mating hormone. "J. Cell Biol
5. -HQQHVV '' %XUNKROGHU$&amp; +DUWZHOO /+ %LQGLQJ RI ĮIDFWRUSKHURPRQHWR\HDVWDFHOOVFKHPLFDODQGJHQHWLFHYLGHQFHIRUDQĮIDFWRUUHFHSWRUCell, 35(2) Sách, tạp chí
Tiêu đề: Cell
6. %XUNKROGHU$&amp; +DUWZHOO/+7KH\HDVWĮIDFWRUUHFHSWRUStructural properties deduced from the sequence of the STE2 gene.Nucleic Acids Res. 13±1HXPRLQ$ &amp;RKHQ /6$UVKDYD % 7DQWU\ 6 %HFNHU - 0=HUEH2 1DLGHU)6WUXFWXUHRIDGRXEOHWUDQVPHPEUDQHfragment of a G-protein-coupled receptor in micelles. BiophysicalJournal, 96(8)'2,MESM Sách, tạp chí
Tiêu đề: Nucleic Acids Res." 13± 1HXPRLQ$ &RKHQ /6$UVKDYD % 7DQWU\ 6 %HFNHU -0=HUEH2 1DLGHU)6WUXFWXUHRIDGRXEOHWUDQVPHPEUDQHfragment of a G-protein-coupled receptor in micelles. "Biophysical "Journal

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN