ContentslistsavailableatScienceDirect Nuclear Materials and Energy journalhomepage:www.elsevier.com/locate/nme Surface modification of He pre-exposed tungsten samples by He plasma impact
Trang 1ContentslistsavailableatScienceDirect
Nuclear Materials and Energy
journalhomepage:www.elsevier.com/locate/nme
Surface modification of He pre-exposed tungsten samples by He
plasma impact in the divertor manipulator of ASDEX Upgrade
S Brezinseka ,∗, A Hakolab , H Greunerc , M Baldenc , A Kallenbachc , M Oberkoflerc , G De
Temmermand , D Douaie , A Lahtinenb , B Böswirthc , D Bridac , R Caniellof , D Carraleroc ,
S Elgetic , K Kriegerc , H Mayerg , G Meislc , S Potzelc , V Rohdec , B Sieglinc , A Terraa ,
R Neuc , Ch Linsmeiera , the EUROfusion MST1 Team 1 ,2
a Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung - Plasmaphysik, Partner of the Trilateral Euregio Cluster, 52425 Jülich, Germany
b VTT Technical Research Centre of Finland Ltd., P.O Box 10 0 0, 02044 VTT, Finland
c Max-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany
d ITER Organization, Route de Vinon-sur-Verdon - CS 90 046 - 13067 St Paul Lez Durance Cedex, France
e CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France
f Istituto di Fisica del Plasma - CNR, Via R Cozzi 53, 20125 Milan, Italy
g Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, OX14 3DB, UK
a r t i c l e i n f o
Article history:
Received 24 July 2016
Revised 27 September 2016
Accepted 1 November 2016
Available online xxx
Keywords:
PSI
ASDEX Upgrade
ITER
W divertor
W nanostructure
Helium
a b s t r a c t
Tungsten(W)willbeusedasmaterialforplasma-facingcomponents(PFCs)inthedivertorofITERand interactwithHelium(He)ionseitherfrominitialHeplasmaoperationorfromDeuterium-Tritium(DT) fusionreactionsintheactiveoperationphase.Laboratoryexperimentsreportedthatinaspecific opera-tionalwindowofimpactenergy,ionfluence,andsurfacetemperature(E in ≥ 20eV,φ≥ 1× 1024He+m−2,
T surf ≥ 1000K)amodificationofWsurfacesoccursresultingintheformationofHe-inducedW nanos-tructures.ExperimentsinASDEXUpgradeH-modeplasmas (B t =2.5T,I p =0.8MA,P aux ࣃ8.0MW)in
Hehavebeencarriedouttoinvestigateindetail(a)thepotentialgrowthofWnanostructureson pre-damaged W samples incorporating Henanobubbles, and (b) the potential ELM-inducederosionof W nanostructure.BothWsurfacemodificationsweregeneratedartificiallyintheGLADISfacilitybyHe bom-bardmentofWsamplesatE in =37keV(a)to φࣃ0.75× 1024He0m−2atT surf ࣃ1800Kand(b) φࣃ1×
1024He0m−2atT surf ࣃ2300KpriortoexposureinthedivertormanipulatorofASDEXUpgrade.Though
inpart(a)conditionsofWnanostructuregrowthwithatotalHeionfluenceofφࣃ1.6× 1024He+m−2 andpeakHeionimpactenergiesabove150eVweremet,nogrowthcouldbedetected.Inpart(b)lower densityplasmaswithmorepronouncedtypeIELMs,carryingenergeticHeionsinthekeVrange,were executedwiththestrike-linepositionedon2μmthickWnanostructureaccumulatingafluenceofφ ࣃ 0.8× 1024He+m−2.Post-mortemanalysisrevealedthatco-deposition bypredominantlyW,and Boron (B),erodedatthemain chamberwalland transportedintothedivertor, tookplaceonallWsamples ErosionofWnanostructureoritsformationwashinderedbythefactthattheouterdivertoratthe loca-tionofthesampleswasturnedundertheseHeplasmaconditionsintoanetdepositionzonebyW,Band Carbon(C)ions.Thesurfacemorphologywithlargeroughnessandeffectivesurfaceareaactasacatcher fortheimpingingimpurities.Thus, apartfromoperationintheexistencediagramofWnanostructure withrespecttoT surf ,φ,andE in ,alsotheimpingingimpurityfluxcontributionneedstobeconsideredin predictionsconcerningtheformationofWnanostructures
© 2016TheAuthors.PublishedbyElsevierLtd ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/)
∗ Corresponding author
E-mail address: s.brezinsek@fz-juelich.de (S Brezinsek)
1 see http://www.euro-fusionscipub.org/mst1
2 This work has been carried out within the framework of the EUROfusion Con-
sortium and has received funding from the Euratom research and training pro-
gramme 2014–2018 under grant agreement No 633053 The views and opinions ex- pressed herein do not necessarily reflect those of the European Commission http://dx.doi.org/10.1016/j.nme.2016.11.002
2352-1791/© 2016 The Authors Published by Elsevier Ltd This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
Please citethis articleas: S Brezinsek etal., Surface modification ofHe pre-exposed tungsten samplesby He plasmaimpact inthe
Trang 21 Introduction
Tungsten (W) willbe usedasmaterialforplasma-facing
com-ponents(PFCs)intheITERdivertor[1] duetoitsgoodpower
han-dlingproperties,highmeltingpoint aswellaslow fuel retention
andsputtering inplasmaswithhydrogenicfuel [2] These
advan-tageshavebeensuccessfullydemonstratedindeuterium(D)
plas-masinASDEXUpgradeandJETwithfullWdivertors[3] However,
operationinhelium(He)ormixedD/Heplasmashavebarelybeen
executedindeviceswithWPFCsandareofvitalimportancease.g
ITERplanstooperateinHeplasmasduringthenon-activestart-up
phaseandwill producefusion α-particles byDT reactions inthe
activephase
Laboratory experiments,i.e.in linearplasmadevicesand
neu-tralbeamfacilities, reported onmicrostructure modifications
un-der energeticHe ionor atom bombardmentof W PFCs resulting
inWnanostructures(WfuzzorW dendrilsorWcoral-like
struc-ture)[4,5] TherequiredWsurfaceandHeion(Heplasma)
condi-tionsfortheformationofWnanostructurehavebeensummarised
in[6] includingtheidentificationofHe nanobubblesinW as
po-tentialprecursor W nanostructures are formed when theimpact
HeionenergyE inexceeds20eV,thesurfacetemperatureT surf
ex-ceeds 1000 K, and the fluence φ is larger than approximately 1
× 1024He+m−2.Recentstudies[8] identified a threshold for their
formation at low fluence These W nanostructures could
poten-tiallycompromise power handling,impact the fuel retention [7] ,
andinduce finally dust formation fromW plasma-facing
compo-nents[2] A critical questionis ifsuch surfacemodifications can
beobserved inpresent-day tokamaksoperation inELMy H-mode
conditionsandiftheycompromisetheplasmaoperation
Pioneering experimental studies with this respect have been
carriedoutintheTEXTORdeviceunderL-modeconditionsin
plas-maswithHemajority[9] Anactivelypre-heatedlimiterequipped
withWstripes,pre-exposedintheNAGDIS-IfacilitytoHeplasmas
providingnanostructuredWononestripeandHenanobubblesin
Won anotherstripe, wasexposed to Hetokamakplasmas under
conditionswhichshallpromoteafurthergrowthofW
nanostruc-tureand its formation arising fromthe He nanobubbles,
respec-tively.TEXTOR, operating witha first wall madeof graphite and
thisactively heated, roof-like limiter equipped withthe different
Hepre-damagedWstripesshowednogrowthofWnanostructures
though all three criteriamentioned beforefor growth were met
Instead in the near scrape-off layer (SOL), W nanostructure
ero-sionbyimpingingC impurityionsoriginatingfromfirstwall
ero-sion[10] has beenobserved on thecorresponding limiter stripes
anddeposition by carbon wasdetected a few centimeters inside
the SOL on all W stripes Thus, in the case of L-mode plasmas
the impinging flux distribution of low-Z impurity ions is an
ad-ditionalparameterdeterminingifWnanostructureisgrowing.The
concentration oflow-Z impurities, inthe case ofTEXTOR C with
a flux ratioof C∼(0.03)×( He+D ) ,determines iferosion ofW
takesplaceordeposition bylow-Zimpurities.Comparablestudies
inavirtual-freelow-Zdevicewereexecutedin[11] intheall-metal
tokamakCMOD Here,indeed thethree abovementioned
param-eters required forW nanostructure formation were fulfilled at a
W samplelocated atthe noseof the outer divertorand clearW
nanostructuregrowthwasobservedwithin12discharges
accumu-latingin 15 the required He ionfluence However, the plasma
operationwasinanELM-freeH-mode,thuswithoutanyhigh
en-ergeticionsimpingingduringan ELMeventatthetargetplateas
itwillbethecaseinITER.Thus,inviewofITER,studiesintype-I
ELMy H-modedischarges are requiredto concludeif thebalance
between W nanostructure growth and erosion [12] is shifted in
favourofthenanostructureformationorifneterosionunderELM
impact takes place Studies in PISCES-B simulating ELM-like
be-haviourbyplasmabiasinginHedemonstratedaclearerosionafter singleevents[13]
Here, we report on experiments carried out in He ELMy H-modeplasmasinASDEX-Upgrade afullW-devicewithoccasional use of boronisation and low residual C content [3] The exposi-tion of W samples in the outer divertor of ASDEX Upgrade aim
to investigate indetail (a) the potential growth of W nanostruc-tures on pre-damaged W samples incorporating He nanobubbles and(b) the ELM-induced erosionof thick W nanostructures The pre-damage ofWsamples byenergetic Heatomswasdone prior
tothetokamakexposureintheneutralbeamfacilityGLADIS pro-vidinga set ofsamples exposed to differentHe fluence and sur-facetemperatureresultinginparticularinsampleswithcoral-like
W nanostructure andsamples withHe nanobubbles The GLADIS operational parameters were selected accordingto [5] where de-tailed characterisation of the surface morphology after the adia-baticloadingwasdonebypost-mortemanalysis.Subsequently, AS-DEXUpgradeplasmaandsurfaceconditionsareselectedtoinduce formation orgrowth of W nanostructures on thesepre-damaged
Wsamples.Theseexperimentalconditionsinthefullmetallic en-vironmentareclosetoconditionsexpectedinthedivertorofITER duringtheHestart-upphase[15]
2 Experiment
TheexperimentalapproachtostudyWnanostructurebehaviour
inHe-dominatedASDEX Upgradeplasmaspresentedhereis com-parable to the TEXTOR studies [9] employing three steps of W sampletreatment:(i)Hepre-exposureofWsamplesinlaboratory plasmas(here: GLADIS),(ii)Exposureofpre-damagedW samples
intokamakplasmas(here:ASDEXUpgrade),and(iii)post-mortem analysis of W samples andcomparison with the reference mor-phology (here: IBAand SEM) Fig 1 a showsthe set of polycrys-tallineW samples (T1-T6) afterHe expositionin GLADIS corre-spondingtopart(i).Fig 1 billustratesthearrangementofthesame
W samples(T1-T6)afterHe plasmaexpositioninASDEX Upgrade
-correspondingtopart(ii).Thepurposeofthethreeexperimental partscanbedescribedinthefollowingway:
• Pre-exposure of W samples to a set of different fluences of
Heparticles andsurfacetemperaturesincontrolled laboratory plasmaconditionsproviding pre-damagedW sampleswithHe nanobubbles atthe fluence onset to W nanostructure forma-tionuptofullydevelopedWnanostructuresofseveral microm-eterthickness.Here,GLADISwasusedfortheHepre-exposition
[5] in contrast to a linear plasma device in the case of the TEXTOR experiment The detailed surface morphology differs slightlybetweenGLADISoperatingathighHeatomimpact en-ergiesoftensofkeV inducinga coral-likestructureandlinear plasmadevicesoperatingatlowHeionimpactenergiesoftens
ofeVinducinga tendril-likestructure [11] Bothhowever pro-videarepresentativenanostructuredWsurfacewith compara-blepropertieslikehighporosity,reducedthermalconductivity etc
• Exposure of pre-damaged W samples installed in the DIver-torManipulator(DIM-II)[16] ofASDEXUpgradelocatedinthe outerdivertor.Thestrike-linepositionisusedtoexposein se-quence different He pre-damaged W samples under different plasmaconditions.Thisutilisationofthestrike-lineposition al-lowsto separate the two main questions: (a) Will W nanos-tructureformationbeinitiatedonthesample(T2)withalready pre-implanted He nanobubbles and initial thin nanostructure formed iftheoperational conditions arefulfilling the require-mentsforgrowth?(b)HowwillexistingthickWnanostructure
bemodifiedbytokamakplasmaimpact?Here,inparticularthe questionofELM-induced W erosionwill be addressedforthe
Trang 3Fig 1 a) He-exposure arrangement of W samples in GLADIS b) He-exposure ar-
rangement of W samples in the divertor manipulator of ASDEX Upgrade (AUG) with
the three strike-line positions for the different experiments indicated
first time ina metallic tokamak environment The complexity
ofthelatterincludesalsothematerialmigrationfromthemain
chamberintothedivertorandwithinthedivertorwhereas
un-dernormaldeuteriumplasmaconditionstheouterdivertorleg
is representing a net-erosion zone [17] As reference for the
global migration behaviour, a second set of six Molybdenum
(Mo) samples of identical dimension is installed at the same
poloidalposition, buttoroidally shifted by 2 cm onthe same
WcoverageplateinDIM-II(Fig 1 b)
• In-situ information about the change of surface morphology
during tokamak plasma operation are very limited, i.e here
onlyavisiblecameraobservationisavailable(Fig 3 b)recording
the integral change of photon emission owing to variation in
surfacetemperature, reflectionproperties,He recyclingandW
erosion.Different ex-situanalysismethods likeScanning
Elec-tron Microscopy (SEM), Nuclear Reaction Analysis (NRA),
Sec-ondary IonMass Spectrometry (SIMS) are required to
charac-terisetheexpectedchangesinsurfacemorphology,inimpurity
coverage, W erosion,andHe content inW post mortem
Pre-characterisationofWsamplesisperformedbySEMafter
expo-sitioninGLADISwhichallowadirectcomparisonofWsamples
beforeandafter tokamakplasmaexposure asshowninFig 2
forsamplesT2andT3ontheleftandright-hand-side,
respec-tively The SEM methodology employing contrast for
compo-nentanalysisiscomparabletotheanalysisreportedin[19] on
WsamplesexposedtodeuteriumplasmasinASDEXUpgrade
Fig 2 Left: SEM images of samples T2 (just above the onset of W nanostructure
formation), T3 (W nanostructures formed), and T4 (W nanostructures formed) after
He bombardment in GLADIS Right: Comparable SEM images after exposure to He plasmas in ASDEX Upgrade (AUG) visualising changes in surface morphology
Table 1
Exposure conditions for the different tungsten samples in GLADIS
He flux [10 21 m −2 s −1 ] ∼ 1 7 ∼ 1 3 0 7
He fluence [10 24 m −2 ] ∼ 1 0 ∼ 0 75 ∼ 0 4 Integral loading time [s] ∼ 580 ∼ 580 ∼ 580 Peak surface temperature [K] ∼ 2300 ∼ 1800 ∼ 1300
2.1 Helium exposure in GLADIS
The He exposition conditions of W samples in GLADIS were comparabletothe experimental studies describedin[5] wherea comprehensiveandcompletecharacterisationofthesurface modi-ficationsoftheappliedpolycrystallineW,alsousedinthis experi-ment,isdone.SixWsamples(T1-T6:eachofdimension30× 12×
4mm3)wereembeddedinamolybdenum-alloy(TZM)targetplate andexposedtothebeamatE in=37keVofHe0.Fig 1 ashowsthe geometricalarrangement ofthe samplesaswell asimplicitly the heat andparticleload footprint onthe target plateby darkening withmaximum incident particle flux andsurfacetemperature in thecentreonsamplesT3andT4.ThoughtheGLADISbeamprofile
isnothomogeneousandtheloadingoccursadiabatically,itis pos-sibletodescribetheaveragedexposureconditionsforthedifferent samplesassummarisedinTable 1 Wnanostructureofabout2μm thicknessareformedonWsampleT3andT4withafluenceofφ
ࣃ1 × 1024 He0m−2 andatapeaksurfacetemperatureofT surf ࣃ
2300K.InparticularsampleT3isfurther usedforW nanostruc-tureerosionstudiesinASDEX Upgrade Thecorresponding values forT2andT5areφࣃ0.75× 1024He0m−2andT surfࣃ1800K.The strongestgradientintheimpingingfluxoccursonthesetwo sam-ples:thelowerpartofT2andtheupperpartofT5arejustatthe
Trang 4Fig 3 a) Magnetic configuration in the divertor for the three phases of exposure
and the line-of-sight of the camera on the divertor manipulator location b) Image
of divertor manipulator plates during plasma exposure in the visible spectral range
thresholdforW nanostructureformation,butwithsignificant He
nanobubblesincorporatedintheWmatrixwhereastheupperpart
ofT2 andthe lower partof T5 alreadyfully develop the typical
coralnanostructure ofW.The centre ofsampleT2 hasbeen
tar-getedintheASDEXUpgradeexperimentbytheouter-strikelineto
studytheformationandgrowthofWnanostructuresasdescribed
below.However,duetothepresentflux andtemperatureprofiles
owingtothefootprint intheHepre-exposition, awider rangeof
Wnanostructureswithdifferentheight,density,andthicknesswill
result.RepresentativeSEMimagesofthemicrostructuresurfaceof
sampleT2,T3,andT4afterGLADISexposureareshowninFig 2 a
2.2 Exposure in ASDEX Upgrade He plasmas
H-mode experimentsinASDEX Upgradehavebeencarriedout
inlower singlenullconfiguration(Fig 3 a)ata toroidal magnetic
field of B t=2.5 T, a plasma current of I p=0.8 MA, and
auxil-iary power of about P aux=8.5 MW consisting of a mixture of
neutral-beaminjectioninHe andHofminimum2.1MW,ion
cy-clotron resonance heating (ICRH) of up to 3.9 MW, and central
electron-cyclotronresonanceheating ofabout2.6MW.The
oper-atinggas andmainplasma specieswasHe witha purityof
typ-ically n ( He )
n ( He )+n ( D )+n ( H ) >0.8 These He plasmas were executed
di-rectly after a fuel species exchange experiment from D into He
by ion-cyclotron wall conditioning (ICWC) plasmas It should be
notedthat the last boronisation on B2D6 in ASDEX Upgrade was
just2 experimental days with about 175 plasmaseconds before
theICWC change over in24 dischargestook place, thus thefirst
He plasmasmight still be affected by the boron coverage of the
firstwallanditsconditioningeffect[20] Thetypicalcoreplasma
conditionsoftheseHeplasmasduringtheH-modeflat-topphase
ofabout7 durationare:electrondensityn c
e9.5× 1019m−3and electrontemperatureT c
e 3.0keV
The goal of the exposure to predominately He plasmas is to
investigate(a) thepotential growthof W nanostructures on
pre-damagedW samplesincorporatingHe nanobubbles(type A
plas-mas/sampleT2),(b)theerosionofthick Wnanostructures(type
B plasmas / sample T3), and (c) the impact of Nitrogen (N) on
the W nanostructure (type C plasmas / sample T4) Thus, three
studiesinASDEXUpgradewereexecutedinoneexperimentalday
consistingof 25 diverted plasmas (#32642− 32466) by variation
oftheouter strike-linelocated onthreedifferentHe pre-exposed
W samplesinstalled inthe divertor manipulator atthe low field
side as shown in Fig 1 b The correlation between plasma type,
outerstrike-lineposition,andWsampleisdepictedinFig 4 The
coreplasmaconditionsaresimilarapartfromthestrike-line
posi-Fig 4 Schematic arrangement of the three exposure conditions, number of dis-
charges, and outer strike-line positions
Fig 5 Plasma conditions in the near scrape-off layer region measured by an array
of Langmuir probes for discharges in exposure conditions A: a) ion saturation cur- rent, b) electron temperature, and c) electron density as function of the change of the s-coordinate with respect to the magnetic outer strike-line position
tionvariedbetween =1.02m(typeA), =1.05m(typeB),and
s=1.08m(typeC)aswellasthelowerHegasinjectionrate dur-ingtypeBplasmasthoughcontrolledfuellingwascompromisedby
HeoutgassingfromtheWfirstwall.Thetwoplasmadischargesof typeChadadditionalN2blibs.Weassumethatthedifferent strike-pointpositionsandtheorderofexperimentsallowaseparationof thethreeexperimentalparts.Nosignificantimpactonthe plasma-exposedWsamplesurfacesisexpectedwhentheouterstrike-line
ismovingupwards,fromtype AtotypeCplasma, intothe direc-tionofSOLwhichleavesthemodifiedWsurfaceintheprivate-flux region(PFR)undernegligiblepowerandionicparticleload
• TypeA theWnanostructuregrowthregime.In thiscasethe strike-lineispositioned atthepoloidaldivertor coordinate =
1.02m and the correspondingtime averaged radial profiles for thelocalelectron temperatureT e,electrondensityn e,andthe ionsaturationcurrentdensityj sat areshowninFig 5 Assum-ingthat singlyionised He ionsare impingingthe outer diver-tortarget plate, thepeak impact ionenergycanbe estimated
tobeaboutE in=150eV,assumingk B T e=k B T i ,andthusclearly abovetherequired20eV.Thepeakionfluxdensityatthe loca-tionofthestrikelineamounts j sat=2.0× 1023m−2 −1,80%of whichcanbe attributedtoHe ions.In14discharges executed
inscenarioAan integralplasmaexposuretimeofabout100 hasbeenreached Thisleadsto an achievedHe ionfluenceof
φ=1.6× 1025m−2 andthusoneorderabovethethreshold re-quiredforW nanostructuregrowthfrom undamagedW sam-ples.Therehasbeennodirectmeasurementofthesurface tem-peratureatthe locationof theDIM-II,however,infrared mea-surements atdifferent toroidal location at normalW divertor target platessuggest atleast a temperatureof800 K of stan-dardW PFCs withgoodthermal conductivity.The W samples installedintheDIM-IIhaveapoorthermalcontacttothe base-plate.The surfacetemperatureisthereforeassumedtobe
Trang 5sig-nificantlyabove1000K.Visiblecameraimages(Fig 3 b)indeed
observestrongthermalradiationatthepoloidallocationofthe
exposed W sample whereas the W covering plate shows no
such radiation though receiving the same power andparticle
loadat the samepoloidal location, butjust slightlytoroidally
shifted.It should be notedthat theH-mode performance was
overallpoorinthecaseofTypeAplasmas(pedestalconditions:
T e ped330 eV and n e ped6.15× 1019 m−3) with an ELM
fre-quencyinthekHzrangesuggestingtypeIIIlikeELMyH-mode
withmoderateintra-ELMHeionimpactenergiesandlow
ELM-induced W sputtering asobserved before in D plasmasusing
standardWPFCs[3]
Overall, the experimental conditions in the first part of the
experiment (type A) are fulfilling all the requirements for W
nanostructureformationandgrowthinASDEX Upgrade
How-ever,visible inspection ofthe W sampleT2 directlyafter end
oftheplasmaexposuresuggestedachangeinreflection
prop-ertiesfromablackenedtoashinyWsurfaceindicating
modifi-cationsinthesurfacemorphology,butnoclearsignatureofW
nanostructureformation
• Type B theW nanostructureerosion regime In this second
set of9 comparabledischarges, theaim is tostudy the
ELM-induced Wnanostructureerosion.The outerstrike-lineinthis
secondsetofdischargesispositionedat =1.05monW
sam-pleT3employinganabout2μmthickW nanostructureastop
surface The averaged edge plasmas conditionsT e,n e, andj sat
reflecting mainly theinter-ELM phase are comparableto type
AplasmasaswellasT surf.Thecorresponding fluenceφ inthe
about63plasmasecondsamounts to1.0× 1025 He+m−2 and
wouldstillpotentially allowW nanostructuregrowthbetween
ELMs.Thefuellingrateinthissecondsetofplasmasisreduced
to half of the value of type A plasmas in order to provide a
morepronouncedH-modewithlowerELMfrequency(120Hz)
andlargerenergydropperELM.Theimpactenergyof
presum-ably He2 + fromthe pedestal region arriving at the outer
tar-getplatein lessthan1 ms issubstantially above the
sputter-ing thresholdofW.Assumingarelationship betweenpedestal
energyandimpactenergyaccordingtothefree-streaming
ap-proach as recently observed in JET-ILW in [22] , the impact
energy in these He plasmas is assumed to be above 1 keV
ThiswouldindeedallowtheexpectedcompetitionbetweenW
nanostructuresputteringby ELMimpactunderconditions
oth-erwise favouring W nanostructure growth The visual
inspec-tionofsampleT3revealsalsoa shinyW surface,suggestinga
changeofthesurfacemorphologywithreducedsurface
rough-ness theoriginofwhichwillbediscussedinthenextsection
• TypeC theimpactofNonWnanostructure N2 wasinjected
into two He plasmaswith theouter strike lineat =1.08m
impactingonsampleT4withthickWnanostructure.The
inter-actionof Nwiththe W morphology willbe studied infuture
bypost-mortemanalysis
3 Discussion
ThefirstobservationafterexposureofthesixHepre-damaged
W samplestoASDEX Upgrademaybesummarised inthe
follow-ing way:change of surfacemorphology and roughnesson all W
samplesstartingatPFR,passingthethreeappliedstrike-line
posi-tions,andendingintheSOL(Fig 1 b).Differentpost-mortem
anal-ysistechniques,i.e.ionbeamanalysis(IBA) andscanningelectron
microscopy (SEM)combinedwithfocusedionbeam(FIB)cutting,
are applied to obtain physics information forinterpretation SEM
images ofsubareas (50μm × 40μm) onsamples T2, T3, andT4
before (left-handside)andafterASDEX Upgrade exposure
(right-hand side)are depictedin Fig 2 showingthe mentioned surface
modification withreduction ofsurfacerougheningandingeneral
Fig 6 a) Cross-section of a tungsten nanostructure sample after ASDEX Upgrade
plasma exposure b) Enlarged images to show detailed structure with sharp cuts from erosion as well as homogenous deposition of predominantly W c) Focused ion beam cut of a tungsten sample showing the deposition of a manifold of individual layers corresponding to the number of discharges
absence of the coral-like W nanostructure Cross-sectioning with FIBandSEMrevealsthattheobservedsurfacemodificationisdue
toanalmosthomogeneouscoveragebya0.5− 1.0μmthick depo-sitionlayerasshowne.g.inFig 6 aforsampleT3 Fig 6 cshowsa cutthroughthedepositionlayeroftheupperpartofsampleT2 in-dicatingmorethan20individualsubstructuressuggestingthat ef-fectivelyeachofthe25executed dischargesiscontributingtothe deposition.Indeedbothhigh-Z(W)andlow-Zspeciesarepresent
in thisdeposition layer accordingto contrast analysis with SEM Thechemicalcompositionanddistributionofthedeposition layer hasbeendeterminedbyIBAandidentifiedtobeamixtureofB,C,
Daswell asW;energydispersive X-rayspectroscopy(EDX) con-firmsthesignificantappearanceBandC.Fig 7 ashowsthepoloidal depositionprofiles ofB,C,DonthedifferentHe pre-damagedW samples and Fig 7 b the corresponding profiles on the polished
Moreference samples.In addition Fig 7 b includes alsoW depo-sition profile on the Mo samples Fig 7 a showsthe He ion flux distribution,thus the distribution ofimpinging fuel species mea-suredbyLangmuirProbesfortypeBplasmaswiththeouterstrike linelocated at1.05 m Common forthe deposition patternofall specieson the pre-damagedW andthe Mo referencesamples is the strong deposition deep inside the PFR region Indeed, there
isonly very limiteddeposition ofB on thepolished Mo samples above =1.02 mwhichisthelowest positionoftheouter strike linein theexecuted discharges.Thus, one can concludethat sig-nificant deposition is absent in the SOL in the case of polished surfaces with low surface roughness In contrast, in the case of sampleswithWnanostructure,whichhavefullyestablished coral-structure betweenapproximately x=20 mm andx=110 mm in poloidaldirection,astrongdepositionofBandCcanbemeasured without any significant D embedded in the deposit In the SOL, theB depositionprofile followstheimpinging Heionflux profile whereastheC depositionprofileisflat intherangeofthe estab-lishedW nanostructureincludingthree minorpeaksatthe inter-section of samplesT2/T3, T3/T4, and T4/T5 Re-erosion fromthis area ofcomplexsurfacemorphology by physicalsputteringis re-duced, whereas chemical erosion still can occur which might be thecauseforthedifferencebetweenBandC.Overalltheaveraged
BtoC ratiointhe depositisapproximatelytwo Unfortunately,it
isnotpossibletoprovidefromthismeasurementtheratioof
low-Zimpurities tothe alsopresentimpinging W ionflux whichhas beenmeasuredontheMoreferencesample
Wsamples withpre-formedW nanostructureswithlarge sur-faceroughness, large effectivesurfacearea,andhighporosity act
as a kind of catcher for the impinging ions from the plasma Quickly,after establishment of a thin deposition layer (B, C, W), theexistingWnanostructureiscoveredandprotectedfromfurther erosion.Every additionaldischarge isinducing another layer and contributingtotheobserveddepositionwithmorethan20 identi-fiedlayers.Contrary,inthecaseofthepolishedMoreference
Trang 6sur-Fig 7 a) Poloidal distribution of B, C, and D along the six tungsten samples installed in the divertor The He ion flux distribution is shown accordingly as reference for the
impinging flux b) Deposition of W as well as B, C, and D on the reference poloidal sample stripe made of Mo
facearetheimpinginglow-Zparticleseitherre-erodedorreflected
fromthehigh-Zsurface similartoobservationsmadeinTEXTOR
withCon W [21] andno effectivedeposition layergrowthcan
occur.Onecanassumethatgeometricallyonbothpoloidalsample
stripes,theW andMoone,thesameimpurityflux distributionis
impinging, thus, the difference in the two deposition profiles on
thestripes provideseffectively thefluence ofimpinging impurity
ionsaccumulatedover all discharges.The nearSOLregion ofthe
outerdivertorlegisundernormalDplasmasconditionsinASDEX
Upgradeaclearnet-erosionsourceofW[17] ,butinthepresentHe
plasmasthebalancebetweenerosionanddeposition haschanged
towards deposition Indeed on the polished Mo samples it is
al-mostfullybalanced andinthecaseoftheW nanostructurewith
largersurface roughnessre-erosion is furtherreduced The outer
divertorislocally,atthelocationoftheWstripes,transferredinto
anet-depositionzone forCandB ThehighlevelofB inthe
de-posit is caused by the boronisation which took place about 175
plasma seconds before the actual experiments The protective B
layerinthemainchamberiscontinuouslyerodedbyplasma
bom-bardmentand thereleased B isionised and transportedintothe
divertor as previously observed in D [18] The B erosion in the
mainchamber islargerinthepresentHeplasmasthaninD
plas-masundersimilar plasmaconditionsdueto highermassand
ef-fectivechargeoftheimpingingion.ThelevelofCisinthenormal
rangeofASDEXUpgradeplasmas
The observedWinthedivertor isalsoaresultofmain
cham-ber limitersandheatshield erosion,butduetoELMimpactas
reportedforDplasmas before[14] The W source inthe present
Heplasmasis significantlyhigherthan inDduetoa)the higher
massoftheimpingingprojectileandb)thehigherionisationstage
ofimpingingHe incomparisonwithD, andfinallyduetotheuse
ofICRHantenna[14] Thetransport ofhigherionisationstagesof
Wfromthemainchamberintothedivertorthenresultsinthe
de-positiononboththe Wnanostructuresamplesaswell asthe Mo
referencesamples
FocusingagainontheinitialexperimentalgoalsoftheHe
plas-masoftypeAandtypeB,onecansummarisetheobservationsand
conclude:
• TypeA theW nanostructuregrowthregime.No signatureof
W nanostructureformationorgrowthunderthegiven
experi-mentalconditionsinASDEXUpgradethoughtheproper
condi-tionsforWnanostructureformationwithrespecttoionimpact
energy, fluence and surfaceconditions are met in these
plas-masof type Aandthe outer strikelinepositioned on sample
T2.SEMofcross-sectioncutsofthesamplerevealadeposition
layerconsistingofB,C,andWwithhighdensityonthe strike-lineareaonsampleT2.Strongestdepositionisobservedbelow theactualstrike-linepositioninthePFRandalsoonthe refer-enceMosamplesasvisibleinFig 1 b) Potentialreasonmight
be relatedto −→E ×−→B drifts in thedivertor assuggestedforD plasmasinsimilarconfigurationby[24] TheoverallDcontent
isnegligiblylowintheSOL,butsubstantial upto15%ofthe codeposit inthedepositionenrichedregioninthePFR
• TypeB the W nanostructureerosion regime Onlymoderate erosionofsampleswithWnanostructurewasobservedcloseto theouterstrike-lineregiononsampleT3asdepictedinFig 6 a
Fig 6 bshowsaSEMimageofacorrespondingcross-sectioncut
ofW sampleT3with initiallyabout2μm thick W nanostruc-ture The top part of the coral-like structure is flattened and overlaid by a homogeneous deposition layer There is no in-dication of melting of the top part of the nanostructure, but ratherlocalerosion ofindividual “W-corals” tookplace which effectively smoothed the microstructure while the deposition coveredthe whole surfacearea.The erosionis determined by ELMs carryingHe2+ withabout1keV impact energy fromthe pedestaltotheoutertargetplatesimilartoobservationsin JET-ILW[22] Evenifthesputtering yieldfornanostructuredW is slightlylowerthanforstandardW asreportedby PISCES-Bfor low impact energies [12] , the erosion yield dependence as a function of the impact energy can be assumed to be compa-rableatenergiesabovekeVtostandardW.AlthougheveryELM impactindeedfulfilsconditionsforWerosionbyphysical sput-tering,theerosion process wasinthe presentcaseingeneral overcompensatedbylocaldeposition predominantlyoccurring betweentheELMs It should benoted that theoriginal coral-likestructure onT3remains detectable bySEM ina very low fractionof surfacearea closeto the strike-lineposition Thus,
inthis case, theflux of ELM-induced sputteredparticles is in balancewiththefluxofdepositingparticles
The interplay between local erosion of W nanostructures at the strike-zone and deposition in the SOL observed here is in accordance withprevious TEXTOR W limiter experiments in He-dominated plasmas [9] though latter were executed in ELM-free conditionsandsolelyinfluencedbyCimpurities.Bothexperiments stresstheuniversalcharacterandtheimportanceofthelow-Z im-purityfluxinthelocalbalance equationbetweenerosionand de-positiononWnanostructuresurfaces
Trang 74 Conclusion
InHe ELMy H-modeplasmasin ASDEXUpgrade nogrowthof
Wnanostructurestakesplacedespitethefactthat theoperational
conditionsfulfiltherequirementsfortheir formationandgrowth
Thus, the formation of W nanostructures dependsin addition to
the known dependencieson thefluence of Heions, their impact
energy, andthesurfacetemperature[6,15] also onthe impinging
flux of impurities such as boron and carbon as well as W ions
onto the outer W target plate Neither W nor intrinsic impurity
ionshaveinthecaseofASDEXUpgrade theirorigininthe
diver-tor,butarearesultofmainchambererosion WPFCsandBfrom
boronisation andadjacentmaterialtransport towards the
diver-tor Inthe caseofELMy H-modeplasmas inASDEX Upgrade,the
plasmaoutfluxofB,C,andWionscompensatestheWerosionflux
andshiftsthelocalbalanceintheouter divertorfromnet-erosion
intonet-depositionthoughELM-inducedWsputteringclosetothe
strike-linetakes place.Moreover, the highestdeposition oflow-Z
andhigh-Z speciesislocatedinthe private-fluxregionindicating
eithera localtransport mechanismfromthescrape-off layerinto
the private-flux region or significant re-erosion atthe strike-line
location Thisgeneralerosionanddeposition patternisnotsolely
relatedtotheW surfacemodificationsasasimilar patterncanbe
observed onreferencepolished Mosamples atthesamepoloidal
position, buttothe globaltransport of impuritiesfromthe main
chamber into the divertor as seen before in [23] In the case of
the sampleswithW nanostructure, surfaceroughnessand
poros-ityincreasesstronglythedegreeofdepositionwithrespecttothe
polished Mo surfacesandvisualises effectivelythe impinging ion
fluence
It is evident that themain chamber W sourcein these
ICRH-heatedHeplasmasissignificantlyhigherthaninH-modeD
plas-masinordertocausetheshiftinthelocalWerosionand
deposi-tionpattern.Fastimpurityionsanddeuterons(i.e.intra-ELM)were
identified before[14] asthemain causeforW erosionatlimiters
andheatshieldsinthemainchamber.Theincrease ofthe
projec-tile massofthe mainfuel speciesfromD(m=2)to He (m=4),
thelower sputteringthreshold,andthehigherchargestate ofHe
ions hitting the wall are contributing to the increased W wall
source inHe.However, furtherpost-mortem analysisneedsto be
done to geta furtherinsight inthe interplaybetweenthe
differ-ent parametersforW growthandthe observednet-depositionof
WbyW,BandCalongthefulloutertargetplateincludingtheMo
referencesamples.Moreover,localspectroscopyatthelocationof
thedivertormanipulator wouldbe advisableinorderto measure in-situthedifferentfluxcontributions
TheobserveddepositioncontributionofBandCinASDEX Up-gradecan beseenasproxytointrinsicberyllium(Be) inHe plas-masinITER Theinitial formationof Wnanostructures atcritical areasintheWdivertorfulfillingthestandardcriteriaforWgrowth can be hinderedifthe local erosion/depositionflux balance is in favourofdeposition duetostrongerBemainchamber sources in
He incontrast to D Indeed the Beerosion source underHe im-pactis expectedto be atleast twice aslarge asin D Repetition
oftheexperimentatJET-ILWinHeplasmaswouldbeadvisableto investigateachangeintheprimary Besourceandmigration pat-tern[25] aswellastoprovideinputformodellingcodes,WallDYN
[26] fortheglobalmigrationpatternandthebalanceinthe diver-tor,andERO [27] forthelocalELM-induced W sputteringeffects Subsequently, more detailed studies on W nanostructure erosion duetoELMimpactneedtobeexecuted atITER-relevantELM im-pactenergiesandionfluxesbeforefurthermodellingoftheW sur-facemorphologychangescanbedone
References
[1] R A Pitts, et al., 2013 55th Annual Meeting of APS Division of Plasma Physics, Denver, USA, WE1.0 0 0 01
[2] V Philipps , J Nucl Mater 415 (2011) S2 [3] R Neu , et al , IEEE Trans Plasma Sci 42 (2014) 552 [4] M.J Baldwin , R.P Doerner , Nucl Fusion 48 (2008) 035001 [5] H Greuner , et al , J Nucl Mater 417 (2011) 495 [6] S Kajita , et al , Nucl Fusion 49 (2009) 095005 [7] M Baldwin , et al , Nucl Fusion 51 (2011) 103021 [8] T.J Petty , et al , Nucl Fusion 55 (2015) 093033 [9] Y Ueda , et al , J Nucl Mater 415 (2011) S92 [10] S Brezinsek , et al , Phys Scr T167 (2011) 14067 [11] G.M Wright , et al , Nucl Fusion 52 (2012) 042003 [12] D Nishijima , et al , J Nucl Mater 415 (2011) 230 [13] D Nishijima , et al , J Nucl Mater 434 (2013) 230 [14] R Dux , et al , J Nucl Mater 390–391 (2009) 858 [15] Y Ueda , et al , J Nucl Mater 442 (2013) S267 [16] A Hermann , et al , Fus Eng Design 98 (2015) 1496 [17] M Mayer , et al , Phys Scr T138 (2009) 014039 [18] A Hakola , et al , J Nucl Mater 415 (2010) S226 [19] M Balden , et al , J Nucl Mater 438 (2013) S220 [20] V Rohde , et al , J Nucl Mater 363365 (2007) 1369 [21] A Kreter , et al , Plasma Phys and Control Fusion 48 (2006) 1401 [22] C Guillemaut , et al , Plasma Phys Control Fusion 57 (2015) 085006 [23] A Hakola , et al , Phys Scr T167 (2016) 014026
[24] A Hakola, et al., - these proceedings
[25] S Brezinsek , et al , Nucl Fus 55 (2015) 063021 [26] K Schmid , et al , J Nucl Mater 463 (2015) 66 [27] A Kirschner , et al , J Nucl Mater 463 (2015) 116