1. Trang chủ
  2. » Tất cả

Synthesis and characterization of zero valent iron nanoparticles supported on sba 15

6 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Synthesis and characterization of zero-valent iron nanoparticles supported on SBA-15
Tác giả Felipe Sombra Dos Santos, Fernanda Rodrigues Lago, Lớdia Yokoyama, Fabiana Valória Fonseca
Trường học Brazilian Metallurgical, Materials and Mining Association
Chuyên ngành Materials Science
Thể loại bài báo
Năm xuất bản 2016
Thành phố Brazil
Định dạng
Số trang 6
Dung lượng 1,56 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Iron nanoparticles are another source of iron for this homogeneous reaction, during the oxidationof elementar iron.. Silicaismoreadvantageouswhencomparedtoother mate-rials, since it aggl

Trang 1

w w w j m r t c o m b r Availableonlineatwww.sciencedirect.com

Original Article

Synthesis and characterization of zero-valent iron

nanoparticles supported on SBA-15

Felipe Sombra dos Santos, Fernanda Rodrigues Lago, Lídia Yokoyama,

Fabiana Valéria Fonseca

a r t i c l e i n f o

Article history:

Received21June2016

Accepted16November2016

Availableonlinexxx

Keywords:

Zero-valentiron

NanosilicaSBA-15

Synthesisandcharacterization

Nanomaterial

a b s t r a c t Thispaperaimstosynthesizezero-valentironnanoparticles(nZVI)supportedonSBA-15 nanosilica.Thenanosilicagenerateinthesystembypolymerreactionwithhydrochloric acidundercontrolledtemperature.After,theironnanomaterialwasobtainedbysodium borohydridereductionasdescribedinthiswork.Afterwardthesynthesisofthe nanopar-ticlescontainedironsupportedonsilicaSBA-15,thematerialwascharacterizedbyX-ray diffraction,transmissionelectronmicroscopy,scanningelectronmicroscopy,zetapotential andX-rayfluorescencespectroscopy.Theresultsindicatedthatnanomaterialobtainedwas

innanometricscale,byTEMresults,andshowingcharacteristicpeaksatEDSresults,with 11.9%ironand14.0%siliconcontent,respectively,andcontaining73.0%and27.0%oftheir respectiveoxidesthroughX-rayfluorescencespectroscopy.Theisoelectricpotentialofthe samplewasaround2.0,closetothevaluereportedforsilica,duetothehigherpercentage

ofsilicainthesamplewhencomparedtoiron.Theobtainedmaterialcanbeused,forsome cases,asanpossiblealternative,totheFentonreactionforthedegradationofxenobiotic compoundsorotherapplicationsinthegroundwaterandwastewatertreatments

©2016BrazilianMetallurgical,MaterialsandMiningAssociation.PublishedbyElsevier EditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

creativecommons.org/licenses/by-nc-nd/4.0/)

Over the years various xenobiotic substances resistant to

biodegradationhavebeensynthesizedbymanforapplications

invarioussectorssuchastheagriculture,oil,petrochemical

andtextilesegments,amongothers.Howeveraftertheiruse,

thesesubstances,beingrefractorytobiologicaldegradation,

are discardedinnatureand havethe potentialtopromote

severalenvironmentalimpactsandcompromisethequality

ofwatersupplysystems[1,2]

Corresponding author.

E-mail:fpsombra@ig.com.br(F.S.Santos)

The nanotechnology is the engineering and art of manipulating matter at the nanoscale between 1 and

100nm[3,4] Theuseofironnanoparticles,comparedthemicrometric particlesisbecausetogreaterefficiencyinreductionreactions, highreactivity,duetothehighsurfacearea,mobilityand fil-trationefficiencywhenusedintechnologiesforremedyinga certainenvironment.Theparticlesbeinginnanosizeremain

insuspensionforalongperiodoftime,thereby facilitating thevariousknownapplicationssuchaswatertreatmentand wastewater[5]

http://dx.doi.org/10.1016/j.jmrt.2016.11.004

2238-7854/©2016BrazilianMetallurgical,MaterialsandMiningAssociation.PublishedbyElsevierEditoraLtda.Thisisanopenaccess articleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Trang 2

Zero-valentironions(ZVI),hematiteandmagnetite,among

others,maybeusedintheFentonreaction[6–12]orinthe

wastewatertreatmentfromexplosivemanufacturing[13],as

anpossiblealternativetothisreactionmentioned.Wheniron

initszero-valentform,Fe0isusedtheFentonreactionmay

occurvia ahomogeneousreaction afterdissolutiontoFe2+

or on the particle surface Iron nanoparticles are another

source of iron for this homogeneous reaction, during the

oxidationof elementar iron The advantagesof using iron

nanoparticlescomparedtomicrometerparticlesincludetheir

higherefficiencyinthedegradationreactions,high

reactiv-ityduetohighsurfacearea,highmobilityandhighfiltration

efficiency.Beingnanosized,theyalsoremaininsuspension

longer,therebyfacilitatingtheirvariousknownapplications

[8,9,14,15]

Ironnanoparticles can alsobeusedsupportedon other

materials,suchassilica,carbon,resinsornylonmembranes

Silicaismoreadvantageouswhencomparedtoother

mate-rials, since it agglomerates ZVI nanoparticles, better than

othermaterials[16–18].Thisincreasedagglomeration

drasti-callyreducesreactivityandparticlemobilityduring“in situ”

treatments.Sincesilicaisinertbiocompatible,non-toxic,and

showsgoodchemicalandthermalstability,thestabilizediron

nanoparticlestendtodisperseonthesilicasurface[16–19]

Theuse of highlyorganized nanostructured SBA-15

sil-icaiswellknown,withapplicationsinseveralareas,suchas

catalysis,drugdelivery[19]andasasupporttoimmobilize

well-dispersedZVI nanoparticles [20,21] Thistypeofsilica

isabletointeractwithatoms,ionsandmolecules,notonly

thesurface,butalsoinsideitsapproximately10nmdiameter

nanopores

So, this paper aimsto synthesize and characterize ZVI

nanoparticlessupportedonSBA-15nanosilica.This

synthe-sizedmaterialcanbeusedinotherstudiesinvolvingadvanced

oxidationprocessesreactions,whichmaypromotethe

degra-dationofxenobioticcompoundsorinotherapplicationsfor

groundwatertreatment

2.1 Materials

IronIIInitratenonahydrate(Fe(NO3)3·9H2O),sodium

borohy-dride (NaBH4) and hexane, used for the synthesis of iron

nanoparticles, were all PA grade (VETEC, Rio de Janeiro,

Brazil).Theco-TriblockPolymerreagent(PluronicP123,5800,

(C3H6O·C2H4O)x)andTetraethyl orthosilicate(TEOS)wereused

fortheSBA-15silicasynthesis(Sigma–Aldrich,St.Louis,USA)

2.2 Sample preparation

2.2.1 SBA-15 silica synthesis

Differentmethodsarereportedintheliteratureforthe

synthe-sisofSBA-15silica[19,21,22].Theprocedureadoptedherein

isanadaptationofsomereportedmethodologies[21,22].In

thepresent study,2.0gofP123wereaddedtoamixtureof

15mLofwaterand60mLofanaqueous2.0molL−1HCl

solu-tionandstirredfor2hat308K.Ifthemixturewascompletely

solubilizedbeforethe2-hperiod,waitingwasnotnecessary

Subsequently, 4.25g of TEOS were added to the solution undermoderatestirring(150rpmfor10min).Afewminutes (5–10min,nearly)aftertheadditionofTEOStothesystemthe formationofawhite-coloredprecipitatewasobserved,which should remain in the system during the mentioned time-frame.Afterstirring,themixturewasmaintainedat308Kfor

20hinafume-hoodtodrytheacidpresentinthesolution, andthenmaintainedat373Kfor24h

Thesolids were thenwashed withdeionized waterand collectedbyfiltrationatroomtemperaturetoremoveexcess unreacted material The washing was carried out several times,untilnomorefoamingwasobservedinthepermeate Thesamplewasthendriedinalaboratoryovenat373Kfor

24handcalcinedat823Kfor5h

2.2.2 Iron deposition on the silica

One gram of silica nanoparticles obtained by the above methodwassolubilizedin30mLofhexanewithrapid stir-ring (500rpm)for30min.AsmallamountofironIIInitrate 2.0molL−1solutionwasthenaddeddropwisetothesystem Thevolumeofthe ferricnitratesolutionisthreetimesthe massofsilicausedinthesystem.Aftermixing,thehexane wasdrainedfromthesystemandstoredfortheotherstages

oftheprocess.Thesolidphasewasthendriedonahotplate insideafume-hoodat318K

2.2.3 Reduction of the iron-deposited silica

Onegramofsilicapermeatedwithironwassolubilizedwith

30mLofhexane.TofacilitatesolubilizationaHClsolutionat

pH2.0wasused.Thereductionreactionwithsodium borohy-drideisreportedintheliterature[3,10,14,23–26].An8.0molL−1 sodiumborohydridesolutionpreparedina50%alcohol solu-tionwasaddeddropwisetothesystemunderstrongstirring, andavacuumof–500mmHg.Theboron/ironrationusedwas from 4:1 Thesystemheats up duringthe reaction, dueto

aspontaneousexothermicreaction, howevercoolingisnot necessary.Thesystemremainedunderstirringandvacuum untilallthegaseousbyproductswereremovedbythevacuum ThefinalpHofthesystemwasaround9.0.Thesamplewas thenwashedseveraltimeswithPAalcohol,untilthesolution remainedclearwithnomoregasformation.Thezero-valent ironnanoparticlessupportedontheSBA-15silicawerethen storedinvialscontainingpurealcoholinadesiccator

2.3 Characterization

2.3.1 X-ray diffraction

Thisassayallowsforthecharacterizationofthe crystalline structureofthematerial.Byusingasetofinformationfrom thecrystallographicplanesofknownmaterialsitispossible

toidentifythechemicalcompositionofunknownmaterials TheX-raydiffractionexperimentswereperformedonaRigaku MiniflexIIapparatusat30kVand15mA,rangingfrom5to

90◦,withavariationof0.5◦.Thecharacterizationofindividual peakswasperformedbytheMaterialsDateJade5(5.0.37)XRD PatternProcessingsoftwarepackage

2.3.2 Transmission electron microscopy (TEM)

ThemicroscopyimageswereobtainedonaFEIMorgagni268 electronmicroscopeoperatedat80kV.0.047mmcoppergrids wereused(#300and63␮m)forsupportingthematerial.The

Trang 3

grids were preparedusing a dilute 0.3% solution of

form-varin1,2-dichloroethane,and the samplesthenreceived a

graphitelayerinthe vacuumrecipient Asmall amount of

thesamplewasthendilutedinPAalcoholuntilalmostfull

transparency.Twoorthreedrops,atmost,ofthisdiluted

sam-plewerethenplacedonthegrid,subjectedtovacuumuntil

completealcoholevaporation,andthenexaminedunderthe

microscope

2.3.3 Scanning electron microscopy (SEM)

AJEOL 6460LVscanning electron microscopecoupledto a

NoranSystemSixEDSoperatedatlowvacuumunder20kV

was used A small amount ofnon-metallized sample was

placedinthevesselandintroducedintothemicroscope

2.3.4 X-ray fluorescence spectrometry (XRF)

ThistestwascarriedoutonPriminiRigakufluorescentX-ray

spectrometerandthedry samplewas analyzedbytheZSX

softwarepackage

2.3.5 Zeta potential ( )

Thisassaywasconductedona+3.0Zetameterbythe

elec-trophoreticmobility/velocitytechnique, withan indifferent

NaCl electrolytesolution(0.01molL−1).ThepH adjustment

wasconductedwithNaOHandHCl,rangingbetween0.01and

0.1molL−1.Theconcentrationoftheironsamplewithsilica

wasof50mgL−1

2θ(degrees)

70

c

b

a

90

Fig 1 – Diffractogram (a) zero-valent iron, (b) SBA-15 and (c) Fe–Si.

ThecharacterizationbyX-raydiffractionresultsaredisplayed

inFig.1,inwhichthe bottomfigure(a) correspondstothe ZVIdiffractogram,inwhichthecharacteristicpeakof high-estintensityoccursat44.75◦.Themiddleline(b),associated withpureSBA-15silica,isaconstantlinesincethisisan amor-phoussubstance.Finally,thetopline(c)displaysthegraphfor

Fig 2 – Micrographs of the ZVI nanoparticles (a), SBA-15 (b), ZVI supported on SBA-15 (c) and (d).

Trang 4

Fig 3 – Micrographs of silica SBA-15 (a) and the nZVI supported on SBA-15 (b).

zero-valentironsupportedonsilica.Alargerphaseis

associ-atedwithFe3Siand asmallerphaseisassociatedwiththe

zero-valentiron

Theimagesobtainedbytransmissionelectronmicroscopy

revealthatmostoftheZVIparticleshavediametersofless

than 100nm, asdisplayedinFig 2(a).Fig 2(b)displaysthe

SBA-15silicastructurewithnoironparticles.Fig.2(c)and(d)

displaysthesphericalnZVIsupportedontheSBA-15silica.As

observedinlattertwofigures,thesupportedamountofiron

isassociatedwiththe volumeofthe solutionaddedtothe

systemduringreductionwithsodiumborohydride

The photomicrograph of the SBA-15 silica is displayed

Fig.3(a).Acluster ofthestructuresis observedduetothe

2000×resolution.ThephotomicrographoftheSBA-15silica

withnZVIisdisplayedinFig.3(b)ata5000×resolution.The

agglomeratedironparticlesarenoticeablymuchsmaller

com-paredtotheSBA-15silica

Fig.4(a)and(b)illustratestheEDSoftheSBA-15silicaand

ZVIsupportedontheSBA-15silica,respectively.Peaks

belong-ingtocarbonaredisplayedinbothfigures,duetothepresence

Fig 4 – EDS spectra of SBA-15 silica (a) and the nZVI

ofthetapeusedtosecurethesampleinthecontainer,that containscarbon.Thepeaksfoundduringthescanforsodium (Fig.4b)areduetothesodiumborohydrideusedduringthe ironreductionprocess.However,thesepeaksarequiteminor comparedtootherpeaks,forexample,siliconandiron.These elements,alsodisplayedinFig.4(b),representapercentageby sampleweightof11.86%siliconand14.01%iron,respectively The non-destructive X-ray fluorescence assay indicated 26.96%Fe2O3and73.04%SiO2inthesample,aspredictedand confirmedbyothercharacterizationtests

Thesurfaceofthehydratedsamplemayfavorincreased charges.ThepHvalueatwhichthereisachargeneutralityof theliquidsurfaceofthesampleistheisoelectricpoint(IEP),

afunctionofpH.Fig.5displaysthisbehavioratdifferentpH values.TheIEPobtainedfortheZVInanoparticleswasclose

toapHvalueof2.0.ThisvalueisclosetotheIEPofsilica,

as described inthe literature[27,28], whilethe IEPfor ZVI nanoparticles reportedintheliterature[3,21]isaround8.3 Thiscorroboratesthegreaterpresenceofsilicainthesample,

asverifiedbytheX-rayfluorescenceresults

TheEh-pHdiagramisdisplayedinFig.6,obtainedat298K and at a ratio of 4:1 (B: Fe) and 0.15molL−1 of silica At

pH 2.0 the silica is present in its anionic form, while the metalisinferricionform.Ironisattractedtothesilicaand remainsinsolution,subsequentlyundergoingreductionwith

0

-20 -15 -10 -5 0 5

pH

Fig 5 –potential as a function of pH.

Trang 5

Fig 6 – Eh-pH diagram of the Fe-B-Si-H 2 O system at 298 K.

borohydridewithinthesilicapores,thusgeneratingtheZVI

nanoparticles

ThepermeationoftheSBA-15silicawithaferricnitrate

solu-tionandreductionwithsodiumborohydrideallowedforthe

synthesisofthezero-valentironnanoparticlessupportedon

SBA-15,confirmedbyXRD,TEM,SEM,EDSandXRFanalyses

Thesampleswerefoundtooxidizeeasily,requiring

hand-ling and preparation in an alcoholic solution A nitrogen

stream,however,wasnotnecessary

Thecharacterizationtechniquesconfirmedthe presence

ofsiliconandironnanoparticlesinthesample,inweight

per-centageof11.86%and14.01%fortheEDS,respectively,and

73.04%and26.96%fortheirrespectiveoxides

TheIEPofthesamplewascloseto2.0,duetothesilica

presentinhigheramountsasconfirmedbythequantitative

results,attractingtheironintoitspores.Therefore,thefirst

layerofthesampleispredominantlyfilledbythesilica.At

thisIEPvalue,theironispresentasferricions,being

electro-staticallyattractedtothesilicaandsubsequentlyreducedto

pH2.0toZVInanoparticles

Overtime the nanoparticles tend toagglomerate,

espe-ciallyinwaterduetoexistingcharges, thusformingoxides

andhydroxidesinthemicrometerrange

ItissuggestedthatZVInanoparticlescanbeusedto

sup-port,forexample,onSBA-15,canbeagoodalternative for

applicationinFenton-typereactions,sincetheironoxidation

tendstooccurinthesilicaitself,canthusminimizingthe

for-mationofundesiredsludgeasaresultoftheclassicalFenton

reaction

Conflicts of interest

Theauthorsdeclarenoconflictsofinterest

Acknowledgments

The authors would like to thank the IMPG Electronic MicroscopySectorandtheHydrogenTechnologyLaboratory

atUFRJ

r e f e r e n c e s

[1]LemeEJA.ManualPráticodeTratamentodeÁguas Residuárias.SãoCarlos:Edufscar;2008

[2]PeavyHS,RoweDR,TchobanoglousG.Environmental engineering.NewYork:McGrawHillInc.;1985

[3]SunY,LiX,CaoJ,ZhangW,WangHP.Characterizationof zero-valentironnanoparticles.AdvColloidInterfaceSci 2006;120:47–56

[4]ZhangWX.Nanoscaleironparticlesforenvironmental remediation:anoverview.JNanoparticlesRes 2003;53:323–32

[5]ElliotDW,ZhangWX.Fieldassessmentofnanoscale bimetallicparticlesforgroundwatertreatment.EnvironSci Technol2001;35:4922–6

[6]FentonHJH.Oxidationoftartaricacidinpresenceofiron

JChemSocTrans1894;65:899–910

[7]DengY,EnglehardtJD.Treatmentoflandfillleachatebythe Fentonprocess.WaterRes2006;40:3683–94

[8]ZhouH,ShenY,LvP,WangJ,LiP.Degradationpathwayand kineticsof1-alkyl-3-methylimidazoliumbromidesoxidation

inanultrasonicnanoscalezero-valentiron/hydrogen peroxidesystem.JHazardMater2015;284:241–52

[9]FardMA,TorabianA,BidhendiGRN,AminzadehB.Fenton andphoto-Fentonoxidationofpetroleumaromatic hydrocarbonsusingnanoscalezero-valentiron.JEnviron Eng2013;1397:966–74

[10]MoonB,ParkY,ParkK.FentonoxidationofOrangeIIby pre-reductionusingnanoscalezero-valentiron.Desalination 2011;268:249–52

[11]NevensE,BaeyensJA.ReviewofclassicFenton’s peroxidationasanadvancedoxidationtechnique.JHazard MaterB2003;98:33–50

[12]KremerML.MechanismoftheFentonreaction.Evidencefor

anewintermediate.PhysChem1999;1:3595–605

[13]CavalottiLFR.Degradac¸ãodeEspéciesNitroaromáticase Remediac¸ãodeResíduosnaIndústriadeExplosivospor ProcessosAvanc¸adosEnvolvendoFerroMetálicoQuim.Nova 2009;32:1504–8

[14]ZhangC,ZhouL,YangJ,YuX,JiangY,ZhouM.Nanoscale zero-valentiron/ACasheterogeneousFentoncatalystsin three-dimensionalelectrodesystem.EnvironSciPollutRes 2014;21:8398–405

[15]WangL,YangJ,LiY,LvJ,ZouJ.Removalofchlorpheniramine

inananoscalezero-valentironinducedheterogeneous Fentonsystem:influencingfactorsanddegradation intermediates.ChemEngJ2016;284:1058–67

[16]Imperor-ClercM,BazinD,AppayMD,BeaunierP,DavidsonA Crystallizationof␤-MnO2nanowiresintheporesofSBA-15 silicas:insituinvestigationusingsynchrotronradiation ChemMater2004;16:1813–21

[17]LiuY,XuJ,HeL,CaoY,HeH,ZhaoD,etal.Facilesynthesisof Fe-loadedmesoporoussilicabyacombined

detemplation-incorporationprocessthroughFenton’s chemistry.JPhysChemC2008;112:16575–83

[18]DelahayeE,EscaxV,ElHassanN,DavidsonA,AquinoR, DupuisV,etal.“Nanocasting”:usingSBA-15silicasashard templatestoobtainultrasmallmonodispersed␥-Fe2O3 nanoparticles.JPhysChemB2006;110:26001–11

Trang 6

[19]ScaramuzziK,OliveiraDCA,CarvalhoLV,TambourgiDV,

TenórioECN,RizziM,etal.Utilizac¸ãodaSílica

NanoestruturadaSBA-15comoAdjuvanteemImunizac¸ões

comaVacinapara.HepatiteBEinstein2011;9:436–41

[20]MartínezF,CallejaG,MeleroJA,MolinaR.Heterogeneous

photo-Fentondegradationofphenolicaqueoussolutions

overiron-containingSBA-15catalyst.ApplCatalB:Environ

2005;60:181–90

[21]SunX,YuH,DaZenga,WangX,LiJ,WangL.Incorporationof

nanoscalezero-valentironparticlesinsidethechannelsof

SBA-15silicarodsbya“twosolvents”reductiontechnique

ApplSurfSci2013;279:1–6

[22]SaadR,ThiboutotS,AmplemanG,DashanW,HawariJ

Degradationoftrinitroglycerin(TNG)usingzero-valentiron

nanoparticles/nanosilicaSBA-15composite(ZVINs/SBA-15)

Chemosphere2010;81:853–8

[23]SunY,LiX,ZhangW,WangH.Amethodforthepreparation

ofstabledispersionofzero-valentironnanoparticles

ColloidsSurfA2007;308:60–6

[24]ChoiH-C,GiasuddinABM,KanelSR.Methodofsynthesizing air-stablezero-valentironnanoparticlesatroom

temperatureandapplications.USPatentUS20080091054A1,

2008(CA11/889896)

[25]ChiC.Synthesisandapplicationsofnanosizediron particles.USAPatentApplicationPublication.USPatent

20070022839A1,2007(CA60/703593)

[26]HwangY,KimD,ShinH.Effectsofsynthesisconditionson thecharacteristicsandreactivityofnanoscalezerovalent iron.ApplCatalB:Environ2011;105:144–50

[27]KosmulskiM.Positiveelectrokineticchargeofsilicainthe presenceofchlorides.JColloidInterfaceSci1998;208:543–5

[28]KokunesoskiM,GulicovskiJ,MatovicB,LogarM,MilonjicSK, BabicB.Synthesisandsurfacecharacterizationofordered mesoporoussilicaSBA-15.MaterChemPhys

2010;124:1248–52

[29]RoineA.HSCversion6.00.Pori,Finland:Outokumpu ResearchOyInc.;2006

Ngày đăng: 19/03/2023, 15:26

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm