Iron nanoparticles are another source of iron for this homogeneous reaction, during the oxidationof elementar iron.. Silicaismoreadvantageouswhencomparedtoother mate-rials, since it aggl
Trang 1w w w j m r t c o m b r Availableonlineatwww.sciencedirect.com
Original Article
Synthesis and characterization of zero-valent iron
nanoparticles supported on SBA-15
Felipe Sombra dos Santos∗, Fernanda Rodrigues Lago, Lídia Yokoyama,
Fabiana Valéria Fonseca
a r t i c l e i n f o
Article history:
Received21June2016
Accepted16November2016
Availableonlinexxx
Keywords:
Zero-valentiron
NanosilicaSBA-15
Synthesisandcharacterization
Nanomaterial
a b s t r a c t Thispaperaimstosynthesizezero-valentironnanoparticles(nZVI)supportedonSBA-15 nanosilica.Thenanosilicagenerateinthesystembypolymerreactionwithhydrochloric acidundercontrolledtemperature.After,theironnanomaterialwasobtainedbysodium borohydridereductionasdescribedinthiswork.Afterwardthesynthesisofthe nanopar-ticlescontainedironsupportedonsilicaSBA-15,thematerialwascharacterizedbyX-ray diffraction,transmissionelectronmicroscopy,scanningelectronmicroscopy,zetapotential andX-rayfluorescencespectroscopy.Theresultsindicatedthatnanomaterialobtainedwas
innanometricscale,byTEMresults,andshowingcharacteristicpeaksatEDSresults,with 11.9%ironand14.0%siliconcontent,respectively,andcontaining73.0%and27.0%oftheir respectiveoxidesthroughX-rayfluorescencespectroscopy.Theisoelectricpotentialofthe samplewasaround2.0,closetothevaluereportedforsilica,duetothehigherpercentage
ofsilicainthesamplewhencomparedtoiron.Theobtainedmaterialcanbeused,forsome cases,asanpossiblealternative,totheFentonreactionforthedegradationofxenobiotic compoundsorotherapplicationsinthegroundwaterandwastewatertreatments
©2016BrazilianMetallurgical,MaterialsandMiningAssociation.PublishedbyElsevier EditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://
creativecommons.org/licenses/by-nc-nd/4.0/)
Over the years various xenobiotic substances resistant to
biodegradationhavebeensynthesizedbymanforapplications
invarioussectorssuchastheagriculture,oil,petrochemical
andtextilesegments,amongothers.Howeveraftertheiruse,
thesesubstances,beingrefractorytobiologicaldegradation,
are discardedinnatureand havethe potentialtopromote
severalenvironmentalimpactsandcompromisethequality
ofwatersupplysystems[1,2]
∗ Corresponding author.
E-mail:fpsombra@ig.com.br(F.S.Santos)
The nanotechnology is the engineering and art of manipulating matter at the nanoscale between 1 and
100nm[3,4] Theuseofironnanoparticles,comparedthemicrometric particlesisbecausetogreaterefficiencyinreductionreactions, highreactivity,duetothehighsurfacearea,mobilityand fil-trationefficiencywhenusedintechnologiesforremedyinga certainenvironment.Theparticlesbeinginnanosizeremain
insuspensionforalongperiodoftime,thereby facilitating thevariousknownapplicationssuchaswatertreatmentand wastewater[5]
http://dx.doi.org/10.1016/j.jmrt.2016.11.004
2238-7854/©2016BrazilianMetallurgical,MaterialsandMiningAssociation.PublishedbyElsevierEditoraLtda.Thisisanopenaccess articleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/)
Trang 2Zero-valentironions(ZVI),hematiteandmagnetite,among
others,maybeusedintheFentonreaction[6–12]orinthe
wastewatertreatmentfromexplosivemanufacturing[13],as
anpossiblealternativetothisreactionmentioned.Wheniron
initszero-valentform,Fe0isusedtheFentonreactionmay
occurvia ahomogeneousreaction afterdissolutiontoFe2+
or on the particle surface Iron nanoparticles are another
source of iron for this homogeneous reaction, during the
oxidationof elementar iron The advantagesof using iron
nanoparticlescomparedtomicrometerparticlesincludetheir
higherefficiencyinthedegradationreactions,high
reactiv-ityduetohighsurfacearea,highmobilityandhighfiltration
efficiency.Beingnanosized,theyalsoremaininsuspension
longer,therebyfacilitatingtheirvariousknownapplications
[8,9,14,15]
Ironnanoparticles can alsobeusedsupportedon other
materials,suchassilica,carbon,resinsornylonmembranes
Silicaismoreadvantageouswhencomparedtoother
mate-rials, since it agglomerates ZVI nanoparticles, better than
othermaterials[16–18].Thisincreasedagglomeration
drasti-callyreducesreactivityandparticlemobilityduring“in situ”
treatments.Sincesilicaisinertbiocompatible,non-toxic,and
showsgoodchemicalandthermalstability,thestabilizediron
nanoparticlestendtodisperseonthesilicasurface[16–19]
Theuse of highlyorganized nanostructured SBA-15
sil-icaiswellknown,withapplicationsinseveralareas,suchas
catalysis,drugdelivery[19]andasasupporttoimmobilize
well-dispersedZVI nanoparticles [20,21] Thistypeofsilica
isabletointeractwithatoms,ionsandmolecules,notonly
thesurface,butalsoinsideitsapproximately10nmdiameter
nanopores
So, this paper aimsto synthesize and characterize ZVI
nanoparticlessupportedonSBA-15nanosilica.This
synthe-sizedmaterialcanbeusedinotherstudiesinvolvingadvanced
oxidationprocessesreactions,whichmaypromotethe
degra-dationofxenobioticcompoundsorinotherapplicationsfor
groundwatertreatment
2.1 Materials
IronIIInitratenonahydrate(Fe(NO3)3·9H2O),sodium
borohy-dride (NaBH4) and hexane, used for the synthesis of iron
nanoparticles, were all PA grade (VETEC, Rio de Janeiro,
Brazil).Theco-TriblockPolymerreagent(PluronicP123,5800,
(C3H6O·C2H4O)x)andTetraethyl orthosilicate(TEOS)wereused
fortheSBA-15silicasynthesis(Sigma–Aldrich,St.Louis,USA)
2.2 Sample preparation
2.2.1 SBA-15 silica synthesis
Differentmethodsarereportedintheliteratureforthe
synthe-sisofSBA-15silica[19,21,22].Theprocedureadoptedherein
isanadaptationofsomereportedmethodologies[21,22].In
thepresent study,2.0gofP123wereaddedtoamixtureof
15mLofwaterand60mLofanaqueous2.0molL−1HCl
solu-tionandstirredfor2hat308K.Ifthemixturewascompletely
solubilizedbeforethe2-hperiod,waitingwasnotnecessary
Subsequently, 4.25g of TEOS were added to the solution undermoderatestirring(150rpmfor10min).Afewminutes (5–10min,nearly)aftertheadditionofTEOStothesystemthe formationofawhite-coloredprecipitatewasobserved,which should remain in the system during the mentioned time-frame.Afterstirring,themixturewasmaintainedat308Kfor
20hinafume-hoodtodrytheacidpresentinthesolution, andthenmaintainedat373Kfor24h
Thesolids were thenwashed withdeionized waterand collectedbyfiltrationatroomtemperaturetoremoveexcess unreacted material The washing was carried out several times,untilnomorefoamingwasobservedinthepermeate Thesamplewasthendriedinalaboratoryovenat373Kfor
24handcalcinedat823Kfor5h
2.2.2 Iron deposition on the silica
One gram of silica nanoparticles obtained by the above methodwassolubilizedin30mLofhexanewithrapid stir-ring (500rpm)for30min.AsmallamountofironIIInitrate 2.0molL−1solutionwasthenaddeddropwisetothesystem Thevolumeofthe ferricnitratesolutionisthreetimesthe massofsilicausedinthesystem.Aftermixing,thehexane wasdrainedfromthesystemandstoredfortheotherstages
oftheprocess.Thesolidphasewasthendriedonahotplate insideafume-hoodat318K
2.2.3 Reduction of the iron-deposited silica
Onegramofsilicapermeatedwithironwassolubilizedwith
30mLofhexane.TofacilitatesolubilizationaHClsolutionat
pH2.0wasused.Thereductionreactionwithsodium borohy-drideisreportedintheliterature[3,10,14,23–26].An8.0molL−1 sodiumborohydridesolutionpreparedina50%alcohol solu-tionwasaddeddropwisetothesystemunderstrongstirring, andavacuumof–500mmHg.Theboron/ironrationusedwas from 4:1 Thesystemheats up duringthe reaction, dueto
aspontaneousexothermicreaction, howevercoolingisnot necessary.Thesystemremainedunderstirringandvacuum untilallthegaseousbyproductswereremovedbythevacuum ThefinalpHofthesystemwasaround9.0.Thesamplewas thenwashedseveraltimeswithPAalcohol,untilthesolution remainedclearwithnomoregasformation.Thezero-valent ironnanoparticlessupportedontheSBA-15silicawerethen storedinvialscontainingpurealcoholinadesiccator
2.3 Characterization
2.3.1 X-ray diffraction
Thisassayallowsforthecharacterizationofthe crystalline structureofthematerial.Byusingasetofinformationfrom thecrystallographicplanesofknownmaterialsitispossible
toidentifythechemicalcompositionofunknownmaterials TheX-raydiffractionexperimentswereperformedonaRigaku MiniflexIIapparatusat30kVand15mA,rangingfrom5to
90◦,withavariationof0.5◦.Thecharacterizationofindividual peakswasperformedbytheMaterialsDateJade5(5.0.37)XRD PatternProcessingsoftwarepackage
2.3.2 Transmission electron microscopy (TEM)
ThemicroscopyimageswereobtainedonaFEIMorgagni268 electronmicroscopeoperatedat80kV.0.047mmcoppergrids wereused(#300and63m)forsupportingthematerial.The
Trang 3grids were preparedusing a dilute 0.3% solution of
form-varin1,2-dichloroethane,and the samplesthenreceived a
graphitelayerinthe vacuumrecipient Asmall amount of
thesamplewasthendilutedinPAalcoholuntilalmostfull
transparency.Twoorthreedrops,atmost,ofthisdiluted
sam-plewerethenplacedonthegrid,subjectedtovacuumuntil
completealcoholevaporation,andthenexaminedunderthe
microscope
2.3.3 Scanning electron microscopy (SEM)
AJEOL 6460LVscanning electron microscopecoupledto a
NoranSystemSixEDSoperatedatlowvacuumunder20kV
was used A small amount ofnon-metallized sample was
placedinthevesselandintroducedintothemicroscope
2.3.4 X-ray fluorescence spectrometry (XRF)
ThistestwascarriedoutonPriminiRigakufluorescentX-ray
spectrometerandthedry samplewas analyzedbytheZSX
softwarepackage
2.3.5 Zeta potential ( )
Thisassaywasconductedona+3.0Zetameterbythe
elec-trophoreticmobility/velocitytechnique, withan indifferent
NaCl electrolytesolution(0.01molL−1).ThepH adjustment
wasconductedwithNaOHandHCl,rangingbetween0.01and
0.1molL−1.Theconcentrationoftheironsamplewithsilica
wasof50mgL−1
2θ(degrees)
70
c
b
a
90
Fig 1 – Diffractogram (a) zero-valent iron, (b) SBA-15 and (c) Fe–Si.
ThecharacterizationbyX-raydiffractionresultsaredisplayed
inFig.1,inwhichthe bottomfigure(a) correspondstothe ZVIdiffractogram,inwhichthecharacteristicpeakof high-estintensityoccursat44.75◦.Themiddleline(b),associated withpureSBA-15silica,isaconstantlinesincethisisan amor-phoussubstance.Finally,thetopline(c)displaysthegraphfor
Fig 2 – Micrographs of the ZVI nanoparticles (a), SBA-15 (b), ZVI supported on SBA-15 (c) and (d).
Trang 4Fig 3 – Micrographs of silica SBA-15 (a) and the nZVI supported on SBA-15 (b).
zero-valentironsupportedonsilica.Alargerphaseis
associ-atedwithFe3Siand asmallerphaseisassociatedwiththe
zero-valentiron
Theimagesobtainedbytransmissionelectronmicroscopy
revealthatmostoftheZVIparticleshavediametersofless
than 100nm, asdisplayedinFig 2(a).Fig 2(b)displaysthe
SBA-15silicastructurewithnoironparticles.Fig.2(c)and(d)
displaysthesphericalnZVIsupportedontheSBA-15silica.As
observedinlattertwofigures,thesupportedamountofiron
isassociatedwiththe volumeofthe solutionaddedtothe
systemduringreductionwithsodiumborohydride
The photomicrograph of the SBA-15 silica is displayed
Fig.3(a).Acluster ofthestructuresis observedduetothe
2000×resolution.ThephotomicrographoftheSBA-15silica
withnZVIisdisplayedinFig.3(b)ata5000×resolution.The
agglomeratedironparticlesarenoticeablymuchsmaller
com-paredtotheSBA-15silica
Fig.4(a)and(b)illustratestheEDSoftheSBA-15silicaand
ZVIsupportedontheSBA-15silica,respectively.Peaks
belong-ingtocarbonaredisplayedinbothfigures,duetothepresence
Fig 4 – EDS spectra of SBA-15 silica (a) and the nZVI
ofthetapeusedtosecurethesampleinthecontainer,that containscarbon.Thepeaksfoundduringthescanforsodium (Fig.4b)areduetothesodiumborohydrideusedduringthe ironreductionprocess.However,thesepeaksarequiteminor comparedtootherpeaks,forexample,siliconandiron.These elements,alsodisplayedinFig.4(b),representapercentageby sampleweightof11.86%siliconand14.01%iron,respectively The non-destructive X-ray fluorescence assay indicated 26.96%Fe2O3and73.04%SiO2inthesample,aspredictedand confirmedbyothercharacterizationtests
Thesurfaceofthehydratedsamplemayfavorincreased charges.ThepHvalueatwhichthereisachargeneutralityof theliquidsurfaceofthesampleistheisoelectricpoint(IEP),
afunctionofpH.Fig.5displaysthisbehavioratdifferentpH values.TheIEPobtainedfortheZVInanoparticleswasclose
toapHvalueof2.0.ThisvalueisclosetotheIEPofsilica,
as described inthe literature[27,28], whilethe IEPfor ZVI nanoparticles reportedintheliterature[3,21]isaround8.3 Thiscorroboratesthegreaterpresenceofsilicainthesample,
asverifiedbytheX-rayfluorescenceresults
TheEh-pHdiagramisdisplayedinFig.6,obtainedat298K and at a ratio of 4:1 (B: Fe) and 0.15molL−1 of silica At
pH 2.0 the silica is present in its anionic form, while the metalisinferricionform.Ironisattractedtothesilicaand remainsinsolution,subsequentlyundergoingreductionwith
0
-20 -15 -10 -5 0 5
pH
Fig 5 –potential as a function of pH.
Trang 5Fig 6 – Eh-pH diagram of the Fe-B-Si-H 2 O system at 298 K.
borohydridewithinthesilicapores,thusgeneratingtheZVI
nanoparticles
ThepermeationoftheSBA-15silicawithaferricnitrate
solu-tionandreductionwithsodiumborohydrideallowedforthe
synthesisofthezero-valentironnanoparticlessupportedon
SBA-15,confirmedbyXRD,TEM,SEM,EDSandXRFanalyses
Thesampleswerefoundtooxidizeeasily,requiring
hand-ling and preparation in an alcoholic solution A nitrogen
stream,however,wasnotnecessary
Thecharacterizationtechniquesconfirmedthe presence
ofsiliconandironnanoparticlesinthesample,inweight
per-centageof11.86%and14.01%fortheEDS,respectively,and
73.04%and26.96%fortheirrespectiveoxides
TheIEPofthesamplewascloseto2.0,duetothesilica
presentinhigheramountsasconfirmedbythequantitative
results,attractingtheironintoitspores.Therefore,thefirst
layerofthesampleispredominantlyfilledbythesilica.At
thisIEPvalue,theironispresentasferricions,being
electro-staticallyattractedtothesilicaandsubsequentlyreducedto
pH2.0toZVInanoparticles
Overtime the nanoparticles tend toagglomerate,
espe-ciallyinwaterduetoexistingcharges, thusformingoxides
andhydroxidesinthemicrometerrange
ItissuggestedthatZVInanoparticlescanbeusedto
sup-port,forexample,onSBA-15,canbeagoodalternative for
applicationinFenton-typereactions,sincetheironoxidation
tendstooccurinthesilicaitself,canthusminimizingthe
for-mationofundesiredsludgeasaresultoftheclassicalFenton
reaction
Conflicts of interest
Theauthorsdeclarenoconflictsofinterest
Acknowledgments
The authors would like to thank the IMPG Electronic MicroscopySectorandtheHydrogenTechnologyLaboratory
atUFRJ
r e f e r e n c e s
[1]LemeEJA.ManualPráticodeTratamentodeÁguas Residuárias.SãoCarlos:Edufscar;2008
[2]PeavyHS,RoweDR,TchobanoglousG.Environmental engineering.NewYork:McGrawHillInc.;1985
[3]SunY,LiX,CaoJ,ZhangW,WangHP.Characterizationof zero-valentironnanoparticles.AdvColloidInterfaceSci 2006;120:47–56
[4]ZhangWX.Nanoscaleironparticlesforenvironmental remediation:anoverview.JNanoparticlesRes 2003;53:323–32
[5]ElliotDW,ZhangWX.Fieldassessmentofnanoscale bimetallicparticlesforgroundwatertreatment.EnvironSci Technol2001;35:4922–6
[6]FentonHJH.Oxidationoftartaricacidinpresenceofiron
JChemSocTrans1894;65:899–910
[7]DengY,EnglehardtJD.Treatmentoflandfillleachatebythe Fentonprocess.WaterRes2006;40:3683–94
[8]ZhouH,ShenY,LvP,WangJ,LiP.Degradationpathwayand kineticsof1-alkyl-3-methylimidazoliumbromidesoxidation
inanultrasonicnanoscalezero-valentiron/hydrogen peroxidesystem.JHazardMater2015;284:241–52
[9]FardMA,TorabianA,BidhendiGRN,AminzadehB.Fenton andphoto-Fentonoxidationofpetroleumaromatic hydrocarbonsusingnanoscalezero-valentiron.JEnviron Eng2013;1397:966–74
[10]MoonB,ParkY,ParkK.FentonoxidationofOrangeIIby pre-reductionusingnanoscalezero-valentiron.Desalination 2011;268:249–52
[11]NevensE,BaeyensJA.ReviewofclassicFenton’s peroxidationasanadvancedoxidationtechnique.JHazard MaterB2003;98:33–50
[12]KremerML.MechanismoftheFentonreaction.Evidencefor
anewintermediate.PhysChem1999;1:3595–605
[13]CavalottiLFR.Degradac¸ãodeEspéciesNitroaromáticase Remediac¸ãodeResíduosnaIndústriadeExplosivospor ProcessosAvanc¸adosEnvolvendoFerroMetálicoQuim.Nova 2009;32:1504–8
[14]ZhangC,ZhouL,YangJ,YuX,JiangY,ZhouM.Nanoscale zero-valentiron/ACasheterogeneousFentoncatalystsin three-dimensionalelectrodesystem.EnvironSciPollutRes 2014;21:8398–405
[15]WangL,YangJ,LiY,LvJ,ZouJ.Removalofchlorpheniramine
inananoscalezero-valentironinducedheterogeneous Fentonsystem:influencingfactorsanddegradation intermediates.ChemEngJ2016;284:1058–67
[16]Imperor-ClercM,BazinD,AppayMD,BeaunierP,DavidsonA Crystallizationof-MnO2nanowiresintheporesofSBA-15 silicas:insituinvestigationusingsynchrotronradiation ChemMater2004;16:1813–21
[17]LiuY,XuJ,HeL,CaoY,HeH,ZhaoD,etal.Facilesynthesisof Fe-loadedmesoporoussilicabyacombined
detemplation-incorporationprocessthroughFenton’s chemistry.JPhysChemC2008;112:16575–83
[18]DelahayeE,EscaxV,ElHassanN,DavidsonA,AquinoR, DupuisV,etal.“Nanocasting”:usingSBA-15silicasashard templatestoobtainultrasmallmonodispersed␥-Fe2O3 nanoparticles.JPhysChemB2006;110:26001–11
Trang 6[19]ScaramuzziK,OliveiraDCA,CarvalhoLV,TambourgiDV,
TenórioECN,RizziM,etal.Utilizac¸ãodaSílica
NanoestruturadaSBA-15comoAdjuvanteemImunizac¸ões
comaVacinapara.HepatiteBEinstein2011;9:436–41
[20]MartínezF,CallejaG,MeleroJA,MolinaR.Heterogeneous
photo-Fentondegradationofphenolicaqueoussolutions
overiron-containingSBA-15catalyst.ApplCatalB:Environ
2005;60:181–90
[21]SunX,YuH,DaZenga,WangX,LiJ,WangL.Incorporationof
nanoscalezero-valentironparticlesinsidethechannelsof
SBA-15silicarodsbya“twosolvents”reductiontechnique
ApplSurfSci2013;279:1–6
[22]SaadR,ThiboutotS,AmplemanG,DashanW,HawariJ
Degradationoftrinitroglycerin(TNG)usingzero-valentiron
nanoparticles/nanosilicaSBA-15composite(ZVINs/SBA-15)
Chemosphere2010;81:853–8
[23]SunY,LiX,ZhangW,WangH.Amethodforthepreparation
ofstabledispersionofzero-valentironnanoparticles
ColloidsSurfA2007;308:60–6
[24]ChoiH-C,GiasuddinABM,KanelSR.Methodofsynthesizing air-stablezero-valentironnanoparticlesatroom
temperatureandapplications.USPatentUS20080091054A1,
2008(CA11/889896)
[25]ChiC.Synthesisandapplicationsofnanosizediron particles.USAPatentApplicationPublication.USPatent
20070022839A1,2007(CA60/703593)
[26]HwangY,KimD,ShinH.Effectsofsynthesisconditionson thecharacteristicsandreactivityofnanoscalezerovalent iron.ApplCatalB:Environ2011;105:144–50
[27]KosmulskiM.Positiveelectrokineticchargeofsilicainthe presenceofchlorides.JColloidInterfaceSci1998;208:543–5
[28]KokunesoskiM,GulicovskiJ,MatovicB,LogarM,MilonjicSK, BabicB.Synthesisandsurfacecharacterizationofordered mesoporoussilicaSBA-15.MaterChemPhys
2010;124:1248–52
[29]RoineA.HSCversion6.00.Pori,Finland:Outokumpu ResearchOyInc.;2006