Ileal and total tract apparent crude protein and amino acid digestibility of ensiled and dried cassava leaves and sweet potato vines in growing pigs
Trang 1and education use, including for instruction at the authors institution
and sharing with colleagues.
Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party
websites are prohibited.
In most cases authors are permitted to post their version of the article (e.g in Word or Tex form) to their personal website or institutional repository Authors requiring further information regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:
http://www.elsevier.com/copyright
Trang 2Animal Feed Science and Technology
journalhomepage:www.elsevier.com/locate/anifeedsci
aDepartment of Animal Nutrition and Biochemistry, Hue University of Agriculture and Forestry, 102 Phung Hung Street, Hue City, Viet Nam
bAnimal Nutrition Group, Department of Animal Sciences, Wageningen University, P.O Box 338, 6700 AH Wageningen, The Netherlands
cDepartment of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, P.O Box 80,151, 3508 TD Utrecht, The Netherlands
Article history:
Received 25 November 2009
Received in revised form
17 November 2011
Accepted 18 November 2011
Keywords:
Amino acid
Cassava leaves
Digestibility
Pigs
Sweet potato vines
© 2011 Elsevier B.V All rights reserved.
1 Introduction
Cassava(Manihot esculenta Crantz) andsweet potato(Ipomoea batatas L.)areimportantfood cropsinVietnam Cas-savaleavesarerelativelyrichincrudeprotein(CP,167–399g/kgDM),mineralsandvitamins(Eggum,1970;Phucetal.,
Abbreviations: AA, amino acids; CF, crude fibre; CIAD, coefficient of ileal apparent digestibility; CL, cassava leaves; CP, crude protein; CR, cassava root; CTTAD, coefficient of total tract apparent digestibility; DM, dry matter; HCN, hydrogen cyanide; aNDFom, neutral detergent fibre with a heat stable amylase and expressed exclusive of residual ash; OM, organic matter; SP, sweet potato; SPL, sweet potato leaves; SPV, sweet potato vines.
∗ Corresponding author Tel.: +84 54 6502 248; fax: +84 54 3524 923.
E-mail address:nguyenhoaly@gmail.com (T.H.L Nguyen).
0377-8401/$ – see front matter © 2011 Elsevier B.V All rights reserved.
Trang 3172 T.H.L Nguyen et al / Animal Feed Science and Technology 172 (2012) 171– 179
2001;Montagnacetal.,2009)butalsocontainhighlevelsofcyanogenicglucosideswhichlimititsuseinanimalfeeding Sweetpotatovines(SPV)includeintheircompositiontheleaves(260–330gCP/kgDM)andstems(100–140gCP/kgDM) (Woolfe,1992;Ishidaetal.,2000;Anetal.,2003).TheuseofSPVinanimalfeedingislimitedbythehighcontentinoxalic acid(470±15mg/100gfreshweight),phyticacid(0.46±0.01mg/100gfreshweight),tannicacids(491±7mg/100gfresh weight)andtrypsin(52.0±0.9TIU/g)andchymotrypsin(69.1±0.6TIU/g)inhibitors(Moshaetal.,1995;Rekhaetal.,1999; HouandLin,1997).Cassavaleavesandsweetpotatoleaves(SPL)havebeenusedasaproteinsourceindietsforpigsin Vietnamand canreplacepartlyotherproteinsources(Phucetal.,2000;Phucand Lindberg,2001;VanAnetal.,2005) DryingandensilingareeffectivewaysofreducingtheHCNconcentrationsinCL(Borinetal.,2005;Cardosoetal.,2005; Wanapat,2009)andasaresultthesetechniquesareusedtoincreasethenutritionalvalue
Twostudieshavereportedthecoefficientofilealapparentdigestibility(CIAD)ofaminoacids(AA)forleavesingrowing pigs.PhucandLindberg(2001)reportedCIADofAAforCLmeal,ensiledCL,groundnutfoliageandleucaenawhenincluded (0.15g/gDM)inacassavarootandsoybeanmealbasaldietingrowingpigs.Anetal.(2004)investigatedeffectsofthe inclusionoffresh,dryandensiledSPL(notincludingstems)ontheCIADofAAingrowingpigsandfoundformostAAno differenceinCIAD.InVietnam,smallholderfarmscommonlyuseSPVormixturesofCLandSPVeitherdriedorensiled(Pham
etal.,2010)asadietaryingredientforpigsandoftendonotseparateleavesandstems.KnowledgeoftheCIADofAAin practicaldietsisimportantinordertoallowimprovementindietaryformulationforgrowingpigsandincreaseprofitability
tosmallholderfarmers
ThepresentstudywasconductedtodeterminetheilealandtotaltractapparentdigestibilityofCPandAAinensiledand driedcassavaleaves,sweetpotatovinesanda50:50mixtureonaDMbasisofcassavaleavesandsweetpotatovinesin growingpigs.Theeffectofpreservationmethod(ensilingvs.drying)andadditivenessofthetwosourcesusedinthe50:50 mixtureontheCIADofAAwereevaluated
2 Materialsandmethods
2.1 Pigs and housing
The protocolofthe experimentwas approved bythe ethical committeeof Hue University (HueCity,Vietnam) Six castratedF1crossbred(LargeWhite×MongCai)growingpigsofapproximately5monthsofage,withanaveragebody weightof60.2±1.0kgwereused.Thepigsweresurgicallyfittedwithpost-valveT-caecumcannulasforcollectionofileal digesta.ThecannulationfollowedtheproceduresasdescribedbyVanLeeuwenetal.(1991).Pigswerehousedindividually
ina2.0m×1.0m(length×width)penwithfreeaccesstowaterfromnippledrinkersthroughoutthetrial
2.2 Ensiling and drying of cassava leaves and sweet potato vines
Freshcassava(Manihot esculenta)leaveswereharvestedat90daysafterplantingbycuttingmaterialataheightof30cm
orabove.Harvestedmaterial(leaves+stems)wasthoroughlymixedandsampledbeforebeingwiltedfor5h.Thewilted materialwasdividedintotwoequalportionswithonehalfusedtocollecttheleaveswhichwerechopped(2–3cm)byhand Ricebran(50g/kg)andcommonsalt(5gNaCl/kg)wereaddedtothewiltedCLandthoroughlymixedbyhandbeforestorage
atambienttemperaturein30kgsealedairtightplasticbagsforatleast2monthsbeforebeingfedtothepigs.Theensiled
CLwasfedtopigsforlessthan6daysafteropeningofabag.Ahomogenoussample(500g)wascollectedfromeachbag directlyafteropening,stored(−20◦C)andsamplespooledbeforearepresentativesample(300g)wastakenforchemical analysis.Theotherhalfofthematerialwaslefttodryinthesunfor2–3days.Driedleaveswerecollected,milledovera
1mmscreen,andstoredinplasticbagsatambienttemperature.DriedCLsamples(200g)werecollectedrandomlyfrom eachbag,pooled,mixedhomogeneouslyandasample(300g)wasanalysedforDMandhydrogencyanide(HCN)content andstored(−20◦C)inairtightcontainersforfurtheranalysis
Sweetpotato(Ipomoea batatas)vineswereharvestedat60daysafterplanting,cutat10cmdistancefromthemainstems andchopped(2–3cm)byhand.Arepresentativesamplewasstoredbeforethematerialwaswiltedovernightanddivided intotwoequalparts.Onehalfwasmixedwithricebran(100g/kg)and5gNaCl/kgandstoredinsealedairtightplasticbags (30kg)andstoredfor>21daysbeforebeingfedtopigs.TheensiledSPVwasfedtopigsforamaximumof5daysafter openingabag.TheotherhalfoftheSPVwasdriedinthesunfor2–3daysbeforebeingmilledovera1mmscreen,and storedinplasticbags.TheprocedureofcollectingsamplesforchemicalanalysisofensiledordriedSPVwassimilartothat
ofensiledanddriedCL
2.3 Diets and experimental design
Sixexperimentaldiets wereformulatedbasedonensiledcassavarootsastheenergysource(Table1 In fourofthe experimentaldiets,driedCL,ensiledCL,driedSPVandensiledSPVwasthemainsourceofprotein(912–929gCP/kgdietary CP)withtheremainingproteinoriginatingfromtheensiledCR.Intheothertwodiets,proteinwassuppliedfroma50:50 mixtureonaDMbasisofCLandSPVindriedorensiledform.Lessthan90g/kgoftheCPoriginatedfromtheensiledcassava rootsinthevariousdiets.Thesixdietswereformulatedtocontainapproximately116gCP/kgDMwithsoybeanoiladded
Trang 4Table 1
Chemical composition (g/kg DM unless otherwise stated) of the ingredients.
a All values were determined(n= 3) except for metabolisable energy which was calculated from NIAH (2001) data.
b Silage made from 945 g wilted cassava leaves, 50 g rice bran and 5 g NaCl/kg.
c Silage made from 895 g wilted sweet potato vines, 100 rice bran and 5 g NaCl/kg.
d Neutral detergent fibre with a heat stable amylase and expressed exclusive of residual ash.
e 1221 and 342 mg/kg DM in fresh cassava leaves and roots, respectively.
f ND, not determined.
Table 2
Ingredient and analysed chemical composition, calculated metabolisable energy content and hydrogen cyanide content of the experimental diets fed to growing pigs.
Cassava leaves Sweet potato vines Mixture a
Ingredient (g/kg DM)
Chemical composition (g/kg DM)
a Mixture (50:50 on a DM basis) of ensiled or dried cassava leaves and sweet potato vines.
b Ensiled with 50 g rice bran/kg wilted cassava leaves.
c Ensiled with 100 g rice bran/kg wilted sweet potato vines.
d Supplied per kg of diet: 12 mg retinol: 21.6 g cholecalciferol, 75 mg ␣-tocopherol, 25 mg phytylmenaquinone, 10 mg thiamin; 75 mg riboflavin, 125 mg calcium pantothenate, 150 mg niacin, 0.15 mg cyanocobalamin, 10 mg folic acid, 0.5 mg choline, 0.5 mg Fe, 0.575 mg Zn, 0.2 mg Cu, 0.75 g Co, 3.0 g I and 1.5 g Se.
e Neutral detergent fibre with a heat stable amylase and expressed exclusive of residual ash.
(30–40g/kg)toadjustthecalculatedmetabolisableenergy(ME)contentto12.5MJ/kgDM.DietaryMEwascalculatedusing theformulasandvaluesreportedbyNIAH(2001)forpigs.DietaryMEwascalculatedusingtheformula:
ME(kJ/kg)=(5.01X1+8.93X2+3.44X3+4.08X4)×4.184
whereX1–X4arethedigestibleprotein,digestiblefat,digestiblefibreanddigestiblenitrogen-freeextractivescontenting/kg feed.Chromiumoxidewasaddedasadigestaflowmarkerat5g/kg(Table2
Thesixexperimentaldietswerefedtopigsaccordingtoa6×6Latinsquaredesignwitheachperiodlasting12dayswith
5daysdietaryadaptationfollowedby4daysofcollectionoffaeces,onedayofcollectionofilealdigesta,onedayofrestand
aseconddayofilealdigestacollection.Thedailyfeedinglevel(3.0kg/100kgbodyweight)duringthecollectionperiodwas setslightlybelowthemaximumlevelconsumedduringtheadaptationperiodtoreducefeedresidues.Thepigswerefed twicedailyat6:00and18:00h,withthedailyallowanceequallydividedbetweenthetwomeals.Foodrefusalsandspillage werecollected,driedandusedtocalculatethefoodintakedata
Trang 5174 T.H.L Nguyen et al / Animal Feed Science and Technology 172 (2012) 171– 179
2.4 Digesta, faeces collection and calculations
ForthedeterminationoftheCIAD,ilealchymewascollectedevery2hduringthe12hperiodbetweenthemorningand afternoonfeeding,givingsixsamplespercollectionday.Ateachsamplecollection,digestawerequantitativelycollected for1hincontainersthroughsoftplastictubingconnectedtotheilealcannula.Thedigestawerefrequentlyremovedfrom thetubeandcontainerandtransferredtoalargercontainerwhichwaskeptoniceduringtheentiresamplingprocedure beforedigestasampleswerefrozenat−18◦C.Faeceswerecollectedfourtimesperdayandstoredat−18◦C.Digestibility
ofadietarynutrient/componentateachsamplingsitewascalculatedusingthechromiumtechnique(Saueretal.,2000) accordingtotheequation:
CADD=1−
DCD ×
ID
IF
whereCADDisthecoefficientofapparentdigestibility(ilealortotaltract)ofadietarynutrient/component;DCFthedietary nutrient/componentconcentrationinilealdigestaorfaeces(g/kg);DCD thedietarynutrient/componentconcentrationin thediet(g/kg);IDthechromiumconcentrationinthediet(g/kg);IFthechromiumconcentrationinilealdigestaorfaeces (g/kg)
2.5 Chemical analyses
Priortochemicalanalyses,individualilealdigesta(2days,6collections/day)andfaeces(4days,4collections/day)samples werethawedandpooledperpigduringeachperiodbeforearepresentativesub-samplewastaken.Feed,digestaandfaecal samplesweredriedat45◦Cfor24handmilledovera1mmscreenbeforeanalyses.Nitrogencontentoffaecesanddigesta wasdeterminedinfreshsamples,whereastheanalysesofothercomponentsinfeeds,faecesanddigestaweredeterminedin driedsamples.Thechemicalcompositionwasdeterminedaccordingtostandardmethods(AOAC,1990)includingdrymatter (method930.15),ash(method942.05),CP(Nx6.25;method988.05)andcrudefibre(CF;method978.10).Etherextractwas determined afterextractionwithpetroleumetherbythe Soxhletmethod(method920.39).TheprocedureofVan Soest
etal.(1991)withadditionofsodiumsulphiteandalphaamylasewasusedtodetermineneutraldetergentfibre(aNDFom) Chromiumoxideinfeed,faecesandilealdigestawasdeterminedbyatomicabsorptionspectrometryafterashingaccording
toFentonandFenton(1979).AminoacidcontentwasanalysedaccordingtoSpackmanetal.(1958)onanion-exchange columnusinganHPLC.Briefly,sampleswerehydrolysedfor24hat110◦Cwith6MHClcontaining2g/lreagentgradephenol and5molnorleucine(internalstandard)inevacuatedandsealedignitiontubes.Methionine(Met)andcysteine(Cys)were determinedasMetsulphoneandcysteicacid,respectively,withseparatesampleshydrolysedfor24hasdescribedabove followingoxidationwithperformicacidovernightat0◦C.Hydrogencyanidecontentwasdeterminedonfresh,ensiledor driedsamplesbytitrationwithAgNO3afterboilingthesamplesandconcentratingtheHCNinKOH(AOAC,1990).Thefresh
CLandfreshSPVwereanalysedforDM,CP,AAandHCNcontent(excepttheSPV).Freshcassavarootswerealsoanalysed forDMandHCNcontent.Allsampleswereanalysedintriplicateexceptaminoacidswhichwereanalysedinduplicate
2.6 Statistical analysis
Dailyfeedintakedatawereaveragedperpigandperperiod.Datawereanalysedbyanalysisofvarianceaccordingtoa
6×6squarearrangementusingtheGeneralLinearModelprocedureof(SASInst.,Inc.,Cary,NC)usingthefollowingmodel:
Yij(k)=+Ti+Pj+Ak+eij(k)
whereYisadependentvariable,istheoverallmean,T ithetreatmenteffect(i=driedenensiledCL,SPVandCL+SPV),P j
theperiodeffect(j=1–6),Aktheeffectofanimal(k=1–6),e ij(k)istherandomerror.Tukeypair-wisecomparisonswereused
todeterminedifferencesbetweentreatmentmeans.Differencesbetweentheactualresultsofmixture(driedorensiled) andexpectedresultbasedonsingleingredients(i.e.0.5×resultforcassavaleaves+0.5×resultforsweetpotatovines)were testedforsignificanceusingtheCONTRASTstatement.Probabilitylevelwasseta5%
3 Results
3.1 Intake
TheCPandAAcontentwashigherintheCLingredientscomparedtothecorrespondingSPVingredientwiththeexception
ofThrandValinthefreshmaterial(Table3 TheCPandAAcontentintheensiledmaterialwerelowerthaninthedriedor freshmaterial.TheensiledCLandensiledSPVhadalowercontentofLys,His,Ile,Met+Cys,PheandThrthanfreshordried
CLandfreshSPV(Table3 Thecassavarootonlycontained17gCP/kgDM
ThedailyintakesofOM,CF,aNDFomandMEweredifferentamongdiets(P<0.001,Table4 Atrendwasobservedforthe dailyintakeofDM(P<0.071)andCP(P<0.071)amongdiets.ThelowestdailyDMintakewasrecordedforthedriedSPVdiet,
Trang 6Table 3
Crude protein and amino acid composition (g/kg DM) of the cassava (roots and leaves) and sweet potato vines used in the experimental diets.
Ensiled Fresh Ensiled Dried
Methionine + cysteine 0.11 6.24 4.82 6.25 4.50 4.20 4.29
Aspartic acid 1.56 25.83 18.12 25.14 24.20 14.08 22.13 Glutamic acid 3.55 35.72 23.01 36.01 18.28 16.68 15.64
Table 4
Average daily intake of dietary components and metabolisable energy of the experimental diets by growing pigs.
Cassava leaves Sweet potato vines Mixture a Ensiled Dried Ensiled Dried Ensiled Dried
Calculated metabolisable energy (MJ/d) 19.2 ab 20.6 a 19.0 ab 18.1 b 18.3 ab 20.1 ab 0.6 0.031 Means within a row with no common letters (a, b, and c) differ (P<0.05).
a Mixture (50:50 on DM basis) of ensiled or dried cassava leaves and sweet potato vines.
b n= 6 with each sample obtained from a consecutive 4-day collection period.
c Neutral detergent fibre with a heat stable amylase and expressed exclusive of residual ash.
whilea12%higherintakewasfoundforthedriedCLdiet.TheCFandaNDFomintakeswerehigher(P<0.001)inthedried andensiledSPVdietscomparedtothecorrespondingCLdiets
3.2 Ileal and total tract apparent digestibility of nutrients
Thereweredifferences(P<0.05)inCIADandCTTADbetweendietsforDM,OM,CPandCF(Table5 Inaddition,CTTADof aNDFomwasdifferent(P<0.002)amongdiets.TheCIADofDM,OM,CPandCFwerenotdifferent(P>0.05)betweenensiled anddriedCL.TheCIADofDM,CPandCFwerehigher(P<0.05)intheensiledSPVcomparedtothedriedSPV.OnlytheCIADof
DMwasdifferent(P<0.05)betweentheensiledanddryCL+SPV.NodifferenceswereobservedbetweentheCTTADofDM,
OM,CP,CFandaNDFombetweentheensiledanddryCL+SPV.The50:50mixtureofCL+SPVgavehigher(P<0.05)CIADfor aNDFomthancalculatedbasedonindividualaNDFomCIADvaluesofCLandSPV.Non-additivityofindividualvalueswas alsofoundfortheCTTADofDMandOMforthedriedCL+SPVaswellasCFfortheensiledCL+SPV(Table5
TherewerestatisticallysignificantdifferencesintheCIADofCPandmostAAexceptMet+Cys,Glu,GlyandSerbetween diets(Table6 Althoughforprolinetherewasasignificantdieteffect(P<0.05),theTukeypair-wisecomparisontestdid notidentifydifferencesbetweentreatments.NoneoftheCIADofAAwasdifferentbetweentheensiledanddriedCL.Only theCIADofTyrandAspweredifferentbetweentheensiledanddriedSPV.OnlythelysineCIADwasdifferentbetweenthe ensiledanddriedCL+SPV.Significant(P<0.05)non-additiveeffectswereobservedfortheCIADofanumberofAAinthe ensiledanddriedCL+SPV.ForensiledCL+SPV,theCIADofHis,Lys,Thr,AspandProwashigherthantheexpectedaverage valueofamixtureofCL+SPV.ForthedriedCL+SPV,theCIADofHis,Leu,Thr,Tyr,Ala,AspandSershowednon-additivity
Trang 7176 T.H.L Nguyen et al / Animal Feed Science and Technology 172 (2012) 171– 179
Table 5
Coefficients of ileal and total tract apparent digestibility of nutrients in the experimental diets fed to growing pigs.
Cassava leaves Sweet potato vines Mixture a Treatment Interaction b
Ileal apparent digestibility
Dry matter 0.697 bc 0.685 c 0.727 a 0.698 bc 0.717 ab 0.685 c 0.005 <0.001 0.458 0.325 Organic matter 0.737 ab 0.728 b 0.750 ab 0.742 ab 0.757 a 0.735 ab 0.005 0.012 0.052 1.000 Crude protein 0.468 abc 0.440 c 0.492 a 0.453 c 0.488 ab 0.457 bc 0.008 0.001 0.385 0.300 Crude fibre 0.255 ab 0.218 b 0.278 a 0.220 b 0.307 a 0.282 a 0.012 <0.001 0.012 <0.001 Total tract apparent digestibility
Dry matter 0.762 ab 0.730 b 0.772 a 0.733 b 0.772 a 0.753 ab 0.008 0.003 0.619 0.041 Organic matter 0.787 ab 0.762 b 0.797 a 0.770 ab 0.798 a 0.800 a 0.006 0.002 0.435 0.001 Crude protein 0.572 ab 0.523 c 0.572 ab 0.542 bc 0.578 a 0.545 abc 0.008 <0.001 0.486 0.198 Crude fibre 0.393 b 0.380 b 0.452 a 0.418 ab 0.467 a 0.428 ab 0.013 0.001 0.012 0.082 aNDFom d 0.333 bc 0.307 c 0.400 a 0.365 abc 0.395 ab 0.370 abc 0.015 0.002 0.137 0.076 Difference between total tract and ileal apparent digestibility
Dry matter 0.065 a 0.045 ab 0.045 ab 0.035 b 0.055 ab 0.068 a 0.006 0.008 1.000 0.001 Organic matter 0.050 ab 0.033 bc 0.047 abc 0.028 c 0.042 bc 0.065 a 0.005 <0.001 0.265 <0.001
Crude fibre 0.138 b 0.162 ab 0.173 ab 0.198 a 0.160 ab 0.147 b 0.010 0.004 0.726 0.010 Means within a row with no common letters (a, b, and c) differ (P<0.05) d Neutral detergent fibre with a heat stable amylase and expressed exclusive of residual ash.
a Mixture (50:50 on a DM basis) of ensiled or dried cassava leaves and sweet potato vines.
b Difference of mixture from 0.5 × mean of cassava leaves + 0.5 × mean of sweet potato vines.
cn= 6.
d Neutral detergent fibre with a heat stable amylase and expressed exclusive of residual ash.
Table 6
Coefficient of ileal apparent digestibility of amino acids of the experimental diets fed to growing pigs.
Cassava leaves Sweet potato vines Mixture a Treatment Interaction b
Arginine 0.528 b 0.520 b 0.630 a 0.573 ab 0.565 a,b 0.565 a,b 0.022 0.033 0.621 0.513 Histidine 0.694 ab 0.690 b 0.695 ab 0.680 b 0.747 a* 0.728 a,b* 0.013 0.008 0.003 0.010 Isoleucine 0.648 b 0.653 ab 0.755 a 0.755 a 0.755 a 0.750 a,b 0.024 0.004 0.084 0.134 Leucine 0.674 b 0.650 b 0.790 a 0.762 a 0.763 a 0.760 a* 0.014 <0.001 0.088 0.006 Lysine 0.697 ab 0.683 b 0.718 ab 0.670 b 0.792 a* 0.692 b 0.022 0.010 0.005 0.578 Methionine + cysteine 0.706 0.712 0.737 0.695 0.715 0.715 0.010 0.170 0.614 0.369 Phenylalanine 0.584 c 0.613 bc 0.740 a 0.653 abc 0.680 a,b 0.673 abc 0.022 0.001 0.372 0.154 Threonine 0.657 bc 0.630 c 0.748 a 0.712 a,b 0.750 a* 0.715 ab* 0.017 <0.001 0.035 0.049 Tyrosine 0.736 c 0.758 bc 0.877 a 0.653 d 0.838 a 0.830 ab* 0.018 <0.001 0.156 <0.001
Alanine 0.721 bc 0.682 c 0.807 a 0.762 a,b 0.777 ab 0.757 ab* 0.014 <0.001 0.452 0.048 Aspartic acid 0.669 b 0.700 b 0.678 b 0.793 a 0.767 a* 0.788 a* 0.014 <0.001 <0.001 0.024
Means within a row with no common letter (a, b, c and d) differ (P<0.05).
a Mixture (50:50 on a DM basis) of ensiled or dried cassava leaves and sweet potato vines.
b Difference of mixture from 0.5 × mean of cassava leaves + 0.5 × mean of sweet potato vines.
cn= 6.
4 Discussion
TheCPcontentsoftheCLandSPVusedinthepresentstudywereingoodagreementwithreportsintheliterature(Dung
etal.,2002;Montagnacetal.,2009;Woolfe,1992).ThelowerCPcontentoftheensiledCLandSPVcomparedtothedried materialisalsoinagreementwiththestudiesofPhucandLindberg(2000,2001)onprocessedCL.Theensiledproducts containedapproximately5%lessCPthanthedriedproducts.Thiscanpartlybeexplainedbytheadditionofthericebranto thewiltedcassavamaterialtofacilitatetheensilingprocess.Ricebrancontains110gCP/kgDMcomparedtothe299and
223gCP/kgDMinthefreshCLandSPVandthereforericebranadditiondilutestheconcentrationofCPoftheleaves/vines ThereductioninCPcontentinCLorSPVsilagemayalsohavebeenduetonitrogenlossesfromproteindecomposition Bothdryingandensilingreducedtheconcentrationofanti-nutritionalfactorsofCLandSPV.TheHCNcontentofthe freshCLwasfoundtobe1,221mg/kgDMandwasreducedto128mg/kgDMafter60daysensilingand152mg/kgDMafter
Trang 8Fig 1 Relative concentration of individual essential amino acids in the six protein sources (CL = cassava leaves; SPV = sweat potato vines) in meeting the amino acid requirements of 50–80 kg growing pigs ( NRC, 1998 ) Values adjusted for energy density of the diet.
sun-drying.TheHCNcontentoffreshcassavarootswas342mg/kgDMwhichwasalsoreducedbyensilingto20mg/kgDM after60days.TheHCNcontentoftheensiledCL(78mg/kgDM)anddriedCL(58mg/kgDM)dietswashigherthaninthe othertreatments.NoindicationsofcyanidetoxicitywereobservedinanyofthepigsfedthedietscontainingHCNinthe presentstudy.Inanimals,thelethaldoseofHCNisgenerallyreportedtobebetween0.66and15mg/kgbodyweightfor variousspecies(WHO,1965;FSANZ,2005).Tewe(1992)reportedatoxicitylevelofHCNforpigsof3.5mg/kgbodyweight
Inthepresentstudy,pigsfedtheensiledanddriedCLingestedapproximately2.0and1.6mgHCNperkgbodyweightor abouthalfofthereportedlevelswhichareconsideredtoxic
Astheensiledmaterialusedinthepresentstudycontainedricebraninordertoimprovetheensilingprocess,direct comparisonbetweenthedriedandensiledproductsaredifficult.Itshouldbenotedthattheilealdigestasamplesweredried
at60◦C.Althoughunlikely,somemicrobialgrowthmayhaveoccurredwhenthesamplewasheatedtothistemperature andchangesintheAAcompositionmayhaveoccurredduringthistimeduetobacterialfermentation.TheAAcomposition
oftheCLandSPVinthepresentstudy,however,isingoodagreementwithearlierreports(Eggum,1970;Ravindran,1993; PhucandLindberg,2001;Montagnacetal.,2009;Woolfe,1992;Kinh,2003).Althoughtheproteininthedietsoriginated fromthreedifferentingredients(CL/SPV,ricebranandECR)withtheCPoftheCL/SPVmakingupmorethan75.4–93.9%
ofthetotalCP,theCIADforlysineandthesulphuraminoacidsreportedhereforthedietsareincloseagreementwith thecalculatedCIADvaluesoftheCL/SPV.Fig.1showstherelativeconcentrationofindividualessentialAAinthesixdiets investigatedinthepresentstudyinmeetingtheAArequirementsofgrowingpigs(NRC,1998)whenvaluesarecorrected fortheenergydensityofthediet.Met+CyswerefoundtobethemostlimitingAAinallthesixdietstested,closelyfollowed
bylysine.ComparedtotheAArequirementestimatesof50–80kgpig(NRC,1998)withahigh-mediumleangrowthrate (325g/dayofcarcassfat-freelean),theilealdigestibleMet+CyscontentoftheensiledanddriedCL,ensiledanddriedSPV andensiledanddriedCL+SPVdietsonlymet36,38,45,33,36and37%oftherequirementsforgrowth,respectively.Eggum (1970)andPhucetal.(2000)reportedthattheconcentrationofthesulphur-containingAAwasratherlowinCL.Recently,
Chauynarongetal.(2009)andMontagnacetal.(2009)alsofoundthatthemostlimitingAAinCLisMet.Thesedataarein contrasttoreportsofWoolfe(1992)andAnetal.(2003)whofoundthatLyswasthefirstlimitingAAinfreshSPL.Thesecond mostlimitingAAinthesixdietsinthepresentstudywasLys,meeting53,48,49,40,51and50%oftherequirementsof growingpigs(NRC,1998).OnlyarginineispresentinexcessamountswhileIlemeetstherequirementsleantypegrowing pigs(Fig.1 SupplementationofdietscontainingdriedandensiledCL,SPVora50:50mixtureonaDMbasisofCL+SPVas thesoleproteinssourcewithsulphurcontainingAAandLyscanbeexpectedtoincreaseproteinutilisationbygrowingpigs Non-additivitywasobservedforanumberofAAintheensiledanddriedCL+SPV.TheilealdigestibleLyscontentof theensiledmixturedietwas10.4%unitshigherthancanbeexpectedfromtheCIADdataofthetwoindividualingredients (ensiledCLandSPV)assumingadditivityofdigestibilityvalues.Similarly,assumingadditivity,thedriedCL+SPVdietresulted
inhigherthanexpectedCIADofLeu,ThrandHisthanbasedontheCIADoftheseAAfromtheindividualdriedCLandSPV
ItcanthereforebeexpectedthatadietcomposedofamixtureofCLandSPVwillresultinahighergrowthperformanceof pigswhensupplementedwithsulphuraminoacidastheilealdigestibleLyscontentwasthehighest(0.42g/kgDM)ofall thesixdiets
OurstudyshowedthattheCTTADwashigherthantheCIADforDM,OMand CFandatrendwasobservedfrom CP
In particular,the CTTADofCFwas0.14–0.20higherindicatingthat significantfermentationof CFoccurredinthelarge
Trang 9178 T.H.L Nguyen et al / Animal Feed Science and Technology 172 (2012) 171– 179
intestineofthegrowingpigs.TherewasanetnitrogendisappearancefromthelargeintestineresultinginahigherCTTAD forCP.Thecontributionoffermentedcarbohydratetotheenergysupplyoftheanimalcanbeexpectedtobeabout70%of thatofenzymaticallydigestedstarch(CVB,1999).OurdataaresimilartostudiesbyAnetal.(2004)andPhucetal.(2000)
investigatingensiledandsundriedcassavaleaves,fresh,driedandensiledsweetpotatoleaves,andgroundnutfoliage.Dung
etal.(2002)reportedthatthecapacityofthepigtodigestandutilizefibreisaffectedbythefibresource.ThefibreindriedCL andensiledCLaswellasdriedSPVandensiledSPVappearstobewellfermentedbythemicroflorainthelargeintestineof pigs.The13–20%higherCTTADoffibreinthelargeintestineofpigsfoundinthepresentstudywillyieldadditionalenergy
intheformofvolatilefattyacidsandtherebymeetpartoftheenergyrequirementsofthepig
5 Conclusion
Ingeneral,sweatpotatovineshaveahighernutrientdigestibilitycomparedtocassavaleaveseitherdriedorensiled andensilingresultedinahigherdigestibilityofdietarynutrientscomparedtodrying.Hydrogencyanideconcentrationof cassavaleavesisreducedbybothensilinganddryingwithdryingbeingslightlymoreeffective.Also,contentofaminoacids
incassavaleavesandsweatpotatovinescanbeaffectedbythepreservationprocess,whichneedstobeaccountedforin dietformulation.Mixingensiledcassavaleavesandensiledsweatpotatovinesmayyieldadditionalbenefitsintermsof increaseddigestibilityofaminoacidsinpigscomparedtofeedingtheseingredientssolely.Thefirstlimitingaminoacids
inpracticaldietsformulatedfromdriedorensiledcassavaleavesaremethionine+cysteineandlysine.Providingdietary ingredientshighindigestiblemethionine,cysteineandlysineorprovisionoftheseaminoacidsincrystallineformindiets containingcassavaleavesandsweatpotatovinesmayincreaseaminoacidutilisationofthesedietsforpigs
Acknowledgements
Financial support from the Swedish International Development Cooperation Agency, Department for Research Co-operation(Sida-SAREC).MEKARNSida/SARECprogramforsupportingthisresearch.Profs.R.B.OgleandT.R Prestonfor theirhelpandvaluableadvice Dr.T.K.DoanoftheNationalInstituteofAnimalHusbandryinHanoiforperformingthe chemicalandaminoacidanalyses
References
An, L.V., Lindberg, B.E.F., Lindberg, J.E., 2003 Effect of harvesting interval and defoliation on yield and chemical composition of leaves, stems and tubers of sweet potato(Ipomoea batatasL (Lam.)) plant parts Field Crops Res 82, 49–58.
An, L.V., Hong, T.T.T., Lindberg, J.E., 2004 Ileal and total tract digestibility in growing pigs fed cassava root meal diets with inclusion of fresh, dry and ensiled sweet potato leaves Anim Feed Sci Technol 114, 127–139.
AOAC, 1990 Official Methods of Analysis, 15th ed Association of Official Analytical Chemists, Arlington, VA.
Borin, K., Lindberg, J.E., Ogle, R.B., 2005 Effect of variety and preservation method of cassava leaves on diet digestibility by indigenous and improved pigs Anim Sci 80, 319–324.
Cardoso, A.P., Mirione, M., Ernesto, M., Massaza, F., Cliff, J., Haque, M., Bradbury, H., 2005 Processing of cassava roots to remove cyanogens J Food Comp Anal 18, 451–460.
Chauynarong, N., Elangovan, A.V., Iji, P.A., 2009 The potential of cassava products in diets for poultry Worlds Poult Sci J 65, 23–35.
CVB (Centraal Veevoeder Bureau), 1999 Voedernormen Landbouwhuisdieren en Voederwaarde Veevoeders Verkorte tabel, CVB-reeks nr 26 Centraal Veevoederbureau, Lelystad, The Netherlands.
Dung, N.N.X., Manh, L.H., Uden, P., 2002 Tropical fibre sources for pigs-digestibility, digesta retention and estimation of fibre digestibilityin vitro.Anim Feed Sci Technol 102, 109–124.
Eggum, B.O., 1970 The protein quality of cassava leaves Br J Nutr 24, 761–769.
Fenton, T.W., Fenton, M., 1979 Chromic oxide analysis Can J Anim Sci 59, 631–634.
FSANZ (Food Standards Australia New Zealand), 2005 Cyanogenic Glycosides in Cassava and Bamboo Shoots A Human Health Risk Assessment Technical report series no 28, Canberra, Australia, 24 pp.
Hou, W.C., Lin, Y.H., 1997 Polyamine bound trypsin inhibitors in sweet potato(Ipomoea batatas(L.) Lam CV Tainong 57) storage root, sprouted roots and sprouts Plant Sci 126, 11–19.
Ishida, H., Suzuno, H., Sugiyama, N., Innami, S., Tadokoro, T., Meakawa, A., 2000 Nutritive value on chemical components of leaves, stalks and stems of sweet potato(Ipomoea batatasPoir) Food Chem 68, 359–367.
Kinh, V.L., 2003 Composition and Nutritive Value of Animal Feeds in Vietnam Agriculture Publishing House, Ho Chi Minh, Vietnam.
Montagnac, J.A., Davis, C.R., Tanumihardjo, S.A., 2009 Nutritional value of cassava for use as a staple food and recent advances for improvement Comp Rev Food Sci Food Saf 18, 181–194.
Mosha, T.C., Gaga, H.E., Pace, R.D., Mtebe, H., 1995 Effect of blanching on the content of the antinutritional factors in selected vegetables Plant Foods Hum Nutr 47, 361–367.
NIAH (National Institute of Animal Husbandry), 2001 Composition and Nutritive Value of Animal Feeds in Vietnam Agriculture Publishing House, Hanoi, Vietnam.
NRC (National Research Council), 1998 Nutrient Requirements of Swine, 10th rev ed National Academy of Sciences, Washington, DC.
Pham, K.T., Hoang, N.D., Ngoan, L.D., Hendriks, W.H., Verstegen, M.W.A., 2010 Nutritional constraints and possibilities for pig production on smallholders farms in Central Vietnam Asian-Aust J Anim Sci 23, 253–262.
Phuc, B.H.N., Lindberg, J.E., 2000 Ileal and total tract digestibility in growing pigs fed cassava root meal diets with inclusion of cassava leaves, leucaena leaves and groundnut foliage Anim Sci 71, 301–308.
Phuc, B.H.N., Ogle, R.B., Lindberg, J.E., 2000 Effect of replacing soybean protein with cassava leaf protein in cassava root meal based diets for growing pigs
on digestibility and N retention Anim Feed Sci Technol 83, 223–235.
Phuc, B.H.N., Lindberg, J.E., 2001 Ileal digestibility of amino acids in growing pigs given cassava root meal diets with inclusion of cassava leaves, leucaena leaves and groundnut foliage Anim Sci 72, 511–517.
Phuc, B.H.N., Lindberg, J.E., Ogle, R.B., Thomke, S., 2001 Determination of the nutritive value of tropical biomass products for monogastrics using rats Part
2 Effects of drying temperature, ensiling and level of inclusion of cassava leaves and sweet potato vines Asian-Aust J Anim Sci 14, 994–1002.
Trang 10Rekha, M.R., Padmaja, G., Easwari Amma, C.S., Sheela, M.N., 1999 Genotype differences in the ␣-amylase inhibitor activity in sweet potato and yam tubers.
J Root Crops 25, 185–191.
Ravindran, V., 1993 Cassava leaves as animal feed: potential and limitations J Sci Food Agric 41, 45–53.
Sauer, W.C., Fan, M.Z., Mosenthin, R., Drochner, W., 2000 Methods for measuring ileal amino acid digestibility in pigs In: D’ Mello, J.P.F (Ed.), Farm Animal Metabolism and Nutrition CABI Publishing, pp 279–306.
Spackman, D.H., Stein, W.H., Moore, S., 1958 Automatic recording apparatus for use in chromatography of amino acids Anal Chem 30, 1190–1206 Tewe, O.O., 1992 Detoxification of cassava products and effects of residual toxins on consuming animals In: Roots, Tubers, Plantains and Bananas in Animal Feeding FAO Anim Prod Health Paper No 95, pp 81–98.
Van Leeuwen, P., van Kleef, D.J., van Kempen, G.J.M., Huisman, J., Verstegen, M.W.A., 1991 The post-valve T-caecum cannulation technique in pigs applied
to determine digestibility of amino acids in maize, groundnut and sunflower meal J Anim Physiol Anim Nutr 65, 183–193.
Van An, L., Hong, T.T.T., Ogle, R.B., Lindberg, J.E., 2005 Utilization of ensiled sweet potato[Ipomoea batatas(L.) Lam] leaves as a protein supplement in diets for growing pigs Trop Anim Health Prod 37, 77–88.
Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991 Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition J Dairy Sci 74, 3583–3597.
Wanapat, M., 2009 Potential uses of local feed resources for ruminants Trop Anim Health Prod 41, 1035–1049.
Woolfe, J.A., 1992 Sweet Potato: An Untapped Food Resource Cambridge University Press, Cambridge, UK.
World Health Organization (WHO), 1965 Evaluation of the hazards to consumers resulting from the use of fumigants in the protection of food Second Joint Meeting of FAO Committee on Pesticides in Agriculture and the WHO Expert Committee on Pesticides Residues FAO Meeting Report No P1/1965/10/2: WHO Food Series 28.65, Rome, Italy.