() Industrial Crops and Products 58 (2014) 99–103 Contents lists available at ScienceDirect Industrial Crops and Products jo ur nal home p age www elsev ier com/ locate / indcrop Separation of aroma c[.]
Trang 1j ou rn a l h o m epa g e :w w w e l s e v i e r c o m / l o c a t e / i n d c r o p
fractionation
Carla Da Porto∗, Deborha Decorti, Andrea Natolino
Department of Food Science, University of Udine, via Sondrio 2/A, 33100 Udine, Italy
Article history:
Received 24 December 2013
Received in revised form 18 March 2014
Accepted 31 March 2014
Available online 4 May 2014
Keywords:
Supercritical CO2 extraction
On-line fractionation,Cannabis sativaL.
GC–MS
HS-SPME/GC–MS
Theuseofsupercriticalcarbondioxide(Sc-CO2)extractionat10and14MPaand40◦Candon-line frac-tionationusingtwoseparators(Sep1:7MPa/25◦C;Sep2:5MPa/15◦C)torecoveryvolatilecompounds fromtheinflorescencesoffibertypeCannabis sativaL.wasinvestigatedbyHS-SPME/GC–MSanddirect GC–MSandcomparedwithhydrodistillation.ThebestresultswereobtainedbySc-CO2extraction car-riedoutat10MPaand40◦C.Undertheseoperatingconditions,cuticularwaxescoveringthesurfaceof flowerswerecollectedinthefirstseparatorandvolatilecompounds(100%)inthesecond.Thesuperior qualityofthislastextractwasprovedbytheperfectoverlappingofitsHS-SPME/GC–MSvolatileprofile
tothatofinflorescences.Therecoveryoffractionswithdifferentcompositionandbiologicalproperties, madetheinflorescencesoffibertypeCannabis sativaLsuitableforcosmeticand/orfoodindustry
©2014ElsevierB.V.Allrightsreserved
1 Introduction
IndustrialhempisanumberofvarietiesofCannabis sativaL
cul-tivatedforfiberand/orseedproduction.Onlyvarietiesofindustrial
hemppublishedbyEU(Regulation(EC)No1251/99andsubsequent
amendments)areapprovedforplantinginEurope.Thesevarieties
areeligiblefor cultivationonlyaftertheverification oftheir
␦-9-tetrahydrocannabinol(THC)content,theprincipalpsychoactive
constituentofthecannabisplant,whichmustbelessthan0.2%w/w
(RegulationECNo.1124/2008-12November2008).Inflorescences
offibertypeCannabis sativaL.cultivarsaregenerallyconsidered
wastepartsforfiberindustry,althoughtheinflorescences’volatiles
arepleasanttothehumansensorysystemandcouldbeusedas
fla-voringsforbeverages(foodindustry)oringredientsforbodycare
products(cosmeticindustry).Cannabisscent doesnot originate
fromtheterpenophenoliccannabinoids,producedbyglandular
tri-chomesthatoccuronmostaerialsurfacesoftheplant(Dayanandan
andKaufman,1976;Turneretal.,1978),butfromthemorevolatile
monoterpenesandsesquiterpenes(Turneretal.,1980)
Traditionally,therecoveryoffloral fragrancesfromplants is
byhydrodistillationorsteamdistillationtoproduceessentialoils
However,thesetechniquestakeatleastseveralhoursandrequire
∗ Corresponding author Tel.: +39 0432 558141; fax: +39 0432 558130.
E-mail address:carla.daporto@uniud.it (C Da Porto).
theapplicationofheating,whichcanproducethedegradationof thermolabilecompoundspresentinthestartingplantmaterial Among innovative process technologies, supercritical CO2 (Sc-CO2) extraction and fractionation can be applied as alter-native method to extract and isolate compounds from plant material (Reverchon and De Marco, 2006; Pourmortazavi and Hajimirsadeghi, 2007).Carbondioxideis economical,safe, non-toxic(itdoesnotleaveresiduesinextract)andreachessupercritical conditionseasily(32◦Cand7.38MPa).Furthermore,theuseofCO2
isacceptableinthefoodandpharmaceuticalindustries
Tothebestofourknowledge,therearenostudiesonthe sep-arationofvolatilecompoundsextractedbysupercriticalCO2from theinflorescencesofCannabis sativaL
TheaimofthisworkwastoapplysupercriticalCO2extraction andon-linefractionationprocesstoseparatehempvolatile com-pounds.TheSc-CO2 extractswerecompared totheessentialoil obtainedbyhydrodistillation
2 Materialsandmethods
FreshinflorescencesofCannabis sativaL.cv.Felina(THC<0.2%) were obtained from experimental trials carried out in Carnia (FriuliVenezia-Giuliaregion-Italy).OnAugust2013,fromatleast thirtyplantsofhemptheinflorescenceswereselectedrandomly http://dx.doi.org/10.1016/j.indcrop.2014.03.042
0926-6690/© 2014 Elsevier B.V All rights reserved.
Trang 2Fig 1 SFE pilot plant flow sheet (B1) storage tank; (E1) Extraction vessel; (S1, S2) Separators; (H#) Heater exchangers; (C1) Condenser; (HV#) Hand valves; (MV1) membrane valve; (NVR#) No return valves; (P) Diaphragm pumps; (F1) Flowmeter; (M#) Manometers; (k) Safety devices; (FL1) Coriolis mass flowmeter; (D) Co-solvent storage tank and (X#) Mixer.
fromthecultivationarea,handpickedanddriedintheshade
(mois-turecontent9.60%w/w,±1.1)
Akitchen-typeknifemillwasemployedtocarryoutgrinding
oftheinflorescences.Theparticlesizedistributionwasdetermined
withavibratorysieveshaker.Particlesizeobtainedwasintherange
of200–600m
Analiquot(150g)ofdriedandgroundinflorescenceswas
sub-mittedtohydrodistillationwithaClevengertypeapparatusfor3h
Attheendofthedistillationprocesstheessentialoilwascollected,
driedoveranhydroussodiumsulphateandstoredat−18◦Cuntil
use.Theprocedurewasrepeatedthreetimes.Theyieldof
distilla-tionwasexpressedasthepercentageoftheessentialoilrecovered
fromtheplantmaterialused
SFEpilot-plant(SCF100model3PLC-GR-DLMP,SeparecoS.r.l,
Pinerolo,Italy)equippedwith1Lextractionvessel(E1),two0.3L
separatorsinseries(S1,S2),andatank(B1)whereCO2isstored
andrecycledwasused.Thesolventusedwascarbondioxide(Sapio
s.r.l,Udine,Italy).TheflowsheetofSFEpilotplantisgiveninFig.1
The extractor was filled with 0.15kg of inflorescences
dis-tributedinglassbeads(0.005m).Theextractionswereperformed
atpressureof10and14MPaandtemperatureof40◦C.On-line
fractionationoftheextractswasaccomplishedmaintainingS1at
7MPaand 25◦C andS2at 5MPaand 15◦C inboth
experimen-talassays.CO2 flowratewassetto3kg/hinboth experiments
(CO2/inflorescences=80kg/kg) Extractions were carried out by
duplicate.ThesamplesrecoveredinS1weresolid andpasty.S2
fractionswerecollectedintoacoldtrapcooledwithliquid
nitro-genandhadoilyappearance.ThefractionsobtainedinS1andS2
wererecuperatedandplacedinvials.Theywereweightedandkept
underN at−20◦Cinthedarkuntilanalysis
Headspacesolid-phasemicroextraction(SPME)isarapid, sol-ventlesssamplingprocedurewhich,combinedwithGC/MSanalysis
isausefulmethodfortheanalysisofvolatilecompounds(Zhang andPawlisyn,1993).InHeadSpaceSPME(HS-SPME)mode,a poly-mericfilmisexposedtothegasphasethatliesimmediatelyoverthe solidorliquidsample.Thisoperationstrategyhasanadvantageof beinganon-destructivetechniqueandallowstheevaluationofthe samplesatdifferentexperimentalconditions(Pawliszyn,1999) Volatile compounds of Cannabis sativa L inflorescences, essential oil and Sc-CO2 fractions were isolated by solid-phase microextraction (SPME) using a 1cm fiber coated with 50/30m divinylbenzene/carboxen/polydimethylsiloxane phase (DVB/CAR/PDMS)(Supelco,Milan,Italy)andanalyzedbyGC–MS The extraction temperature chosen was 30◦C in order togive
a better estimation of the volatile profile as perceived by the humannose.Theequilibriumofaromacompoundsbetweenthe SPMEcoatingfiberandheadspaceofeachsamplewasconsidered achievedafter50minofadsorption(DaPortoandDecorti,2012;
DaPortoetal.,2013)
GC–MSanalysisofthevolatilecompoundswasperformedusing
a Shimadzu gas chromatograph (model GC-17A) coupled to a Shimadzumassspectrometer(modelQP-5000) Thefusedsilica columnwasaDB-5fused-silicacolumn(Supelco,Bellafonte,PA) (30m×0.25mmi.d.,filmthickness0.25m).Workingconditions were:injector250◦C,transferlinetoMS250◦C,oventemperature: start45◦C,hold3min;programmedfrom45to190◦Cat3◦Cmin−1, hold5min,thenfurtherincreaseto250◦Cat20◦Cmin−1,holdfor
5min;carriergasheliumatflowrate2.0mlmin−1;ionization:EI
70eV;acquisitionparameters:scannedm/z:35–700.Splittingwas setinthesplitlessmodeforinflorescencesandthesplitratiowas 1/40(v/v)foressentialoilandSc-CO2fractions
Identificationof thevolatile compoundswas carried out by comparingtheKovats retentionindicesdeterminedbyinserting
a solutioncontaining thehomologous seriesof normal alkanes
Trang 3Table 1
HS-SPME/GC–MS analysis of natural aroma compounds released by inflorescences
ofCannabis sativaL.
± RSD (%)
Bold values are referred to the main constituents.
a LRI = Linear retention indeces on DB5-column.
b GC peak area percentage Results expressed as mean of three replications.
(C7–C20)withthosereportedbyliterature(Bertolietal.,2010)and
withspectraoftheNISTandWILEYlibrariescoupledwiththe
soft-wareofGC–MSandAdams’library(Adams,2001).Theresultsare
expressedasGCpeakareaspercent
Thevolatilecompositionof essentialoiland ScCO2 fractions
weredeterminedbydirectGC–MSanalysis.GC–MSanalysiswas
performedusingaShimadzugaschromatograph(modelGC-17A)
coupledtoaShimadzumassspectrometer(modelQP-5000).The
fusedsilicacolumnwasa DB-5GCcolumn(Supelco,Bellafonte,
PA,USA)(30m×0.25mmi.d.,filmthickness0.25m).GC–MSdata
wereobtainedusingthefollowingconditions:carriergashelium
(He99.9995%);flowrate2.0mlmin−1;splitratio1/40(v/v)
Analiquotof50mg ofdistilledoilandSc-CO2fractionswere
dilutedwith25mln-hexaneand1.0lwasinjectedintotheGC–MS
system.Theoventemperatureprogramwas:45◦Cfor3min,from
45◦Cto250◦Cat3◦Cmin−1andholding250◦Cfor5min.The
injec-torandtransferlinetemperatureswere250◦C.Theelectronimpact
(70eV)spectrawererecordedat1s/scanwithafilamentemission
currentof10A
Identificationofthevolatilecompoundswascarriedoutas
pre-viouslyreportedforHS-SPMEanalysis.Theresultsareexpressed
asGCpeakareaspercent±RSD(%)
3 Resultsanddiscussion
Apreliminaryscreeningoftheheadspace(HD)bySPMEanalysis
ofinflorescenceswascarriedouttodefinetheoriginalvolatile
com-positionthatproducesthenaturalfragrance.Table1presentsthe
volatilecompoundsidentifiedaccordingtotheGC–MSanalysis.As
canbededucedfromtable,themain(moreabundant)compounds
identified in inflorescences were ␣-pinene (12.39%), -pinene
(4.04%) myrcene (23.67%), terpinolene (10.17%), caryophyllene
(29.66%),␣-humulene(6.72%)andcaryophylleneoxide(4.70%),in
accordancewiththeliterature(Bertolietal.,2010)
0 10 20 30 40 50 60 70 80 90 100
Inflorescences HD ScCO2 10 MPa ScCO2 14 MPa
Oxyge nated sesquiter penes Sesquit erpene hy drocarbons
Oxygenated monoterpenes Monoterpene hydrocarbons
Fig 2 Comparison of HS-SPME/GC–MS analysis performed on inflorescences, essential oil (HD) and S2 fraction from Sc-CO2 extraction at pressure of 10 and
14 MPa and temperature of 40 ◦ C.
GC peaks were identified as hydrocarbon monoterpenes (52.73%)and oxygenatedmonoterpenes (2.22%),sesquiterpenes (36.96%),andoxygenatedsesquiterpenes(8.07%)
Thevolatilecompositionoftheessentialoil(HD)andthe dif-ferentfractions(S1andS2samples)obtainedbysupercriticalCO2 extractionwereanalyzedbydirectGC–MSanalysis(Table2) The main constituents of the essential oil were ␣-pinene (11.08%),-pinene(3.75%)myrcene(10.83%),terpinolene(5.83%), caryophyllene (41.14%),␣-humulene (9.85%) and caryophyllene oxide(5.27%) The essential oilcomposition showed significant quantitativedifferencesincomparisonwiththeessentialoilsfrom differentfiberhempinflorescencesreportedbyBertolietal.(2010), but these main constituents were confirmed In the essential oil,sesquiterpenes(52.63%),andrelatedoxygenatedcompounds (11.61%) were present in high percentage in comparison with hydrocarbon monoterpenes (34.31%) and oxygenated monoter-penes(1.44%)
Supercritical fluid extraction(SFE) with supercritical carbon dioxide(Sc-CO2)has beenwidely usedfor theextraction from naturalproducts.SFEisanenvironment-friendlytechnologythat representsanalternativetoconventionalextractionmethodsand offersseveraladvantagesoverclassicalsolventextractionmethods
CO2isthemostcommonlyusedsolventinSFEbecauseitischeap, inert,non-toxic,andallowsextractionatlowertemperatureand relativelylowpressure.(Brunner,1994)
SupercriticalCO2extractiononhempinflorescenceswere per-formedatpressureof10and14MPaandtemperatureof40◦C(CO2 densityhigherthanabout600kg/m3).On-linefractionationofthe extractswasachievedbydecreasingpressureandtemperaturein thetwoseparatorsS1andS2,withrespecttotheoperating condi-tionsusedduringsupercriticalextractions.InthefirstseparatorS1, pressurewasloweredto7MPaandtemperatureto25◦C,inthe sec-ondseparatorS2,pressurewasloweredto5MPaandtemperature
to15◦C.Undertheseconditionsofpressureandtemperature,CO2 densitywaslowerthan600kg/m3andthisallowedtoexcludeall butoneofthenonvolatilecompoundsfamiliesfromtheextract.The onlyexceptionwasrepresentedbyparaffinsconstitutingthe cutic-ularwaxes(Reverchonetal.,1995).Fig.2showsthattheextraction
Trang 4Table 2
Direct GC–MS analysis of volatile compounds of essential oil (HD) and ScCO2 extracts (10, 14 MPa, 40 ◦ C)) ofCannabis sativainflorescences.
Bold values are referred to the main constituents.
a GC peak area percentage±RSD (%).
yield(massextracted/massloadedintheextractor×100)was
sig-nificantlyhigherinS1thaninS2forbothextractions.Itisapparent
thatcuticularwaxesprecipitatedinS1,duetotheirlowersolubility
insupercriticalCO2incomparisontoterpenesandtheirderivatives
(StahlandGerard,1985).Theextractionyieldobtainedinthe
sepa-ratorS1forinflorescencesprocessedat14MPa(1.39%w/w,±0.58)
wassignificantly higherthan inS1forinflorescences processed
at10MPa(1.03% w/w,±0.73) becauseof thehigherextraction
pressureemployed(Simandietal.,1999).Instead,lower
extrac-tionyieldswereachievedin theseparator S2for inflorescences
processed,respectivelyat10MPa(0.67%w/w,±0.18)and14MPa
(0.34%w/w,±0.11).However,boththeextractionyieldsobtained
inS2fractionsresultedhigherthanessentialoil(HD)yield(0.24%
w/w,±0.13).
TheSFEenergyconsumptionwasabout4.5kWhperkiloofplant
matter,taking intoaccount themechanical energy required by
thepumptoincreasethefluidpressure(1.2kWh)andtheheating
energytoincreasethefluidtemperatureandthecoolingenergyto
condensethefluidvapour(3.3kWh).Instead,thehydro-distillation
ofonekiloofplantmatterconsumedabout9.6kWh,duetothehigh
heatofvaporizationofwater.Itistobenotedthatextractionby
supercriticalCO2isparticularlyadvantageousintermsofenergy
consumptionbecauseofthesmallvolumeofsolventintroduced,
theseparationoftheextractbydecompression,plusthefactthat
itispossibletorecuperatethecaloriesproducedbythecoldgroup
(passagefromgasformtoliquidform)tofeedtheheatingsystem
(passagefromliquidformtosupercriticalstate)
Pereiraetal.(2010)reportedthattheCOM(manufacturingcost)
forSFEprocessisgenerallylowerthantheCOMofconventional
processesaswellastheCUT(utilitiescost)share(usuallybelow
1%).SFEiseconomicallyfeasibleafterappropriatelyoptimization
oftheprocess
AscanbeobservedinTable2,thedirect GC–MSanalysisof
thedifferentfractionscollected(S1andS2samples)indicatesthat
almostallvolatilecompoundswererecoveredinS2fraction.That
is,on-linefractionationwasasuitabletechniquetoachievethe
iso-lationofhempvolatilesinthesecondseparator.Itisinterestingto
0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6
ScCO2 10MPa ScCO2 14MPa HD
S1
S1
S2
S2
Fig 3 Extraction yield (% w/w) obtained by Sc-CO2 extraction (10, 14 MPa and 40 ◦ C)
in the separators S1 and S2, and by hydrodistillation (HD).
notethevolatilecompositionofthedifferentS2fractionsinterms
ofthepercentageofterpenes,withrespecttothevolatile compo-sitionofessentialoil.Forinflorescencesprocessedat10MPaand
40◦C,thehighermolecularweightcompounds,namely hydrocar-bonsesquiterpenes(caryophyllene,-farnesene,␣-humulene)and oxygenatedsesquiterpens (caryophylleneoxide,-eudesmol, -bisabololand␣-bisabolol)werefoundinlowerpercentage(45.56%) than at14MPaand 313.15K (63.89%).Thiscouldbeattributed
tothefactthatatconstanttemperature,theincreaseofpressure enhancestheCO2densityand,consequentlyitssolvationpower andthesolubilityofthesecompoundsinSc-CO2.TheS2fraction obtainedforinflorescencesprocessedat14MPaand40◦Chada chemicalprofilesimilartothatobtainedbyhydrodistillation(HD)
AcomparisonoftheresultsobtainedbyHS-SPME/GC–MS anal-ysisperformedoninflorescences,essentialoil(HD)andS2fractions collectedisshowninFig.3.Ascanbeobserved,thereisaperfect
Trang 5inflorescencesprocessedbySc-CO2extractionat10MPaand40◦C
and inflorescencesin terms of thepercentage ofterpenes.This
provesthesuperiorqualityofthisextractincomparisonwiththe
otherone
4 Conclusions
SupercriticalCO2extractioncarriedoutat10MPaand40◦C
on-linefractionationoftheextractofCannabis sativainflorescences
allowedtherecoveryoffractionswithdifferentcompositionand
biologicalproperties,suitableforcosmeticand/orfoodindustry
Thelowprocessingtemperatureresultedinnon-damagedvolatile
compounds,givingtothearomaticextractsuperiorquality
ThesupercriticalCO2extractionprocessofhempinflorescences
resultedparticularlyadvantageousintermsofenergyconsumption
incomparisonwithhydrodistillation
References
Adams, R.P., 2001 Quadrupole Mass Spectra of Compounds Listed in Order of
Their Retention Time on DB-5 Identification of Essential Oils Components by
Gas Chromatography/Quadrupole Mass Spectroscopy Allured Publishing, Carol
Stream, IL, USA.
Bertoli, A., Tozzi, S., Pistelli, L., Angelini, L.G., 2010 Fibre hemp inflorescences: from
crop-residues to essential oil production Ind Crops Prod 32, 329–337.
Brunner, G., 1994 Gas Extraction: An Introduction to Fundamentals of
Supercriti-cal Fluids and The Application to Separation Processes Darmstadt: Steinkopff,
Springer, New York.
Da Porto, C., Decorti, D., 2012 Analysis of the volatile compounds of aerial parts and essential oil fromThymus serpyllumL, cultivated in North East Italy by HS-SPME/GC–MS and evaluation of its flavouring effect on ricotta cheese J Ess Oil Bear Plants 15, 561–571.
Da Porto, C., Decorti, D., Natolino, A., 2013 Ultrasound-assisted extraction of volatile compounds from industrialCannabis sativaL inflorescences Int J Appl Res Nat Prod 7, 1–14.
Dayanandan, P., Kaufman, B., 1976 Trichomes ofCannabis sativaL.(Cannabaceae).
Am J Bot 63, 578–591.
Pawliszyn, J., 1999 Applications of Solid Phase Microextraction Royal Society of Chemistry, Cambridge.
Pereira, C.G., Prado, J.M., Meireles, M.A.A., 2010 Economic evaluation of natural product extraction processes In: Rostagno, M.A., Prado, J.M (Eds.), Natural Prod-uct Extraction Principles and Applications RSC Publishing, United Kingdom, pp 442–469.
Pourmortazavi, S.M., Hajimirsadeghi, S.S., 2007 Supercritical fluid extrac-tion in plantessential and volatile oil analysis J Chromatogr A 1163, 2–24.
Reverchon, E., Della Porta, G., Senatore, F., 1995 Supercritical CO 2 extraction and fractionation of lavender essential oil and waxes J Agric Food Chem 43, 1654–1658.
Reverchon, E., De Marco, I., 2006 Supercritical fluid extraction and fractionation of natural matter J Supercrit Fluids 38, 146–166.
Simandi, B., Oszagyan, M., Lemberkovics, E., Kéry, A., Kaszacs, J., Thyrion, F., Matyas, T., 1999 Supercritical carbon dioxide extraction and fractionation of oregano oleoresin Food Res Int 31, 723–728.
Stahl, E., Gerard, D., 1985 Solubility behavior and fractionation of essential oils in dense carbon dioxide Perf Flav 10, 29–33.
Turner, C.E., Hemphill, P., Mahlberg, G., 1978 Quantitative determination of cannabi-noids in individual glandular trichomes ofCannabis sativaL.(Cannabaceae).Am.
J Bot 65, 1103–1106.
Turner, C.E., Elsohly, M.A., Boeren, E.G., 1980 Constituents ofCannabis sativaL XVII.
A review of the natural constituents J Nat Prod 43, 169–234.
Zhang, Z., Pawlisyn, J., 1993 Headspace solid-phase microextraction Anal Chem.
65, 1843–1852.