1. Trang chủ
  2. » Tất cả

X ray peak profile analysis of solid state sintered alumina doped zinc oxide ceramics by williamson hall and size strain plot methods

10 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề X Ray Peak Profile Analysis of Solid State Sintered Alumina Doped Zinc Oxide Ceramics by Williamson Hall and Size Strain Plot Methods
Tác giả B. Rajesh Kumar, B. Hymavathi
Trường học GITAM Institute of Technology, GITAM University
Chuyên ngành Solid State Physics and Materials Science
Thể loại Research article
Năm xuất bản 2017
Thành phố Visakhapatnam
Định dạng
Số trang 10
Dung lượng 2,89 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Hymavathib a Department of Physics, GITAM Institute of Technology, GITAM University, Visakhapatnam 530045, AP, India b Department of Physics, Anil Neerukonda Institute of Technology and

Trang 1

ARTICLE IN PRESS

G Model

JASCER-260; No of Pages 10

Journal of Asian Ceramic Societies xxx (2017) xxx–xxx

j o u r n a l h o m e p a g e :w w w e l s e v i e r c o m / l o c a t e / j a s c e r

Full Length Article

B Rajesh Kumara,∗, B Hymavathib

a Department of Physics, GITAM Institute of Technology, GITAM University, Visakhapatnam 530045, AP, India

b Department of Physics, Anil Neerukonda Institute of Technology and Sciences (Autonomous), Sangivalasa, Visakhapatnam 531162, AP, India

Article history:

Received 19 November 2016

Received in revised form 31 January 2017

Accepted 5 February 2017

Available online xxx

Keywords:

Solid-state reaction

XRD

Scanning electron microscopy

ZnOdopedwithdifferentconcentrationsofAl2O3(2,4,6,8and10wt%)ispreparedbyconventional solid-statereactionmethod.X-raydiffractionresultsrevealedthatthesampleswerecrystallinewitha hexagonalwurtzitephase.Astheconcentrationofalumina(Al2O3)increasesinZnO,theX-raydiffraction peaksshiftstowardshigherangle.Thisshiftinginpeakpositionanddecreaseinintensityreflectthat

AlissuccessfullyreplacedZninZnOmatrix.X-raypeakbroadeninganalysiswasusedtoevaluatethe crystallitesizeandlatticestrainbytheWilliamson–Hall(W–H)methodandsize-strainplot(SSP)method Thephysicalparameterssuchasstrain,stress,andenergydensityvalueswerealsocalculatedusing W–Hmethodwithdifferentmodelsnamelyuniformdeformationmodel,uniformstressdeformation modelanduniformdeformationenergydensitymodel.Thesurfacemorphologyandelementalanalysis

ofthepreparedsampleswerecharacterizedbyfieldemissionscanningelectronmicroscopyandenergy dispersivespectra

©2017TheCeramicSocietyofJapanandtheKoreanCeramicSociety.Productionandhostingby ElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/)

1 Introduction

ZincOxideis awellknownimportantsemiconductordueto

itsfundamentaland technologicalimportance.It isa wideband

gap semiconductor (3.37eV) with highexciton binding energy

of60meV,excellentchemicalstability,abundanceinnatureand

non-toxic It had a wide range of applications such as solar

cells,luminescentdevices,laserdiodes,chemicalsensors,surface

acousticwave devicesetc, whoseconductivitycanbetunedby

controllingthedeviationfromstoichiometryandbydoping[1–4]

Al2O3isann-typesemiconductingmaterialwithawidebandgapof

8.8eV,differentcrystallineformandgoodthermalstability.Itcan

beactasagoodcatalystwithsemiconductorwhenthegasessuch

asH2SandEthanolcomeincontactwithit.GroupIIIAelements

(Al,Ga,In)havebeenusedtoimprovetheelectricalconductivity

andthermalstabilityofZnOmaterial[5–7].Inthiswork,alumina

dopedZnOceramicswerepreparedbytheconventionalsolid-state

reactionmethodusingZnOandAl2O3asthestartingmaterials.In

theconventionaloxide-mixingtechnique,thepowdersproduced

aremorehomogeneousafterthesinteringprocess[8]

∗ Corresponding author Fax +91 8554 255710.

E-mail address: rajphyind@gmail.com (B Rajesh Kumar).

X-raypeakprofileanalysis(XPPA)isusedtoestimatethe micro-structuralquantitiesandcorrelatethemwiththeobservedmaterial properties.XPPAisanaveragingmethodandapowerfultoolto esti-matethecrystallitesizeandlatticestrain[9].Thecrystallitesize andlatticestrainaffecttheBraggpeaktoincreasethepeak inten-sity,peakwidthandashiftinthe2peakposition.Themethods reportedintheliteraturetoestimatethecrystallitesizeand lat-ticestrainaretheWarren–Averbachanalysis,Rietveldrefinement andpseudo-Voigtfunction[10–12].However,theWilliamson–Hall (W–H)analysisisasimplifiedintegralbreadthmethodusedfor estimatingcrystallitesizeandlatticestrain,consideringthepeak widthasafunctionof2[13,14].Inthepresentwork,XPPAis car-riedouttoevaluatethecrystallitesize(D),latticestrain(ε),lattice stress()andlatticestrainenergydensity(u)ofAl2O3dopedZnO ceramicsbasedonmodifiedW–Hplotsusinguniformdeformation model(UDM),uniformstressdeformationmodel(USDM),uniform deformationenergydensitymodel(UDEDM)andsize-strainplot (SSP).Literaturesurveyreportsthatadetailedstudyusingthese modelsonsolid-statesinteredZnOdopedwithdifferent concen-trationsofAl2O3isnotyetreported

2 Experimental details

ZnO dopedwith2,4,6, 8and 10%of alumina(Al2O3)were synthesized by conventional solid-state reaction method The http://dx.doi.org/10.1016/j.jascer.2017.02.001

2187-0764/© 2017 The Ceramic Society of Japan and the Korean Ceramic Society Production and hosting by Elsevier B.V This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ).

Trang 2

ARTICLE IN PRESS

G Model

JASCER-260; No of Pages 10

2 B Rajesh Kumar, B Hymavathi / Journal of Asian Ceramic Societies xxx (2017) xxx–xxx

Fig 1. X-ray diffraction patterns of ZnO doped with (a) 2% Al 2 O 3 ; (b) 4% Al 2 O 3 ; (c) 6% Al 2 O 3 ; (d) 8% Al 2 O 3 and (e) 10% Al 2 O 3

Table 1

Structural parameters of ZnO doped with different concentrations of alumina.

Alumina concentration (%) Lattice parameters, Volume, V (Å 3 ) No of unit cells in the particle, n

Table 2

Rietveld refinement results for ZnO doped with different concentrations of alumina.

Alumina concentration (%) Lattice parameters (Å) Volume (Å 3 ) R p (%) R wp (%) R exp (%) GOF R Bragg (%)  2 R F (%)

2 a = b = 3.2722(4) 48.57(4) 4.42 8.84 5.96 1.48 2.76 2.20 3.88

c = 5.2382(5)

4 a = b = 3.2662(6) 48.30(5) 4.32 7.96 6.47 1.23 3.12 1.23 3.71

c = 5.2286(3)

6 a = b = 3.2618(3) 48.13(4) 5.21 9.88 6.29 1.57 3.64 1.57 4.27

c = 5.2238(2)

8 a = b = 3.2513(2) 47.72(4) 5.13 8.22 7.05 1.17 2.84 1.17 5.50

c = 5.2136(2)

10 a = b = 3.2378(4) 47.28(5) 6.17 8.42 6.89 1.22 2.92 1.22 4.13

c = 5.2082(5)

Trang 3

ARTICLE IN PRESS

G Model

JASCER-260; No of Pages 10

B Rajesh Kumar, B Hymavathi / Journal of Asian Ceramic Societies xxx (2017) xxx–xxx 3

Fig 2. Rietveld refinement analysis of XRD patterns of ZnO doped with (a) 2% Al 2 O 3 ; (b) 4% Al 2 O 3 ; (c) 6% Al 2 O 3 ; (d) 8% Al 2 O 3 and (e) 10% Al 2 O 3

Trang 4

ARTICLE IN PRESS

G Model

JASCER-260; No of Pages 10

4 B Rajesh Kumar, B Hymavathi / Journal of Asian Ceramic Societies xxx (2017) xxx–xxx

Fig 3. W–H analysis of ZnO doped with (a) 2% Al 2 O 3 ; (b) 4% Al 2 O 3 ; (c) 6% Al 2 O 3 ; (d) 8% Al 2 O 3 and (e) 10% Al 2 O 3 assuming UDM.

of3.5nm.The compositionalanalysisofZnO dopedwithAl2O3

wascarriedoutusingEnergyDispersiveX-raySpectroscopy(EDS,

Model:Horiba,EMAX,137eV)

3 Results and discussion

3.1 Structuralproperties

X-raydiffraction patterns of ZnO doped with different

con-centrations of alumina (Al2O3)are shown in Fig 1 The X-ray

diffractionpeaksatanangle2areindexedbytheirmillerindices

(100),(002),(101),(102),(110),(103),(200),(112)and(201)

correspondingtoZnO (spacegroupp63mc,JCPDSno.36–1451)

indicatingthatthephaseofthesamplewaswurtzitestructure.The

XRDpeaksshiftstowardsthehigherangleswiththeincreaseof

dopingconcentrationofAl2O3inZnO.Themajordiffractionpeak

intensitiesincreasedwiththeincreaseofaluminacontentupto6%

andthenathigherdopingconcentrations(8and10%)ofalumina

thepeakintensitydecreased,whichindicatesAl-dopingresultedin

adecreaseinthecrystallinequality.AlargeamountofAldopants

resultedinlatticedisorder,whichisassociatedwiththestress

gen-erated.Besidesthestressproblem, thegrains grewmoreeasily

whenAldopantswereincorporatedwithZnO.Thelattice

param-eters‘a’and‘c’ofthepreparedsamplesarecalculatedfromX-ray

diffractionmeasureddatausingtheequationsasreportedinthe

previousliterature[15].Thevolumeoftheunitcellandnumber

ofunit cells intheparticlearedeterminedby theequationsas reportedinthepreviouswork[16].The volume(V) oftheunit cellandnumberofunitcellsintheparticle(n)decreaseswiththe increaseofaluminaconcentrationinZnO.Thestructural parame-tersofdifferentconcentrationsofAl2O3dopedZnOestimatedfrom X-raydiffractiondataaregiveninTable1

XRDRietveldrefinementswereperformedwithFULLPROF soft-ware program The wurtzite ZnO structure (space group 186, P63mc)andAl(spacegroup225,Fm-3m)wereselectedasthe start-ingmodelstructures.Theaccurateunitcellparametersofvarious compositionsofaluminadopedZnOweredeterminedbyRietveld refinementoftheobservedX-raydiffractionprofile[17] Pseudo-Voigtpeakprofilefunctionwasadoptedandthebackgroundwas approximatedbylinearinterpolationbetweenasetofbackground pointswithrefinableheights.TherefinementresultsofXRD pat-ternsofaluminadopedZnOsamplesareshowninFig.2.Thered and black linesrepresent theobserved and fitted data, respec-tively.Thebluelinerepresentsthedifferencebetweentheobserved andfitteddata.TherefinedXRDpatternsareinverygood agree-mentwiththemeasureddata.Nosecondphaseisobservedwhich revealedthefirstindicationthatthedopantatomsareincorporated

inthewurtzitestructure.Thelatticeparameters(aandc)decreases withtheincreaseofdopingconcentrationsofAl2O3inZnO.This behaviourhasbeenattributedtothefactthattheZnatomsare replacedbytheAlatoms.BecausetheionicradiiofZn2+andAl3+

are0.074nmand0.053nm,respectivelywithincreasing

Trang 5

substitu-ARTICLE IN PRESS

G Model

JASCER-260; No of Pages 10

B Rajesh Kumar, B Hymavathi / Journal of Asian Ceramic Societies xxx (2017) xxx–xxx 5

Fig 4. W–H plots of ZnO doped with (a) 2% Al 2 O 3 ; (b) 4% Al 2 O 3 ; (c) 6% Al 2 O 3 ; (d) 8% Al 2 O 3 and (e) 10% Al 2 O 3 using USDM.

tionofAlforZnthelatticeparameters‘a’and‘c’shoulddecrease

monotonicallyduetothesmallerradiusofAlcomparedwiththat

ofZn,reflectingthelatticecontraction.Theobtainedreliability

fac-torsRp,Rwp,Goodness-of-fitting(GOF),RBragg,2,RFand lattice

parameterscalculatedfromtheRietveldrefinementaretabulated

inTable2

3.2 Williamson–Hall(W–H)methods

ThebroadeningofXRDpatternisattributedtothecrystallite

size-inducedorstraininducedbroadening.Thesignificanceofthe

broadeningof peaksevidencesgrainrefinementalong withthe

largestrainassociatedwiththepowder.Theinstrumental

broad-ening(ˇhkl)wascorrected,correspondingtoeachdiffractionpeak

usingtherelation

Theaveragecrystallitesize(D)wascalculatedusingScherrer’s

formula[18]

where D is crystallite size, K (=0.94) is shape factor and 

(=0.154nm)isthewavelengthofCuk␣radiation.Itisfoundthatthe

averagecrystallitesizedecreasesfrom56to25nmwithincreasing

aluminaconcentrationinZnO.Itmaybeduetotheenhancement

insurface-to-volumeratio

Thestraininducedinpowdersduetocrystalimperfectionand distortionwascalculatedusingtheformula[19]

Assumingthattheparticlesizeandstraincontributionstoline broadeningareindependenttoeachotherandbothhavea Cauchy-likeprofile,theobservedlinebreadthissimplythesumofEqs.(2) and(3)

Byrearrangingtheaboveequation

TheaboveEqs.(4)and(5)areWilliamson–Hallequations.To makeWilliamson–Hallanalysis,aplotisdrawnwith4sinalong thex-axisandˇhklcosalongthey-axisforallorientationpeaks

ofAl2O3 dopedZnOceramicsisshowninFig.3.Thecrystalline sizewasestimatedfromthey-interceptandthestrain(ε)fromthe slopeofthelinearfittothedata.InUDMthestrainisassumedto

beuniforminallcrystallographicdirections,thusconsideringthe isotropicnatureofthecrystal,wherethematerialpropertiesare independentofthedirectionalongwhichtheyaremeasured.Itis clearthatthereisadecreaseinthelatticestrainwithincreasing dopingconcentrationsofAl2O3inZnO.Theuniformdeformation modelforAl2O3dopedZnOceramicsareshowninFig.3

Trang 6

ARTICLE IN PRESS

G Model

JASCER-260; No of Pages 10

6 B Rajesh Kumar, B Hymavathi / Journal of Asian Ceramic Societies xxx (2017) xxx–xxx

Fig 5.W–H analysis of ZnO doped with (a) 2% Al 2 O 3 ; (b) 4% Al 2 O 3 ; (c) 6% Al 2 O 3 ; (d) 8% Al 2 O 3 and (e) 10% Al 2 O 3 assuming UDEDM.

Intheuniformstressdeformationmodel(USDM)thereisalinear

proportionalitybetweenstressandstraingivenby=Yhkl␧which

isknownastheHook’slawwithintheelasticlimit.Inthis

rela-tion,isthestressofthecrystalandYistheYoung’smodulus

Hook’slawisareasonableapproximationtoestimatethelattice

stress.Inthisapproach,theWilliamson–Hallequationismodified

bysubstitutingthevalueofεinthesecondtermofEq.(5)yields

ˇhklcos=(K/D)+(4sin/Yhkl) (6)

YhklistheYoung’smodulusinthedirectionperpendiculartothe

setofcrystallatticeplane(hkl).Theuniformstresscanbe

calcu-latedfromtheslopelineplottedbetween4sin/Yhklandˇhklcos

andthecrystallitesize(D)fromthey-interceptasshowninFig.4

ThestraincanbemeasuredifYhklofhexagonalZnO

nanoparti-clesisknown.Forsampleswithahexagonalcrystalphase,Young’s

modulusYhklisrelatedtotheirelasticcompliancesSijas[20]

Yhkl= [h2+(h+2k)2/3)+(al/c)2]2/[S11(h2+(h+2k)2/3)2

+S33(al/c)4+(2S13+S44)(h+2k)2/3)(al/c)2] (7)

whereS11, S13,S33,and S44 aretheelasticcompliances ofZnO

andtheirvaluesare7.858×10−12,2.206×10−12,6.940×10−12and

23.57×10−12m2N−1,respectively[21,22]

Theuniformdeformation energy density model (UDEDM)is

used to determine the energy density of a crystal In Eq (4),

weconsideredthatthecrystalsareassumedtohavea

homoge-neous,isotropicnature.Inmanycases,theassumptionofisotropy and homogeneity is not justified Moreover, the constants of proportionalityassociatedwiththestress-strainrelationarenot independent when the strain energy density ‘u’ is considered AccordingtoHooke’slaw,theenergydensity uasafunctionof strainisu=ε2Yhkl/2.Therefore,Eq.(6)canbemodifiedtotheform

ˇhklcos=(K/D)+(4sin(2u/Yhkl)1/2) (8) Plotofˇhklcosand4sin(2/Yhkl)1/2isshowninFig.5andthe valueofenergydensity‘u’wascalculatedfromtheslopeofthe lin-earfitandthecrystallitesizeisestimatedfromthey-intercept From Eqs.(6) and (8), thedeformation stress and deformation energydensityarerelatedasu=2/Yhkl.Thelatticestraincanbe calculatedbyknowingtheYhklvaluesofthesample

3.3 Size-strainplot(SSP)method The corresponding W–H plots described that line broaden-ingwasessentiallyisotropic.Thishighlights thatthediffracting domains wereisotropic due tothe contributionof microstrain

In case of isotropic linebroadening, a betterevaluation of the size-strainparameterscanbeobtainedbyconsideringanaverage

“size-strainplot”(SSP).Thismethodhadanadvantagethatless importanceisgiventodatafromreflectionsathighangles,where theprecisionisusuallymuchlower.Inthismethod,itisassumed thatthecrystallitesizeprofileisdescribedbyaLorentzianfunction

Trang 7

ARTICLE IN PRESS

G Model

JASCER-260; No of Pages 10

B Rajesh Kumar, B Hymavathi / Journal of Asian Ceramic Societies xxx (2017) xxx–xxx 7

Fig 6.Plot of (d hkl ˇ hkl cos  hkl ) 2 versus d hkl2ˇ hkl cos  hkl.

Fig 7.Variation of crystallite size (D) with alumina concentration obtained from Scherrer method.

andthestrainprofilebyaGaussianfunction[23].Accordingly,we

have:

(dˇhklcos)2=(K/D)(d2ˇhklcos)+(ε/2)2 (9)

whereKisaconstantthatdependsontheshapeoftheparticles;

forsphericalparticlesitisgivenas3/4.InFig.6,similarlytothe

W–Hmethods,theterm(dˇhklcos)2isplottedwithrespectto

(d2ˇhklcos)fortheallorientationpeaksofaluminadopedZnO

Inthiscase,theparticlesizeisdeterminedfromtheslopeofthe

linearlyfitteddataandtherootofthey-interceptgivestheroot

meansquare(RMS)strain

TheresultsobtainedfromtheScherrermethod,W–Hmodels

(UDM,USDMand UDEDM)and SSPmethodsareshowninFigs

7–9.ThevaluesofaveragecrystallitesizeofaluminadopedZnO

ceramicsobtainedfromthedifferentmodelsaremoreorless

sim-ilar,implyingthattheinclusionofstraininvariousformshasa

verysmallchangeintheaveragecrystallitesize.Byinspectionof

theplots,itappearsthattheresultoftheSSPmodelisfoundto

bemoreaccuratethantheUDM,USDMandUDEDM,asthedata werefittedmoreaccuratelyinthismethod,withallhigh-intensity pointstouchingthelinearfit.Itwasobservedthatthestrainand stressvaluesdecreasedwithdecreasingaveragecrystallitesizeas thedopantconcentrationwasincreased

3.4 Surfacemorphologyandelementalanalysis FESEMimagesofZnOdopedwithdifferentconcentrationsof

Al2O3 areshowninFig.10(a)–(e).Intheimages,thegreygrains are ZnO grains and the white onesare Al2O3 grains It can be observedfrom themicrographsthatthesurface morphologyof

Al2O3 dopedZnOshows porousnatureand petal-shapedgrains orientedrandomlyofsizesvariesfrom190to276nm.Itcanbe seenthatastheAl2O3contentisincreasingthesamplesare becom-ingdense;showslessporesandthedistributionofthegrainsare

Trang 8

ARTICLE IN PRESS

G Model

JASCER-260; No of Pages 10

8 B Rajesh Kumar, B Hymavathi / Journal of Asian Ceramic Societies xxx (2017) xxx–xxx

Fig 8. Variation of D, ε,  and u with alumina concentration estimated from (a) UDM; (b) USDM; and (c) UDEDM.

Fig 9.Variation of crystallite size (D) and strain (ε) with alumina concentration obtained from SSP method.

uniform.TheEDSisrecordedtodeterminetheelemental

compo-sitionofZnOdopedwithdifferentconcentrationsofalumina.The

relativecompositionsobtainedfromEDSareinanatomicratioof

Zn/O/Alare46.90/51.27/1.83%,45.37/50.81/3.82%,44.88/49.28/5.84

and44.37/47.87/7.76%,42.54/48.50/8.96%forZnOdopedwith2,4,

6,8and10%ofAl2O3

4 Conclusions

ZnO doped with different concentrations of Al2O3 were synthesizedbyconventionalsolid-statereactionmethodand char-acterized by X-ray diffraction The results of Rietveld analysis indicate that thesamples belongs tothe hexagonalZnO phase (spacegroup186,P63mc)andthecubicAlphase(spacegroup225,

Trang 9

ARTICLE IN PRESS

G Model

JASCER-260; No of Pages 10

B Rajesh Kumar, B Hymavathi / Journal of Asian Ceramic Societies xxx (2017) xxx–xxx 9

Fig 10.FESEM images of ZnO doped with (a) 2% Al 2 O 3 ; (b) 4% Al 2 O 3 ; (c) 6% Al 2 O 3 ; (d) 8% Al 2 O 3 and (e) 10% Al 2 O 3

Fm-3m).Thelatticeparameters(aandc)ofthesamplesare

decreas-ingowingtothelatticecontraction,henceconfirmingthatAlhas

beensuccessfullydopedinthelattice.TheX-raypeakbroadeningof

thepreparedsamplesareduetothesmallcrystallitesizeandstrain

AmodifiedW–Hplothasbeenworkedouttodeterminethe

crystal-litesizeandstrain-inducedbroadeningduetolatticedeformation

andenergydensityvaluewithacertainapproximation.The

aver-agecrystallitesizeobtainedfromScherrer’sformula,W–Hanalysis

andSSPmethodshowsasmallvariationbecauseofthedifferencein

averagingtheparticlesizedistribution.Thestrainvaluesobtained

fromthegraphsplottedforvariousformsofW–Hanalysisi.e.,UDM,

USDM,andUDEDMwerefoundtobeaccurateandcomparable.The aboveexplainedmethodswerehelpfulindeterminingthe crystal-litesize,strain,stress,andenergydensityvalue,andamongthem SSPmethodishighlypreferabletodefinethecrystalperfection

References

[1] S Hingorani, V Pillai, P Kumar, M.S Muntai and D.O Shah, Mater Res Bull.,

28, 1303–1310 (1993).

[2] B Rajesh Kumar and T Subba Rao, Appl Surf Sci., 265, 169–175 (2013) [3] S.J Pearton, D.P Norton, K Ip, Y.W Heo and T Steiner, Prog Mater Sci., 50, 293–340 (2005).

Trang 10

ARTICLE IN PRESS

G Model

JASCER-260; No of Pages 10

10 B Rajesh Kumar, B Hymavathi / Journal of Asian Ceramic Societies xxx (2017) xxx–xxx

[4] X Zhang, X Pu, Y Chen, X Gu, D Xu and S Zhang, Mater Lett., 112, 129–132

(2013).

[5] M Chen, Z Pei, C Sun, L Wen and X Wang, J Cryst Growth, 220, 254–262

(2000).

[6] Th El-Nabarawy, A.A Attia and M.N Alaya, Mater Lett., 24, 319–325 (1995).

[7] C Leblud, M.R Anseau, E Di Rupo, F Cambier and P Fierens, J Mater Sci Lett.,

16, 539–544 (1981).

[8] E.Y Gutmanas, Prog Mater Sci., 34, 261–366 (1990).

[9] B.D Cullity and S.R Stock, Elements of X-ray Diffraction, 3rd ed., Prentice Hall,

New Jersey (2001).

[10] H.M Rietveld, Acta Crystallogr., 22, 151–152 (1967).

[11] D Balzar and H.J Ledbetter, Appl Crystallogr., 26, 97–103 (1993).

[12] B.E Warren and B.L Averbach, J Appl Phys., 21, 595–599 (1950).

[13] A Khorsand Zak, W.H Abd Majid, M.E Abrishami and R Yousefi, Solid State

Sci., 13, 251–256 (2011).

[14] C Suryanarayana and M.G Norton, X-ray Diffraction: A Practical Approach,

Plenum Press publishing, New York (1998).

[15] P Bindu and Sabu Thomas, J Theor Appl Phys., 8, 123–134 (2014) [16] Preetam Singh, Ashvani Kumar, Ajay Kaushal, Davinder Kaur, Asish Pandey and R.N Goyal, Bull Mater Sci., 31, 573–577 (2008).

[17] J Rodrigueg-Carvajal, FULLPROF 2000: A Program for Rietveld, Profile Matching and Integrated Intensity Refinements for X-ray and Neutron data, version 1.6, Laboratorie Leon, Brillouni, Gifsuryvette, France (2009).

[18] L.V Azaroff, Element of X-ray Crystallography, McGraw-Hill, New York (1968) [19] G.K Williamson and W.H Hall, Acta Metall., 1, 22–31 (1953).

[20] J Zhang, Y Zhang, K.W Xu and V Ji, Solid State Commun., 139, 87–91 (2006) [21] V.D Mote, Y Purushotham and B.N Dole, J Theor Appl Phys., 6, (6) 1–8 (2012) [22] J.F Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford University Press, New York (1995).

[23] M.A Tagliente and M Massaro, Nucl Instrum Methods Phys Res B, 266, 1055–1061 (2008).

Ngày đăng: 15/03/2023, 20:11

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w