1. Trang chủ
  2. » Tất cả

Đề ôn thi thpt môn toán 12 (279)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn thi thpt môn toán 12 (279)
Trường học Trường Đại Học Quốc Gia Hà Nội
Chuyên ngành Toán học
Thể loại Đề thi
Thành phố Hà Nội
Định dạng
Số trang 6
Dung lượng 116,75 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Phát biểu nào trong các phát biểu sau là đúng? A Nếu h[.]

Trang 1

Tài liệu Free pdf LATEX

(Đề thi có 5 trang)

BÀI TẬP ÔN TẬP MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

Câu 2. Tính lim

x→3

x2− 9

x −3

Câu 3. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 4. Cho hàm số y = f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b) B lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b)

C lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b) D lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b)

Câu 5. Tính lim

x→ +∞

x −2

x+ 3

Câu 6 Phát biểu nào sau đây là sai?

A lim qn= 0 (|q| > 1) B lim 1

nk = 0

C lim un= c (un = c là hằng số) D lim1

n = 0

Câu 7. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

2.

Câu 8. Tìm giới hạn lim2n+ 1

n+ 1

Câu 9. Dãy số nào có giới hạn bằng 0?

A un= −2

3

!n B un = n2− 4n C un = 6

5

!n D un = n3− 3n

n+ 1 .

Câu 10. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

1

Câu 11. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 2 log 2x

x3 B y0 = 1 − 4 ln 2x

2x3ln 10 . C y

0 = 1 2x3ln 10. D y

0 = 1 − 2 ln 2x

x3ln 10 .

Trang 2

Câu 12. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+ log23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

A m ∈ [0; 4] B m ∈ [0; 1] C m ∈ [−1; 0] D m ∈ [0; 2].

Câu 13. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất

Pmincủa P= x + y

A Pmin= 9

11 − 19

9 . B Pmin = 9

11+ 19

9 . C Pmin = 18

11 − 29

21 D Pmin= 2

11 − 3

Câu 14. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 15. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?

Câu 16. [12215d] Tìm m để phương trình 4x+

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

A m ≥ 0 B 0 ≤ m ≤ 9

4. C 0 ≤ m ≤

3

4. D 0 < m ≤

3

4.

Câu 17. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

A m < 0 ∨ m > 4 B m ≤ 0 C m < 0 D m < 0 ∨ m= 4

Câu 18. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 19. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m ≤ 1

4. B m <

1

1

4. D m >

1

4.

Câu 20. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey+ 1 B xy0 = ey

− 1 C xy0 = −ey

− 1 D xy0 = ey+ 1

Câu 21. Tính limcos n+ sin n

n2+ 1

Câu 22. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 23. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

A Dãy số unkhông có giới hạn khi n →+∞ B lim un= 1

2.

Câu 24. Tính lim 2n

2− 1 3n6+ n4

Câu 25 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

Trang 3

B Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

= 0

C Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

D Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

Câu 26. Tính lim n −1

n2+ 2

Câu 27. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun

vn bằng

Câu 28. Tính lim 5

n+ 3

Câu 29. Tính lim7n

2− 2n3+ 1 3n3+ 2n2+ 1

-2

3.

Câu 30. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

2.

Câu 31. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng

A. a

3

a

a

3.

Câu 32. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

A 2a

√ 6

√ 3

Câu 33. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng

A. b

a2+ c2

a2+ b2+ c2 B. c

a2+ b2

a2+ b2+ c2 C. a

b2+ c2

a2+ b2+ c2 D. abc

b2+ c2

a2+ b2+ c2

Câu 34. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng

A. a

6

a√6

√ 6

6 .

Câu 35. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

A a

√ 57

2a√57

a√57

19 .

Câu 36. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng

2

a2+ b2 B. ab

a2+ b2 C. √ ab

a2+ b2 D. √ 1

a2+ b2

Câu 37. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng

Trang 4

A. a

2

√ 2

2 .

Câu 38. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. 5a

2a

8a

a

9.

Câu 39. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

2 .

Câu 40. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và

AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

A 2a

√ 2

a

√ 2

√ 2

Câu 41. Xét hai câu sau

(I)

Z

( f (x)+ g(x))dx =

Z

f(x)dx+

Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)

(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)

Trong hai câu trên

A Chỉ có (I) đúng B Cả hai câu trên đúng C Cả hai câu trên sai D Chỉ có (II) đúng.

Câu 42 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx B.

Z

f(x)g(x)dx=Z f(x)dx

Z g(x)dx

C.

Z

k f(x)dx= f

Z

f(x)dx, k ∈ R, k , 0 D.

Z ( f (x) − g(x))dx=

Z

f(x)dx −

Z g(x)dx

Câu 43 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

u0(x)

u(x)dx= log |u(x)| + C

B F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

C F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

D Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

Câu 44. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

B Cả ba câu trên đều sai.

C F(x)= G(x) trên khoảng (a; b)

D F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

Câu 45 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

B Cả ba đáp án trên.

C Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

D F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

Trang 5

Câu 46. Hàm số f có nguyên hàm trên K nếu

A f (x) có giá trị nhỏ nhất trên K B f (x) xác định trên K.

C f (x) có giá trị lớn nhất trên K D f (x) liên tục trên K.

Câu 47. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu f (x)= g(x) + 1, ∀x ∈ R thì

Z

f0(x)dx=

Z

g0(x)dx

B Nếu

Z

f(x)dx=

Z g(x)dx thì f (x)= g(x), ∀x ∈ R

C Nếu

Z

f(x)dx=

Z

g(x)dx thì f (x) , g(x), ∀x ∈ R

D Nếu

Z

f0(x)dx =

Z

g0(x)dx thì f (x) = g(x), ∀x ∈ R

Câu 48. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

A Câu (III) sai B Không có câu nào

sai

C Câu (I) sai D Câu (II) sai.

Câu 49. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Chỉ có (II) đúng B Cả hai đều sai C Chỉ có (I) đúng D Cả hai đều đúng.

Câu 50 Mệnh đề nào sau đây sai?

A.

Z

f(x)dx

!0

= f (x)

B F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

C Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

D Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

HẾT

Trang 6

-ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã đề thi 1

Ngày đăng: 10/03/2023, 23:27