1. Trang chủ
  2. » Tất cả

Lecture physics a2 angular momentum, atomic states, the pauli principle huynh quang linh

10 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Angular Momentum, Atomic States, & the Pauli Principle
Trường học Unknown University
Chuyên ngành Physics
Thể loại Lecture
Năm xuất bản Unknown Year
Thành phố Unknown City
Định dạng
Số trang 10
Dung lượng 1,36 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Summary of s-states of H-atomof the Coulomb potential, one needs to solve the radial SEQ  The zeros in the subscripts below are a reminder that these are states with zero angular moment

Trang 1

Lecture 11: Angular Momentum, Atomic

States, &

the Pauli Principle

2

0

2

Parametric Curve

2

2

x20( ) t

2

|Y 20 |

1 0

1

Parametric Curve

1.2

1.2 x21( ) t

1.2

|Y 21 |

1 0

1

Parametric Curve

1.2

1.2 x( ) t

1.2

|Y 22 |

z

1 0

1

Parametric Curve

1.2

1.2 x11( ) t

1.2

1

0

1

Parametric Curve

1.2

1.2

x10( ) t

1.2

z

1

0

1

Parametric Curve

1.2

1.2

y( ) t

1.2

|Y 00 |

z

Trang 2

 Radial wave functions

 Angular wave functions

 Quantization of Lz and L 2

 Spin and the Pauli exclusion principle

 Stern-Gerlach experiment

 Nuclear spin and MRI

Trang 3

Summary of s-states of H-atom

of the Coulomb potential, one needs to solve the radial SEQ

 The zeros in the subscripts below are a reminder that these are states with zero angular momentum.

0

0.5

1

1

0

f( ) x

4

R 10

0

/ 0

,

1 (r) e r a

r

R 20

0 0.5

1 1

.2 h( ) x

10

0

0 2 / 0

0 , 2

2

1 )

a

r r





 

R 30

0

2 3

.5 d4( ) x

15

0

3 / 2

0 0

0 , 3

3 2

2 3 )

a

r a

r r





) r ( ER )

r (

R r

e r

r r

1 m 2

2 2

2 2





(spherically symmetric)

Trang 4

The Ylm(q,f) are known as “Spherical harmonics”.

They are related to the angular momentum of the electron

Wavefunction of the H-atom

(SEQ) in spherical coordinates is a product

wave function of the form:

x

y z

r

q

f

) , ( )

( )

, ,

with quantum numbers: n l and m

principal orbital magnetic

(angular momentum)

Last lecture we studied the properties of the radial part

Today we will examine the angular part

Trang 5

Quantized Angular Momentum

 The  dependence of our

wavefunction must have the form

Re( y )

f

r

But, l = h/pt, where pt is the tangential momentum of ‘orbiting’ electron:

The angular momentum along a given axis can have only quantized values:

Lz = 0,   ,  2,  3,

pt r = Lz = m

m = 0, 1, 2, 3,

Reminder: e im f = cos(m f ) + i sin(m f )

2 p r = m l m = 0,  1,  2,  3, m = ‘orbital’ magnetic quantum number

 Semi-classical ‘argument’ for angular momentum quantization: An integer

number, m, of wavelengths must fit around the circle (radius r ) above!

Quantization arises because only certain wavelengths fit around path.

l m

Y q f  e

Trang 6

Summary of quantum numbers for the H-atom:

The “l” Quantum Number

The quantum number l in the angular wave function Ylm(q,f) tells the total angular momentum L

L 2 = Lx2 + Ly2 + Lz2 is quantized The possible values of L 2 are:

momentum about a given axis

, 2 , 1 , 0 l

where )

1 l

( l

, ,

0 m

m

Principal quantum number:

n = 1, 2, 3, ….

Orbital quantum number:

l = 0, 1, 2, …, n-1

Orbital magnetic quantum number:

m = -l, -(l-1), … 0, … (l-1), l ( = m l )

Trang 7

Classical Picture of L-Quantization

e.g., l = 2 Ll ( l1 )22 ( 21 )26

Classically, the angular momentum vector precesses around the z axis.

Why can’t the orbital angular momentum vector simply point in a

specific direction, e.g., along z ?

If it did, then that would mean that r and p must both be in the x-y

plane But that means that there would be no position uncertainty

D z in the z-direction, nor any momentum uncertainty D pz, i.e., D z =

D pz =0 , in violation of the Uncertainty Principle.

L =  6 

Lz

+2

+

0

-

-2

L   r p

Trang 8

Probability Density of Electrons

Probability density = Probability per unit volume = ynlm 2  Rnl2 Ylm2

The density of dots plotted below is proportional to ynlm 2

Trang 9

The Angular Wavefunction, Ylm( q ,)

 The angular wavefunction may be written: Ylm(q,) = P(q)eim 

where P(q) are polynomial functions of q

1 0

1

Parametric Curve

1.2

1.2 y( ) t

1.2

|Y 00 |

z

0

q

l =0

p

4

1

0

,

Y

polar plots of the q-dependent part of |Ylm( q ,  )| (i.e., P(q)):

Y 00

z

x

y

1 0

1

Parametric Curve

1.2

1.2 x10( ) t

1.2

|Y 10 |

z

l =1

0

q

q cos

0 ,

1 

Y

Y 10

y z

x

Re{Y 11 }

z

x

y

1 0

1

Parametric Curve

1.2

1.2 x11( ) t

1.2

q

q

sin

1 ,

1 

Y

(Length of the dashed arrow is the magnitude of Ylm as a function of q )

Trang 10

The Angular Wavefunction, Ylm( q ,)

q

l = 2

2 0

2

Parametric Curve

2

2 x20( ) t

2

1 0

1

Parametric Curve

1.2

1.2 x21( ) t

1.2

1 0

1

Parametric Curve

1.2

1.2 x( ) t

1.2

|Y 20 |

|Y 21 |

|Y 22 |

z

3 cos2 1

0

,

2  q 

Y

q

q cos sin

1 ,

2 

Y

q

2 2

,

2  sin

Y

q

q

z

z

z

x

Ngày đăng: 02/03/2023, 13:31

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w