NGHIỆM ĐA THỨC CỦA HỆ DỪNG TUYẾN TÍNH 110 Le Hai Trung SOLUTIONS OF POLYNOMIALS FOR LINEAR STATIONARY SYSTEM WITH CONDITIONS TO STATE FUNCTION AND CONTROLLIBILITY FUNCTION NGHIỆM ĐA THỨC CỦA HỆ DỪNG T[.]
Trang 1110 Le Hai Trung
SOLUTIONS OF POLYNOMIALS FOR LINEAR STATIONARY
SYSTEM WITH CONDITIONS TO STATE FUNCTION AND
CONTROLLIBILITY FUNCTION
NGHIỆM ĐA THỨC CỦA HỆ DỪNG TUYẾN TÍNH VỚI ĐIỀU KIỆN
LÊN HÀM TRẠNG THÁI VÀ HÀM ĐIỀU KHIỂN
Le Hai Trung
1 The University of Danang, University of Education; Email: trungybvnvr@yahoo.com
Abstract - The aim of this article is to prove that, solution x(t) (state
function) of the linear stationary dynamic system
x t =Bx t +Du t , which transfers the system from any initial
conditions in to any final conditions and at the same time satisfies
conditions given for the controllability function u t( ) is possible to
find in the type of polynomials of degree r+ (k+ 2)(p+ − 1) 1 with
vector coefficients The basis of the theory is a method to prove the
cascade splitting to transform the original system into an equivalent
system, which means that after the final step of conversion routines
p, we get a system that is completely controllability (see [3], [4]) In
the final step, we obtain a pseudo-state function x p (t) satisfying the
conditions and substituting this in the previous step Continuing this
process until we obtain x(t)
Tóm tắt - Nội dung bài báo chứng minh được rằng, nghiệm x(t)
(hàm trạng thái) của hệ dừng động học tuyến tính
x t =Bx t +Du t , dịch chuyển hệ từ trạng thái ban đầu bất kỳ đến trạng thái cuối tùy ý và đồng thời thỏa mãn các điều kiện cho trước đối với hàm điều khiển u(t), có thể tìm được dưới dạng đa thức bậc r+ (k+ 2)(p+ − 1) 1 với các hệ số vector Cơ sở lý thuyết của phép chứng minh dựa trên phương pháp phân tách hệ phương trình ban đầu thành các hệ tương đương, nghĩa là sau một số hữu hạn bước biến đổi, ta đưa được hệ về giai đoạn cuối p mà tại đó
hệ là hoàn toàn điều khiển được (xem [3], [4]) Tại đây, sau khi tìm được hàm giả trạng thái x p (t) thỏa mãn các điều kiện, ta tiến hành thế ngược trở lại vào giai đoạn trước đó Tiếp tục quá trình trên cho đến khi nhận được x(t)
Key words - state function; controllability function; linear stationary
dynamic system; polynomial solutions; method cascade splitting
Từ khóa - hàm trạng thái; hàm điều khiển; hệ dừng động học tuyến
tính; nghiệm đa thức; phương pháp phân tách
1 Rationale
For the calculation of the entire dynamic system and
control:
where ( ) n,
x t R ( ) m;
u t R B D, - is the matrix with
corresponding size, t[0, ],T the requirement is to find the
vector-controllability function u t , which transforms ( )
system (1) from the initial statex to terminal state 0 T
x
through kcheckpoints arbitrary and adds to the boundary
conditions for the control function ( )u t and derivative at
,
i
t=t i=0,1, ,k+1, 0= t0 t1 t k+1=T
In [1], [2] the system (1) with conditions:
0
(0) , ( ) T,
the function ( )u t is built in the form:
0
T
tB sB sB TB T
u t =D e e− DD e ds − e− x −x
and in [3]: ( ) tB p ( ),
p r
u t =D e P t+
where ( )u t =P t r( ) polynomial with variable t , matrix
,
D B+ described later
But with the emergence of the hat matrix brings ( )u t
many difficulties in the study and the nature of the survey,
( )
u t and ( ) x t in practice, so the article will introduce how
to define functions ( )u t , ( ) x t variables as a polynomial
according to the time t To accomplish that, we building
functions ( )u t , ( ) x t in polynomials form of a high enough
level and then surveyed them as additional parameters
A Ailon (see [5]) in 1986 for the system (1) with conditions (2) has demonstrated that existed in the form of
a polynomial function ( )u t with smaller steps 2n In [4]
demonstrated that "control function can be represented as
a polynomial M =2r+1, r= −n rankD."
The following example shows the result can be made more precise At the system:
1 2
2 1
3 4
4 2
=
=
=
=
(3)
with conditions 0
i i
x =x ( ) T,
x T =x i =1, 2,3, 4 we have:n =4, rankD =2, M =5, therefore existing
1( ) 5( ), 3( ) 5( )
u t =P t u t =P t (P t subsequent steps i i( ) polynomial coefficient vector) But the system is constituted by the two independent systems:
1
1 ,
j j
j j
+ +
=
0
(0) , ( ) T, 1,3; 1, 2,3, 4
systemn =2, rankD =1, M =3, inferred
u t =u t =P t
In [5] the system (1) - (2) with the additional conditions
x =x 0 T, x t( )=P3p+2( )t , where p=minq , q
satisfy criterion Kalman’s (see[1]) and ( ) k( ), 3 2
u t =P t k p+
Trang 2THE UNIVERSITY OF DANANG, JOURNAL OF SCIENCE AND TECHNOLOGY, NO 6(79).2014, VOL 1 111
In the case of leaving x( ) =x, the conditions
corresponding polynomial of degree does not exceed
2p +1 Note that, M =2p+1 if and only if each one
contains a matrix control system linearly independent
vector, ie:
rank DBD B D = +i i= n−
In [3] proved that the system (1) - (2) is full controller
if and only if q to D q is subjective (Q = q 0) and the p
smallest number
In this article, we just examine the general control
problem The requirement ( )x t is to get the value t i in any
one given arbitrary values:
0 0
( )i i, 0,1, , 1, ,
x t =x i= k+ k (4)
and for ( )u t :
( ) i, 0,1, , , 0,1, , 1,
i
j
j u t i u i j i r i i k
where j i
i
u is the given vector, s is the derivative t
level s Requirements set out to build ( ) x t and ( ) u t in
polynomials with conditions (1), (4), (5)
The above problem occurs when the determination of
control system dynamics to the conditions experienced
"orbit" ( )x t and check points 0
0
( ,t x i i), checked by the driver at the time t , for example, in the problem of motion i
of the object with the soft landing v.v…
Note that the condition (4), (5) is transferred through
the following conditions (1):
i
des
0,1, , 1, i 0,1, , i 1
2 Results and Survey Research
To construct ( )x t and ( ) u t , we use the split method of
equation (1) into the equation in the subspace, is described
in [3], to make a few changes, use:
CL R R then:
ker ,
R =imC + C R =imC+kerC T (7)
and solve equations Cv = corresponding to w v if and
only if Qw =0
When v=C w+ +Pv, where ,Q P is the projections on
kerC T, ker C in formula (7), 1 1
C+=C− I−Q C− is
invertible matrix of the matrix C in imC T,I- identity
matrix, Pv is an element in ker C
Using the results with C=D for (1) we get: equation
(1) corresponds solved ( ) u t if and only if conditions occur:
( ) ( )
With the above conditions which are met, we have:
u t =D x t+ −D Bx t+ +Pu t
where Pu t( )is a function-vector in ker D
Expression (8) is transformed into:
Qx t =QBQ Qx t +QB I−Q I−Q x t (9) Notation:
1
( ) ( ),
Qx t =x t (I−Q x t) ( )= y t1( ),QBQ=B1,
1
QB I−Q =D
Then (9) has the form:
where B D1, 1in subspace
Conditions (6) and expression (8) move to:
i
des
j j
j x t i Qx i x i i k j i r i
In that way, the equation (1) with conditions (4), (5) is equivalent to the following relationship:
u t =D x t+ −D Bx t+ +Pu t (12)
1( ) 1( ) 1( ),
1( ) 1 1( ) 1 1( ),
with conditions (11) Where Pu t is function-vector in( )
ker D and satisfy conditions:
( ( )) i, 0,1, , 1, 0,1, ,
i
j
j Pu t i Pu i i k j i r i
Element Pu t can be found in the form ( ) P t , r( )
0
k i i
=
= , so we have the following proposition:
Lemma 2 There exists a polynomial P t satisfying s( )
the following conditions:
1
0
i
k j
i
=
(16) Indeed, for
0
( )
s i
i
=
= condition (16) with t =0 0 we obtain:
0
0
1 , 0,1, ,
!
j i
Review
0 1
s i
i
= +
0
0
1
!
i
j
=
To determine the remaining coefficientsb , from i
conditions (16) we obtain the system:
0 0
0 0
1 0
1 0
s
s
s
s
− +
+
+
(17)
0,1, , 1
i= k + With each i generation the ratio of the
formation of thei+ determinant line Wronxki for the 1 function 0 1
, , s
t+ t at the point t and the determinant of i
Trang 3112 Le Hai Trung system (17) has non-zero value (see [6])
Consider the expression (14), where
DL imD D Lemma 1 gives us:
1T ker 1, ker T 1 ker 1T
1, 1
Q P is the projections on kerD1T, kerD1 in (18),
1 1 ( 1), 1
D+ =D− I−Q D− is invertible matrix of the matrix
1
Donto imD1T
Equation (14) solved y t1( )if and only correspond to
satisfy conditions:
when:
1( ) 1 1( ) 1 1 1( ) 1 1( ),
y t =D x t+ −D B x t+ +P y t P y t1 1( )kerD1
Equation (19) is transformed to the form:
1 1( ) 1 1 1( 1 1( )) 1 1( 1)( 1) ( ).1
Q x t =Q B Q Q x t +Q B I−Q I−Q x t (20)
Notation:Q x t1 1( )=x t2( ),(I−Q x t1) ( )1 =y t2( ),
1 1 1 2,
Q B Q =B Q B I1 1( −Q1)=D2, when (20) is equation:
2( ) 2 2( ) 2 2( ),
similar to (1) and (14), but in the space "narrow" than
From conditions (11) and expression (14) we move on:
i
des
Note that the functions x t required to satisfy more 2( )
2
k + conditions thanx t 1( )
Now equation (1) with conditions (4), (5) is equivalent to:
u t =D x t+ −D Bx t+ +Pu t
2 2 1
( ) ( ) ( ) ( ),
x t =x t +y t +y t
y t =D x t+ −D B x t+ +P y t
1
with condition (22) and any function P y t1 1( )kerD1,
satisfying the following conditions:
1 1( ) 1( ) ( ) 1( ) 0i,
j
j P y t i j P I Q x t i P I Q x i
0,1, , 1, i 0,1, , i 1
To the extent that P y t allows us to grab1 1( ) P r k+ +1,
satisfying conditions (25) It exists by Lemma 2
Thus (28) is modified by using the Lemma 1 when
2
C=D , we do so with the value q By that statement:
Lemma 3 Equation (1) with conditions (4), (5) is
equivalent to system:
u t =D x t+ −D Bx t+ +Pu t (26)
( ) ( ) ( ),
s s s s s s s s
y t =D x t+ −D B x t+ +P y t (28)
1 1
x t =B x t +D y t s= p− (30)
with conditions:
1 1
des
j j
j x t s i j Q x s− s−i x s
0,1, , 1, i 0,1, , i ,
and P y t s s( )kerD s :
j
j P y t s s i j P I s Q s− x s− t i P I s Q s− x s− i
0,1, , 1, i 0,1, , i 1
Where,
Q B− − I−Q− =D DL imD− D− Q P is s, s
the projections on ker T
s
D and:
imD− =imD + D D− =imD + D
D+ =D− I−Q D− - is the inverse matrix of the matrix
s
Don T
s
imD
To build x t and ( ) u t , we build enough ( ) x t p( ) polynomial form P r+ +(k 2)(p+ −1) 1( )t , satisfying conditions (32) and polynomial construction P y t p p( ) satisfies (32),
s= In (29) with p s= −p 1 received x s−1( )t To the extent that P y s−1 s−1( )t we get the polynomial, satisfying (32) whens= −p 1 Find the formula (27) with s= − p 1 polynomial y s−1( )t In (29) with s= −p 1 received x s−2( )t
v.v….Summary ( )x t and ( ) u t are determined by formulas
(27) to getPu t in Lemma 1 ( ) Thus to prove:
Theorem The existence of the state function ( ) x t of system (1) with conditions (4), (5) as a polynomial according t to coefficient vector of degree
r+ k+ p + − and the control functions ( ) u t as a polynomial of degree not exceeding r+(k+2)(p + − 1) 1
Remark 1 With no math test scores ( k =0) and limited
to the control function ( )u t ( r =0), the functions ( )x t and
( )
u t can be built-order as polynomials of degree not exceeding 2 p+ 1 M These results, as seen, can not do better
Remark 2 When addressing the problem of control does
not necessary have to build the projectionsP Q Maybe i, i from the equation (1) representing the amount of ingredients
as much as possible through function ( )u t composition of
functions ( )x t A portion ( ) u t of the remaining Pu t ( ) Conditions of solving equation (1) is written as
1 (.) 1 ( ) 1
x = x + y , inferred x1=B x1 1+D y1 1 v.v… Received
1, 1
B D may not coincide with B D in section 1, because 1, 1
we have different representations of space:
Trang 4THE UNIVERSITY OF DANANG, JOURNAL OF SCIENCE AND TECHNOLOGY, NO 6(79).2014, VOL 1 113
and the corresponding projection by the way is not the
only determining
However, p ( Q = p 0) is fixed for any space division,
which testifies to the Kalman’s criterion (see [1])
REFERENCES
[1] Красовский Н Н Теория управления движением Издательство
«Наука», Москва 1968 475 с
[2] Уонэм М Линейные многомерные системы управлегия
Издательство «Наука», Москва 1980 375 с
[3] Раецкая Е В Критерий полной условной управляемости
сингулярно возмущенной системы Оценки функции состояния
и управлющей функции Кибернетика и технологии XXI века:
Воронеж, 2004 с 28 – 34
[4] Раецкая Е В Условная управляемость и наблюдаемость
[5] линейных систем: Дисс канд физ – мат наук Воронеж, 2004 [6] Ailon A., Langholz G More on the cintrollability of linear
time-invariant systems Int J Contr 1986 44 № 4 P 1161 – 1176
[7] Зубова С П, Ле Хай Чунг Об полиномиальных управлениях
линейной стационарной системы с контрольной точкой
Современные проблеммы механики и прикладной математики Сборник трудов международной школы – семинара Воронеж
2007 – с 133-136
[8] Каган В Ф Теория определителей Одесса, Гос Из – во
Украины, 1922 – 521 с
[9] S P Zubova, LeHaiTrung Construction of polynomial controls for
linear stationary system with control points and additional constrains Automation and Remote Control No: Volume 71,
Number 5 Pages: 971-975 2010
[10] Lê Hải Trung Về hàm trạng thái đa thức cho hệ dừng động học
tuyến tính Tạp chí Khoa học và Công Nghệ Đại học Đà Nẵng Số:
11[60] Trang: 53 - 57.2012
(The Board of Editors received the paper on 01/06/2014, its review was completed on 18/06/2014)