THE UNIVERSITY OF DANANG, JOURNAL OF SCIENCE AND TECHNOLOGY, NO 6(79) 2014, VOL 1 1 A STUDY ON THE ESTABLISHMENT OF EXPERIMENTAL DATA PROCESSING ALGORITHMS IN MECHANICAL ENGINEERING NGHIÊN CỨU XÂY DỰN[.]
Trang 1THE UNIVERSITY OF DANANG, JOURNAL OF SCIENCE AND TECHNOLOGY, NO 6(79).2014, VOL 1 1
A STUDY ON THE ESTABLISHMENT OF EXPERIMENTAL DATA
PROCESSING ALGORITHMS IN MECHANICAL ENGINEERING
NGHIÊN CỨU XÂY DỰNG THUẬT TOÁN XỬ LÝ SỐ LIỆU THỰC NGHIỆM
TRONG LĨNH VỰC CƠ KHÍ
Luu Duc Binh
The University of Danang, University of Science and Technology; Email: ldbinh@dut.udn.vn
Abstract - In the engineering sector in general and in particular
Mechanical engineering, experiment is crucial to prove the theory;
build a relationship between the input - output parameters to
analyze trends, developments between the parameters, or to find
out the optimal parameters to meet specific goals Experimental
data processing is decision to the process of experimentation The
data processing can be calculated manually or by computer
applications This paper presents the use of Matlab software to
build data processing algorithms for level 2 Box-Hunter planning
with 3 input parameters to find the regression equation, creating a
basis for developing user interface to show the required graph
Tóm tắt - Trong các ngành kỹ thuật nói chung và Cơ khí nói riêng,
thực nghiệm là công việc hết sức quan trọng nhằm chứng minh lý thuyết; xây dựng mối quan hệ giữa các thông số đầu vào - đầu ra
để phân tích xu hướng, diễn biến giữa các thông số, hoặc tìm ra
bộ thông số tối ưu nhằm đáp ứng mục tiêu cụ thể nào đó… Xử lý
số liệu thực nghiệm mang tính quyết định đến quá trình thực nghiệm Việc xử lý số liệu có thể bằng tính toán thủ công hoặc ứng dụng máy tính Bài báo này trình bày việc sử dụng phần mềm Matlab xây dựng thuật toán xử lý số liệu cho quy hoạch thực nghiệm quay đều bậc 2 Box-Hunter với 3 thông số đầu vào để tìm
ra phương trình hồi quy, tạo cơ sở xây dựng giao diện với người
sử dụng thể hiện các đồ thị cần thiết
Key words - experiments; data processing; planning; Box-Hunter;
Matlab
Từ khóa - thực nghiệm; xử lý số liệu; quy hoạch thực nghiệm;
Box-Hunter; Matlab
1 Problem statement
Technically, among various methods proposed in the
literature to solve problems, resorting to solve the so-called
‘extremal’ problem in order to obtain the optimal
conditions or the optimal values of a MIMO system In
general, according to the number of objects, the systems to
be controlled or optimized are usually complex Therefore,
most of the solutions can be gained experimentally
An active strategy to implement the experiments is
proposed by Ronald Fisher in 1935 to solve the biological
problems Furthermore, G Box, Wilson, Hunter, Cohran
develop an improvement based on the theory of
experimental extreme mathematics around 1950 In
Vietnam, experimental planning is first applied from the
1970s
The most important task of the experimental planning
is the data processing after the experiments This process
can be implemented manually that leads to spend a lot of
time and effort However, there are some cases that cannot
be executed
Computer applications in data processing are the
inevitable trend today However, the use of commercial
software for data processing, such as Minitab, Stata, SPSS,
etc just solves the "flame" of the problem Meaning that, it
is used to input the data and to deduce the results, while
processing algorithms are entirely a "secret technology" of
the software vendors
The initiative in data processing algorithms for all kinds
of different experimental planning will help researchers
understand the experimental nature and the initiative in
data processing as well as allow to establish the interaction
impacts and the influence of high order of factors
For instance, in [6, 7], the authors proposed data
processing algorithms used in Matlab for second order rotatable designs Box-Hunter with 3 inputs and 1 output If the number of inputs is more than 3, it is difficult to geometrically perform the relationship between the inputs and the output, as well as hard to analyze the influence of each input on the output How to choose 3 appropriate inputs now becomes a popular issue in Mechanical Engineering today
2 Preliminaries in Box-Hunter Planning
Box-Hunter planning is a mixed second order rotatable designs This is currently the best planning due to the fact that the rotatable nature makes the accuracy of the regression equation be the same for all the spatial elements, which have the same distance to the center of the planning The combination of the uniform properties and the rotary properties makes the variance be constant in certain areas from the planning center
Figure 1 Box-Hunter diagram, with k = 3
The structure of the uniform rotatable planning of k elements includes: the orthogonal part comprises n1
X1
X2
X3
(-1,+1,-1)
(-1,+1,+1) (-1,-1,+1)
(+1,-1,+1) (+1,+1,+1)
(-1,-1,-1) (0,0,+)
(0,0,-)
(0,+,0) (0,-,0)
(-,0,0)
(+,0,0)
Trang 22 Luu Duc Binh experiments constructed fully empirically, 2k experiments
at points (*) and n0 experiments at the center
With k = 3, the corresponding numbers of experiments
are: n1 = 8; 2.k = 6; n0 = 6; the arm = 1,682 [1, 3, 4]
The regression equation has a form as:
2
k
i i i j ij i j ii i
In [1], after solving the systems of matrices equations,
we obtain the closed form of the coefficients and the
variance as follows:
2
3 1
n
j
=
4
1
n
j
=
0
1
Sb =a S ts (6)
3
i
4
iu
b =a S ts
(8)
ii
b = a +a S ts =a S ts (9) The regenerated variance is defined by the experiments
at the center planning:
( )
0 0
2 1
0 1
n
u u ts
S
n
=
−
=
−
(10) with the regenerated degree of freedom:
Total squared residuals of objective function values is
calculated by the regression equation:
( )2 1
n
i
=
Total squared residuals of objective function values is
calculated empirically:
0 0 1
n
u
=
= − (13) The degree of freedom of the residual variance:
fdu = n - h - (n0 - 1) (14)
where, h: the quantities of parameter bi has significant
in the regression equation
Residual variance is calculated as:
2
0 1
du
du
S
Normalized Fisher coefficient is calculated as:
2
2
du t ts
S F S
3 Data processing algorithms
3.1 Flowchart algorithm
The regression equation performing the relationship between input-output is established by three following tasks [1]:
- Estimate the coefficient “b”
- Check the meaning of the coefficients b
- Check the compatibility of the regression equation Then, the flowchart algorithm is described as in Figure 2
3.2 Data processing algorithm in Matlab
For the convenience in usage and management, our programs are coded in many files (file.m) In this paper, we briefly present some main steps; the full program is described in [2]
3.2.1 Import of Data
The data import is created by file “Solieu.m” with data such as: Student number, Fisher number; marginal value of coded variables; coefficient a1 a7; experimental matrix X and experimental results Y
% Box-Hunter design with 3 factors
% Data
tb = 3.365; %t(p,f) Student coefficient with P=0.99 and f=m-1=5
anfa = 1.682;
Fbang = 10.2; % fisher with F(0,01;9;5)
lb = [-1.682 -1.682 -1.682]; ub = [1.682 1.682 1.682]; % the variation of factors
k = 3;
a = [0.1663 0.0568 0.0732 0.125 0.0625 0.0069 0.0568]; % a: handbook
% Matrix x1 = [1 1 1 1 1 1 1 1 anfa -anfa]';x1(20)=0;
x2 = [1 1 1 1 1 1 1 1 0 0 anfa -anfa]';x2(20)=0;
x3 = [1 1 1 1 1 1 1 1 0 0 0 0 anfa -anfa]';x3 (20)=0;
%y: data from experiment
y = [25.86 23.12 25.23 24.40 25.76 22.88 25.07
24.08 26.51 21.30 25.14 24.81 25.81 25.26
25.82 25.80 25.73 25.59 25.89 25.55]';
Trang 3THE UNIVERSITY OF DANANG, JOURNAL OF SCIENCE AND TECHNOLOGY, NO 6(79).2014, VOL 1 3
In this example, experimental data is used in [7]
Figure 2 Flowchart of data processing algorithms
3.2.2 Implementation and results
We code the data processing programs based on the
proposed algorithm in Figure 2 The full program is
presented in [2]
The results consisting of coefficient b, conclusions of the regression equation are then displayed as:
Figure 3 Results
However, for the simple understanding of the results as well as to perform these results in geometrical form, the author has built a human-machine interface as showed in Figure 4
Figure 4 Human-machine interface
The right hand side of the interface shows the data import, the coefficients b and the regression equation In addition, it also shows the optimal input values when the output reaches the extremes
The left hand side of the interface describes the graphs The graphs present the relationship between the two out of three input elements and the output element; the remaining
Calculated b and
variance Sb:
eq (2) (9)
Calculated generated
variance Sts; Residual
variance Sdu; Ft:
eq (12) (16)
Testing
the compatible
of temporary regression
equation:
F t < F b
The regression
equation with level
Real variance
End
Data import:
Matrix X, Y; a; the
variation of factors; ;
coefficient Student t b ; F b
Testing
the significant
of coefficients b:
Retesting the significant coefficients:
least square method
T
F
T
F
Temporary
regression equation
Increase ;
decrease the variation of factors
Removing the insignificant coefficients
Trang 44 Luu Duc Binh input value can be selected by the optimal value or a
random value in a defined domination by a simple and
visual operation on the interface Simultaneously, the
interface also represents the contour line of graph in order
to choose the optimal value for those two inputs
4 Conclusion
This paper proposes the data processing algorithms for
Box-Hunter planning with three inputs It is the basis for
the computer application in experimental data processing
In comparison with the manual data processing which
encounters with some problems such as taking a long time,
being confused easily and the error caused by rounding the
results, the proposed algorithm is rapidly, reliable with
high accuracy, visual performance It can be applied in
scientific research with good results
In future work, we will invest in the algorithms for the
other experimental plannings such as: Wilson;
Box-Behnken; TNT, TNR…
REFERENCES
[1] Lưu Đức Bình, Quy hoạch thực nghiệm trong lĩnh vực Cơ khí, Đại
học Đà Nẵng, Bài giảng cao học ngành Công nghệ chế tạo máy,2013
[2] Lưu Đức Bình, Nghiên cứu ảnh hưởng của các thông số công nghệ
đến chất lượng quá trình gia công bằng tia lửa điện, Luận án Tiến
sĩ kỹ thuật, Đại học Đà Nẵng, 2012
[3] PGS.TS Nguyễn Hữu Lộc, Phân tích và quy hoạch thực nghiệm,
Đại học Quốc gia TP HCM, 2012
[4] PGS.TS Nguyễn Doãn Ý, Quy hoạch và xử lý số liệu thực nghiệm,
Nhà xuất bản Xây dựng, Hà Nội, 2006
[5] GS TSKH Nguyễn Phùng Quang, Matlab và Simulink dành cho kỹ
sư điều khiển tự động, Nhà xuất bản Khoa học và Kỹ thuật, Hà Nội,
2005
[6] Hoàng Vĩnh Sinh, Trần Xuân Tùy, Lưu Đức Bình, Tối ưu hoá quá
trình gia công cắt dây tia lửa điện với mục tiêu đạt năng suất gia công cao nhất, Tạp chí Khoa học & Công nghệ các Trường Đại học
Kỹ thuật, số 84 (69-73), 2011
[7] Lưu Đức Bình, Xây dựng giao diện trên máy tính cho việc lựa chọn
các thông số công nghệ trên máy cắt dây tia lửa điện, Tạp chí Khoa
học & Công nghệ, Đại học Đà Nẵng, số 54, 2012
(The Board of Editors received the paper on 15/02/2014, its review was completed on 13/03/2014)