chap11 slides fm M Vable Mechanics of Materials Chapter 11 Pr in te d fr om h ttp // w w w m e m tu e du /~ m av ab le /M oM 2n d ht m Stability of Columns • Bending due to a compressive axial load is[.]
Trang 1August 2012 11-1
Stability of Columns
Learning objectives
structure instabilities.
design of structures.
Trang 2Buckling Phenomenon
Energy Approach
Bifurcation/Eigenvalue Problem
Stable Equilibrium
Neutral Equilibrium
Unstable Equilibrium Potential Energy is Minimum
θ L
Lsinθ
(c)
R
Stable Stable
Unstable Unstable
PL Kθ⁄ = θ⁄ sinθ
Trang 3August 2012 11-3
Snap Buckling Problem
L P
P (45−θ)
P
L cos(45-θ)
0 < <θ 45o
P
L cos(θ−45)
P
(θ−45)
P
K L L
- = (cos(45 – θ) – cos45)tan(45 – θ) 0 < <θ 450
P
K L L
- = (cos(θ 45– ) – cos45)tan(θ 45– ) θ 45> 0
Trang 4Local Buckling
crinkling
Axial Loads
Compressive Torsional Loads
Trang 5August 2012 11-5
rigid bars as shown.The springs can act in tension or compression and resist rotation in either direction Determine Pcr, the critical load value
Fig C11.1
30 in
O
P
k = 8 lbs/in
30 in
k = 8 lbs/in
K = 2000 in-lbs/rads
Trang 6Euler Buckling
Boundary Value Problem
Boundary conditions:
Solution
Trivial Solution:
Non-Trivial Solution:
where:
Characteristic Equation:
Euler Buckling Load:
v(x)
M z
P
N = P
A
y
x
L
P
A
EI
x2
2
d
v 0( ) = 0 v L( ) = 0
v = 0
v x( ) = Acosλx +Bsinλx
EI
-=
λL
sin = 0
2
π2EI
L2
L2
-=
Trang 7August 2012 11-7
L
sin
=
Mode shape 2
Mode shape 3
cr
L/2
P cr
P cr
L/2
2
EI
L2
-=
2EI
L2
-=
I
Mode shape 1
P cr
P cr
2
EI
L2
-=
Trang 8Effects of End Conditions
Case
1.
Pinned at both Ends
2
One end fixed, other end free
3
One end fixed, other end pinned
4.
Fixed at both ends.
Differen-tial
Equation
Boundary
Conditions
Character-istic
Equation
Critical
Load
Pcr
[
Effective
Length—
Leff
y x L P
A
B
x L
P B
x L
P B
x L
P B
A
EI
x2
2
d
d v +Pv
0
=
EI
x2
2
d
d v +Pv
Pv L( )
=
EI
x2
2
d
d v +Pv
R B(L x– )
=
EI
x2
2
d
d v +Pv
R B(L x– ) M+ B
=
v 0 ( ) = 0
v L( ) = 0
v 0 ( ) = 0
x d
dv( )0 = 0
v 0 ( ) = 0
x d
dv( )0 = 0
v L( ) = 0
v 0 ( ) = 0
x d
dv( )0 = 0
v L( ) = 0
x d
dv( )L = 0
EI
-=
λL
sin = 0 cosλL = 0 tanλL = λL 2 1 ( – cosλL)
λLsinλL
π2EI
L2
- π2EI
4L2
- π2EI
2L
( )2
L2
- π2EI
0.7L
( )2
L2
- π2EI
0.5L
( )2
-=
L eff2
-=
Trang 9August 2012 11-9
Axial Stress:
Radius of gyration:
Failure Envelopes
σcr P cr
A
-=
A
-=
σcr P cr
A
- π2E
L eff ⁄ r
Trang 10
a frame The cross-section of the columns is a hollow-cylinder of thick-ness 10 mm and outer diameter of ‘d’ mm The modulus of elasticity is
E = 200 GPa and the yield stress is σyield = 300 MPa Table below shows
a list of the lengths ‘L’ and outer diameters ‘d’ Identify the long and the short columns Assume the ends of the column are built in.
L (m)
d (mm)
Trang 11August 2012 11-11
shown Both bars have a diameter of d = 1/4 inch, modulus of elasticity
E = 30,000 ksi, and yield stress σyield = 30 ksi Bar AP and BP have lengths of LAP= 8 inches and LBP= 10 inches, respectively Determine the factor of safety for the two-bar structures
Fig C11.3
60o
F A
B
25o
P
Trang 12Class Problem 1
Identify the members in the structures that you would check for buckling Circle the correct answers
110o
F A
B
P
F A
B
P 40o
Structure 2
75o
F
A
B
P60 o
F
A B
P
30o
Structure 3
Structure 4
Trang 13August 2012 11-13
of 5 kips The modulus of elasticity for wood is E = 1,800 ksi and the allowable normal stress 3.0 ksi Determine the maximum value of L to the nearest inch that can be used in constructing the hoist
Fig C11.4
W
B
A A
A
A
2 in
4 in
Cross-section AA
A