1. Trang chủ
  2. » Khoa Học Tự Nhiên

Đề thi thử đại học môn toán năm 2013 - THPT Lý Thường Kiệt - Hải Phòng - Đề số 138 docx

2 92 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 22,44 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Chứng minh ABC cân... 2 Tìm điều kiện đối với a, b để diện tích tứ giác MPNQ nhỏ nhất.

Trang 1

Đề số 138

Câu1: (3 điểm)

Cho hàm số: y =

x2 x−1

1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số

2) Tìm hai điểm A, B nằm trên đồ thị và đối xứng nhau qua đường thẳng

y = x - 1

3) Dùng đồ thị đã vẽ được ở phần 1), hãy biện luận số nghiệm của phương trình:

z4 - mz3 + (m + 2)z2 - mz + 1 = 0 (m là tham số)

Câu2: (2 điểm)

1) Giải phương trình: √ 3x−2+x−1=4 x−9+23 x2−5 x+2 2) Giải và biện luận phương trình:

log2√ x2− 3x+2+log1

2

( x−m ) = x−m−x2−3 x+2

Câu3: (2 điểm)

1) Giải phương trình lượng giác: cos3x - 2cos2x + cosx = 0

2) Cho ABC thoả mãn hệ thức: tgA + tgB = 2cotg

C

2 Chứng minh

ABC cân

Câu4: (1 điểm)

Chứng minh bất đẳng thức:

π

4<∫

0

2 π

dx

5−3 cos x<π

Câu5: (2 điểm)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Trang 2

Trong mặt phẳng với hệ tọa độ trực chuẩn Oxy cho Elip: (E)

x2

9 +

y2

4 =1 và hai đường thẳng: (D): ax - by = 0; (D'): bx + ay = 0; Với a2 + b2 > 0

Gọi M, N là các giao điểm của (D) với (E); P, Q là các giao điểm của (D') với (E)

1) Tính diện tích tứ giác MPNQ theo a và b

2) Tìm điều kiện đối với a, b để diện tích tứ giác MPNQ nhỏ nhất

21

22

23

24

25

26

27

28

Ngày đăng: 30/03/2014, 03:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w