1. Trang chủ
  2. » Tất cả

Giao an toan hoc 7 on tap hoc ki 1 tiet 2 moi nhat (1)

2 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Giao an toan hoc 7 on tap hoc ki 1 tiet 2 moi nhat (1)
Trường học Trường Đại học Sư phạm Hà Nội
Chuyên ngành Toán học 7
Thể loại Giao án
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 2
Dung lượng 175,64 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

ÔN TẬP HỌC KÌ I (TIẾT 2) I MỤC TIÊU 1 Kiến thức Ôn tập hệ thống các kiến thức về tổng các góc của tam giác, hai tam giác bằng nhau và các trường hợp bằng nhau của hai tam giác 2 Kĩ năng Luyện vẽ hình,[.]

Trang 1

ƠN TẬP HỌC KÌ I (TIẾT 2)

I- MỤC TIÊU

1 Kiến thức: Ơn tập hệ thống các kiến thức về tổng các gĩc của tam giác, hai tam giác bằng nhau

và các trường hợp bằng nhau của hai tam giác

2 Kĩ năng: Luyện vẽ hình, ghi giả thiết, kết luận của một bài tốn, c/m hai tam giác bằng nhau

3 Thái độ: Tập trung, cẩn thận, tự giác, tích cực

4 Nội dung trọng tâm: Bài tập về trường hợp bằng nhau cạnh-gĩc-cạnh của hai tam giác

5 Định hướng phát triển năng lực:

- Năng lực chung: NL tự học, NL sáng tạo, NL tính tốn

- Năng lực chuyên biệt: NL vận dụng, NL sử dụng cơng cụ

II- CHUẨN BỊ

- GV: Thước thẳng, bảng phụ

- HS: Thước kẻ

III- TIẾN TRÌNH TIẾT DẠY

1 Ổn định lớp

2 Ơn tập

* HĐ1: Kiểm tra việc ơn tập của học sinh

- Phát biểu các dấu hiệu nhận biết hai đường

thẳng song song

* HĐ 2: Ơn tập bài tập tính gĩc

Làm bài tập 14 (trang 99- BT)

HS đọc bài tốn

GV hướng dẫn vẽ hình, gọi HS ghi gt, kl

H: ABC cĩ đặc điểm gì?

Hãy tính gĩc BAC

HS tính gĩc BAC theo định lí về tổng ba gĩc

của tam giác

- Tính gĩc ADH dựa vào tính chất gĩc ngồi

của tam giác

- Tính gĩc HAD dựa vào HAD vuơng

Gọi 1 HS làm câu a

- GV hướng dẫn làm câu b

1 HS làm câu c

*HĐ 3: Luyện tập bài tập suy luận

Bài tập: Cho ABC cĩ AB = AC, M là trung

điểm của BC Trên tia đối của tia MA lấy

điểm D sao cho MD = MA

a C/m ABM =  DCM

b C/m AB // DC

c C/m AM  BC

d Tìm ĐK của ABC để 0

30

ADC

I Ơn tập

II Bài tập Bài 1: Giải

ABC ; AH  BC

GT B700, C300, BADCAD

KL BAC = ?; HAD = ? ; ADH = ?

a) Aùp dụng định lí về tổng 3 gĩc của tam giác

ta cĩ: HAD900ADH 900700 200

b)Vì AD là phân giác của  nên:

0

40

BADCAD

HDADACACD (Gĩc ngồi ADC)

c) HAD900ADH 900700 200

Bài 2: Giải

a Xét ABM và DCM cĩ:

AM = MD (gt)

MB = MC (gt)

M1M2 (đđ)

=> ABM = DCM (c.g.c) 2

1

D

M

C B

A

B

D

A

Trang 2

GV: Theo gt và hình vẽ xét xem

ABM và CMD có yếu tố nào bằng nhau?

- ABM = DCM theo trường hợp nào?

Cho HS trình bày chứng minh

- Vì sao AB// DC?

- Muốn AM  BC ta cần điều kiện gì?

- Khi nào ADC 300?

- DAB300 khi nào?

- Tìm mối liên hệ giữa DAB và BAC của

ABC

b Vì ABM =  DCM (cmt)

=> BAMCDM (2 góc tương ứng)

=> AB//DC (vì có 2 góc sole trong bằng nhau)

c Ta có: ABM = ACM (c-c-c)

=>AMBAMC (2 góc tương ứng)

AMBAMC1800 (2 góc kề bù) =>

0 0

180

90 2

AMB  =>AM  BC

30

30

BAD =>BAC= 600

Vậy nếu AB=AC và BAC= 600 thì 0

30

ADC

3 Hướng dẫn về nhà

- Ôn tập kĩ lý thuyết

- Xem lại các bài tập đã làm để chuẩn bị làm bài kiểm tra học kì 1

Ngày đăng: 20/02/2023, 18:59

🧩 Sản phẩm bạn có thể quan tâm

w