Ứng dụng của hàm số bậc hai trong chứng minh bất đẳng thức và tìm giá trị nhỏ nhất, lớn nhất Chuyên đề môn Toán lớp 10 VnDoc com Ứng dụng của hàm số bậc hai trong chứng minh bất đẳng thức và tìm giá t[.]
Trang 1Ứng dụng của hàm số bậc hai trong chứng minh bất đẳng thức và tìm giá trị nhỏ nhất, lớn nhất
Chuyên đề môn Toán lớp 10
Bài: Ứng dụng của hàm số bậc hai trong chứng minh bất đẳng thức và tìm giá trị nhỏ nhất, lớn nhất
1 Phương pháp giải
2 Các ví dụ minh họa
1 Phương pháp giải.
Dựa vào đồ thị (bảng biến thiên) của hàm số y = ax2 + bx + c, a ≠0 ta thấy nó đạt giá trị lớn nhất, nhỏ nhất trên [α; β] tại điểm x =
α hoặc x = β hoặc x = -b/(2a) Cụ thể:
TH 1: a > 0
TH 2: a < 0:
Trang 22 Các ví dụ minh họa.
Ví dụ 1: Cho phương trình x2 + 2(m + 3)x + m2 - 3 = 0, m là tham số.
Tìm m để phương trình có hai nghiệm x1; x2 và P = 5(x1 + x2 ) - 2x1x2 đạt giá trị lớn nhất
Hướng dẫn:
Ta có Δ' = (m + 3)2 - (m2 - 3) = 6m + 12
Phương trình có nghiệm ⇔ Δ' ≥ 0 ⇔ 6m + 12 ≥ 0 ⇔ m ≥ -2
Theo định lý Viét ta có:
P = 5(x1 + x2) - 2x1x2 = -10(m + 3) - 2(m2 - 3) = -2m2 - 10m - 24
Xét hàm số f(m) = -2m2 - 10m - 24 với m ∈ [-2; +∞)
Bảng biến thiên
Vậy m = -2 là giá trị cần tìm
Ví dụ 2: Tìm giá trị nhỏ nhất của hàm số:
Trang 3Khi đó hàm số trở thành y = t2 - 3t + 1 với t ≥ 1
Bảng biến thiên
Suy ra giá trị nhỏ nhất của hàm số y = t2 - 3t + 1 là (-5)/4 khi và chỉ khi t = 3/2 hay
Ví dụ 3: Cho các số thực a, b thoả mãn ab ≠0 Tìm giá trị nhỏ nhất của biểu thức
Hướng dẫn:
Trang 4Ta có P = t2 - 2 - t + 1 = t2 - t - 1
Xét hàm số f(t) = t2 - t - 1 với t ∈ (-∞;-2] ∪ [2; +∞)
Bảng biến thiên
Từ bảng biến thiên ta có:
Với nội dung bài Ứng dụng của hàm số bậc hai trong chứng minh bất đẳng thức và tìm giá trị nhỏ nhất, lớn nhất trên đây chúng tôi xin giới thiệu tới các bạn học sinh cùng quý thầy cô nội dung cần nắm vững phương pháp giải, chứng minh bất đẳng thức từ hàm số bậc hai