| Tài liệu tham khảo |
Loại |
Chi tiết |
| [1] H. Berestycki and P.-L. Lions , Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal . 82 (1983), 313–345 |
Sách, tạp chí |
| Tiêu đề: |
Arch. Rational Mech. Anal |
| Tác giả: |
H. Berestycki and P.-L. Lions , Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal . 82 |
| Năm: |
1983 |
|
| [2] J. Bourgain , Global Solutions of Nonlinear Schr¨ odinger Equations, Amer. Math. Soc.Colloq. Publ. 46, A. M. S., Providence, RI, 1999 |
Sách, tạp chí |
| Tiêu đề: |
Global Solutions of Nonlinear Schr¨"odinger Equations,Amer. Math. Soc."Colloq. Publ |
|
| [3] ———, Harmonic analysis and nonlinear partial differential equations, Proc. Internat.Congress of Mathematicians (Z¨ urich, 1994) 1, 2, 31–44, Birkh¨ auser, Basel, 1995 |
Sách, tạp chí |
| Tiêu đề: |
Proc. Internat."Congress of Mathematicians |
|
| [5] Th. Cazenave and F. Weissler , Some remarks on the nonlinear Schr¨ odinger equation in the critical case. Nonlinear semigroups, partial differential equations and attractors (Washington, DC, 1987), 18–29, Lecture Notes in Math. 1394, Springer-Verlag, New York, 1989 |
Sách, tạp chí |
| Tiêu đề: |
Lecture Notes in Math |
|
| [6] G. Fibich and G. Papanicolaou , A modulation method for self-focusing in the perturbed critical nonlinear Schr¨ odinger equation, Phys. Lett. A 239 (1998), 167–173 |
Sách, tạp chí |
| Tiêu đề: |
A modulation method for self-focusing in the perturbed critical nonlinear Schr¨ odinger equation |
| Tác giả: |
G. Fibich, G. Papanicolaou |
| Nhà XB: |
Phys. Lett. A |
| Năm: |
1998 |
|
| [7] B. Gidas, W. M. Ni , and L. Nirenberg , Symmetry and related properties via the maxi- mum principle, Comm. Math. Phys. 68 (1979), 209—243 |
Sách, tạp chí |
| Tiêu đề: |
Comm. Math. Phys |
| Tác giả: |
B. Gidas, W. M. Ni , and L. Nirenberg , Symmetry and related properties via the maxi- mum principle, Comm. Math. Phys. 68 |
| Năm: |
1979 |
|
| [8] J. Ginibre and G. Velo , On a class of nonlinear Schr¨ odinger equations. I. The Cauchy problem, general case, J. Funct. Anal. 32 (1979), 1–32 |
Sách, tạp chí |
| Tiêu đề: |
J. Funct. Anal |
| Tác giả: |
J. Ginibre and G. Velo , On a class of nonlinear Schr¨ odinger equations. I. The Cauchy problem, general case, J. Funct. Anal. 32 |
| Năm: |
1979 |
|
| [9] L. Glangetas and F. Merle , Existence of self-similar blow-up solutions for Zakharov equation in dimension two. I, Comm. Math. Phys. 160 (1994), 173–215 |
Sách, tạp chí |
| Tiêu đề: |
Comm. Math. Phys |
| Tác giả: |
L. Glangetas and F. Merle , Existence of self-similar blow-up solutions for Zakharov equation in dimension two. I, Comm. Math. Phys. 160 |
| Năm: |
1994 |
|
| [10] T. Kato , On nonlinear Schr¨ odinger equations, Ann. Inst. H. Poincar´ e Phys. Theor . 46 (1987), 113–129 |
Sách, tạp chí |
| Tiêu đề: |
Ann. Inst. H. Poincar´"e Phys. Theor |
| Tác giả: |
T. Kato , On nonlinear Schr¨ odinger equations, Ann. Inst. H. Poincar´ e Phys. Theor . 46 |
| Năm: |
1987 |
|
| [11] M. K. Kwong , Uniqueness of positive solutions of ∆u− u+u p = 0 in R n , Arch. Rational Mech. Anal. 105 (1989), 243–266 |
Sách, tạp chí |
| Tiêu đề: |
u−"u+u"p"= 0 in"R"n,Arch. Rational"Mech. Anal |
| Tác giả: |
M. K. Kwong , Uniqueness of positive solutions of ∆u− u+u p = 0 in R n , Arch. Rational Mech. Anal. 105 |
| Năm: |
1989 |
|
| [12] M. J. Landman, G. C. Papanicolaou, C. Sulem , and P.-L. Sulem , Rate of blowup for solutions of the nonlinear Schr¨ odinger equation at critical dimension, Phys. Rev. A 38 (1988), 3837–3843 |
Sách, tạp chí |
| Tiêu đề: |
Phys. Rev. A |
| Tác giả: |
M. J. Landman, G. C. Papanicolaou, C. Sulem , and P.-L. Sulem , Rate of blowup for solutions of the nonlinear Schr¨ odinger equation at critical dimension, Phys. Rev. A 38 |
| Năm: |
1988 |
|
| [13] Y. Martel and F. Merle , A liouville theorem for the critical generalized Korteweg-de Vries equation, J. de Math. Pures et Appl. 79 (2000), 339–425 |
Sách, tạp chí |
| Tiêu đề: |
J. de Math. Pures et Appl |
| Tác giả: |
Y. Martel and F. Merle , A liouville theorem for the critical generalized Korteweg-de Vries equation, J. de Math. Pures et Appl. 79 |
| Năm: |
2000 |
|
| [14] ———, Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation, Ann. of Math. 155 (2002), 235–280 |
Sách, tạp chí |
| Tiêu đề: |
Ann. of Math |
| Tác giả: |
———, Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation, Ann. of Math. 155 |
| Năm: |
2002 |
|
| [15] ———, Blow-up in finite time and dynamics of blow-up solutions for the L 2 -critical generalized KdV equation, J. Amer. Math. Soc. 15 (2002), 617–664 |
Sách, tạp chí |
| Tiêu đề: |
L"2-criticalgeneralized KdV equation,"J. Amer. Math. Soc |
| Tác giả: |
———, Blow-up in finite time and dynamics of blow-up solutions for the L 2 -critical generalized KdV equation, J. Amer. Math. Soc. 15 |
| Năm: |
2002 |
|
| [16] ———, Instability of solitons for the critical generalized Korteweg-de Vries equation, Geom. Funct. Anal. 11 (2001), 74–123 |
Sách, tạp chí |
| Tiêu đề: |
Geom. Funct. Anal |
| Tác giả: |
———, Instability of solitons for the critical generalized Korteweg-de Vries equation, Geom. Funct. Anal. 11 |
| Năm: |
2001 |
|
| [17] F. Merle , Existence of blow-up solutions in the energy space for the critical generalized KdV equation, J. Amer. Math. Soc. 14 (2001), 555–578 |
Sách, tạp chí |
| Tiêu đề: |
J. Amer. Math. Soc |
| Tác giả: |
F. Merle , Existence of blow-up solutions in the energy space for the critical generalized KdV equation, J. Amer. Math. Soc. 14 |
| Năm: |
2001 |
|
| [18] ———, Blow-up phenomena for critical nonlinear Schr¨odinger and Zakharov equations, Proc. Internat. Congress of Mathematicians (Berlin, 1998), Doc. Math 1998 (Extra Vol. III), 57–66 |
Sách, tạp chí |
| Tiêu đề: |
Proc. Internat. Congress of Mathematicians" (Berlin, 1998), "Doc. Math |
|
| [19] ———, Determination of blow-up solutions with minimal mass for nonlinear Schr¨ odinger equations with critical power, Duke Math. J . 69 (1993), 427–454 |
Sách, tạp chí |
| Tiêu đề: |
Duke Math. J |
| Tác giả: |
———, Determination of blow-up solutions with minimal mass for nonlinear Schr¨ odinger equations with critical power, Duke Math. J . 69 |
| Năm: |
1993 |
|
| [20] H. Nawa , Asymptotic and limiting profiles of blowup solutions of the nonlinear Schr¨ odinger equation with critical power, Comm. Pure Appl. Math. 52 (1999), 193–270 |
Sách, tạp chí |
| Tiêu đề: |
Comm. Pure Appl. Math |
| Tác giả: |
H. Nawa , Asymptotic and limiting profiles of blowup solutions of the nonlinear Schr¨ odinger equation with critical power, Comm. Pure Appl. Math. 52 |
| Năm: |
1999 |
|
| [21] T. Ogawa and Y. Tsutsumi , Blow-up of H 1 solution for the nonlinear Schr¨ odinger equa- tion, J. Differential Equations 92 (1991), 317–330 |
Sách, tạp chí |
| Tiêu đề: |
H"1solution for the nonlinear Schr¨odinger equa-tion,"J. Differential Equations |
| Tác giả: |
T. Ogawa and Y. Tsutsumi , Blow-up of H 1 solution for the nonlinear Schr¨ odinger equa- tion, J. Differential Equations 92 |
| Năm: |
1991 |
|