1. Trang chủ
  2. » Tất cả

Chuyen de van dung cao tich phan mon toan lop 12 ixavi (1)

23 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Vận dụng cao tích phân
Tác giả Hà Toàn, Thanh Phong
Trường học Trường Đại học Phương Nam
Chuyên ngành Toán
Thể loại Chuyên đề
Định dạng
Số trang 23
Dung lượng 1,01 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

http://www.tailieupro.com/http://www.tailieupro.com/ http://www.tailieupro.com/http://www.tailieupro.com/ http://www.tailieupro.com/http://www.tailieupro.com/ http://www.tailieupro.com/h

Trang 1

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

+ Một số trường hợp đặt t  ( )x khi đó ta giải được x  ( )t Thế ngược lại vào phương trình ta được f t( ) g( ( ))  t , khi đó ta có hàm số f x( ) g( ( ))  x

+ Trong một số trường hợp cần sử dụng các phép biến đổi thích hợp để đưa về dạng f( ( ))  xh( ( ))  x Khi đó hàm số cần tìm sẽ có hạng f x( ) h x( )

Dạng 2: Giả thiết cho a x f u x( ) ( ( )) b x f v x( ) ( ( ))  w( )x Phương pháp giải:

Đặt ẩn phụ u x( ) v t( ) để thu thêm một phương trình nữa đó là

Trang 2

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

hàm hằng, tức là f(x)=1 khi đó giá trị tích phân là

2

a

Đáp án B

Trang 3

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

3 2

3 2

Trang 4

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

2 (1) 2(2) ( )

Trang 5

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

Trang 6

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

1 1

Bài 8 Cho hàm số f(x) có f’(x) liên tục trên [0;1], và thỏa mãn

f x  f x   x x Tính

1 0

Trang 7

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

Trang 8

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

Giải thích chỗ này A+B tức là f(4)  f(3)  f( 2)   f( 3)   f(4)  f(3) Đáp án A

Bài 10 Cho hàm số f(x) có đạo hàm liên tục trên [0;1] thỏa mãn

1 (1) 0, ( '( )) 7, ( ) , ( )

Trang 9

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

1

7 '( ) 7

Trang 10

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

f x   Idx Đáp án B

Bài 13 Cho hàm số yf x( ) có đạo hàm và liên tục trên khoảng

(0;  ); ( )f x  0với mọi x thuộc khoảng (0;) và thỏa mãn

Trang 11

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

nhất M và giá trị nhỏ nhất m của hàm số yf x( ) trên đoạn [1;3] Biết rằng giá trị của biểu thức P  2Mm có dạng a 11 b 3 c

(a, b,c ).Tính giá trị của biểu thức S a b c.

Trang 12

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

1122

1201 45

Trang 13

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

3 (1) 2

Trang 14

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

2017 0

2017 0

2017 cos ln

2017 0

2017 sin ln

Trang 15

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

Trang 16

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

Trang 17

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

Bài 25 Gọi là hình phẳng giới hạn bởi đồ thị của hàm số

Trang 18

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

 

1 0

I   f x dx

A 3.

1

3

1 5

V V

5 27

5 19

5 24

5 32

Trang 19

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

Bài 28 (Lam Sơn – Thanh Hóa) Cho hàm số f x có đạo hàm dương, liên  

tục trên đoạn   0;1 thỏa mãn f  0  1

1

53 50

Trang 20

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

    1   1

1 1

0 1

3

I

Trang 21

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

0

9

4 9

4 3

2 3

Trang 22

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

Trang 23

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

Ngày đăng: 17/02/2023, 11:11

🧩 Sản phẩm bạn có thể quan tâm

w