PHƯƠNG PHÁP QUY NẠP TOÁN HỌC Bài toán Chứng minh mệnh đề chứa biến P(n) đúng với mọi số nguyên dương n Phương pháp Bước 1 Với n 1, ta chứng minh P 1 đúng Bước 2 Giả sử P n đúng với n k 1 [.]
Trang 1Ta phải chứng minh P n đúng với n k 1 Kết luận: mệnh đề P n đúng với mọi số nguyên dương n
Lưu ý Để chứng minh mệnh đề chứa biến P n đúng với np, p : nguyên dương Ta cũng làm các bước tương tự như trên:
- Bước 1 Với np, ta chứng minh P p đúng
- Bước 2 Giả sử P n đúng với n k p
Ta phải chứng minh P n đúng với n k 1 Kết luận: mệnh đề P n đúng với mọi số nguyên dương n
Ví dụ 1 Chứng minh rằng với mọi số tự nhiên n 1, ta luôn có:
1 2 3 n
2
1 2 3 n
4
Giải: – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Trang 2Ví dụ 2 Chứng minh rằng với mọi số tự nhiên n 1, ta luôn có:
a) un n33n25n chia hết cho 3 b) un 9n 1 chia hết cho 8
Giải: – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Ví dụ 3 Chứng minh rằng với mọi số tự nhiên n3, ta luôn có:
a) n3 n24n 5 b) 2n 2n 1
Giải: – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Trang 3– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
BÀI TẬP VẬN DỤNG
BT 1 Chứng minh rằng với mọi số nguyên dương n, ta luôn có:
a) n n 1 n n 1 n 2
1 3 6 10
b) 2 5 8 3n 1 n 3n 1
2
1.4 2.7 n 3n 1 n n 1
d) 2 2 2 2 n n 1 2n 1
1 2 3 n
6
2
1 3 5 2n 1
3
f) 2 2 2 2 2n n 1 2n 1
2 4 6 2n
3
1.2 2.3 3.4 n n 1
3
1.2 2.5 3.8 n 3n 1 n n 1
Trang 4l)
n n
BT 2 Chứng minh rằng với mọi số nguyên dương n, ta luôn có:
n
u n 11n chia hết cho 6 b) 3
n
u n n chia hết cho 3 c) un 2n33n2n chia hết cho 6 d) un 13n1 chia hết cho 6
n
u 4 15n 1 chia hết cho 9 f) n
n
u 4 6n 8 chia hết cho 9 g) un 7.22n 2 32n 1 chia hết cho 5 h) un 32n 1 2n 2 chia hết cho 7 i) n 1 2n 1
n
u 11 12 chia hết cho 133 j) 4n
n
u 2 1 chia hết cho 15
BT 3 Chứng minh rằng:
a) 2n 2 2n 5, n * b) 2n 1 2n 3, n 2, n c) n 1
n n 1 , n e) 2 n *