1. Trang chủ
  2. » Tất cả

Các dạng bài tập toán lớp 7 bài (45)

9 4 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Các dạng bài tập toán lớp 7 bài (45)
Trường học Trường Đại Học Sư Phạm Thành phố Hồ Chí Minh
Chuyên ngành Toán học
Thể loại Giáo trình hướng dẫn
Năm xuất bản 2023
Thành phố Thành phố Hồ Chí Minh
Định dạng
Số trang 9
Dung lượng 185,98 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Tính chất tam giác vuông, tam giác cân, tam giác đều I Lý thuyết 1 Tam giác vuông a) Định nghĩa Tam giác vuông là tam giác có một góc vuông b) Tính chất Trong tam giác vuông hai góc nhọn phụ nhau Xét[.]

Trang 1

Tính chất tam giác vuông, tam giác cân, tam giác đều

I Lý thuyết

1 Tam giác vuông

a) Định nghĩa

Tam giác vuông là tam giác có một góc vuông

b) Tính chất

Trong tam giác vuông hai góc nhọn phụ nhau

Xét hình vẽ: Tam giác ABC vuông tại A

AB, AC là hai cạnh góc vuông, BC là cạnh huyền

Ta có: B C 90+ = 

c) Dấu hiệu nhận biết

+ Nếu một tam giác có một góc vuông thì tam giác đó là tam giác vuông + Nếu một tam giác có hai góc phụ nhau thì tam giác đó là tam giác vuông

2 Tam giác cân

a) Định nghĩa

Tam giác cân là tam giác có hai cạnh bằng nhau

Hai cạnh bằng nhau gọi là hai cạnh bên, cạnh còn lại là cạnh đáy

b) Tính chất

+ Tam giác cân có hai cạnh bên bằng nhau

Trang 2

+ Tam giác cân có hai góc ở đáy bằng nhau

Xét hình vẽ

Tam giác ABC cân tại A ta có:

+ AB, AC là hai cạnh bên

+ BC là cạnh đáy

Khi đó: AB AC

=



=



c) Dấu hiệu nhận biết:

+ Nếu một tam giác có hai góc bằng nhau thì tam gác đó là tam giác cân + Nếu một tam giác có hai cạnh bằng nhau thì tam giác đó là tam giác cân

3 Tam giác đều

a) Định nghĩa

Tam giác đều là tam giác có ba cạnh bằng nhau

b) Tính chất

Nếu một tam giác là tam giác đều thì:

+ Ba góc của tam giác bằng nhau

+ Ba cạnh của tam giác bằng nhau

+ Số đo mỗi góc của tam giác là 60

Trang 3

Xét hình vẽ

Tam giác ABC là tam giác đều:



= = = 



c) Dấu hiệu nhận biết

+ Nếu một tam giác có ba cạnh bằng nhau thì tam giác đó là tam giác đều

+ Nếu một tam giác có ba góc bằng nhau thì tam giác đó là tam giác đều

+ Nếu một tam giác cân có một góc bằng 60 thì tam giác đó là tam giác đều

4 Tam giác vuông cân

a) Định nghĩa

Tam giác vuông cân là ta giác có một góc vuông và hai cạnh góc vuông bằng nhau

b) Tính chất

Nếu một tam giác là tam giác vuông cân thì nó có tất cả các tính chất của tam giác vuông và tam giác cân ngoài ra hai góc nhọn trong tam giác vuông cân sẽ bằng nhau và bằng 45

Trang 4

Xét tam giác ABC vuông cân tại A ta có:

+ AB = AC

+ B= =  C 45

c) Dâu hiệu nhận biết

+ Tam giác vuông có hai cạnh góc vuông bằng nhau là tam giác vuông cân

+ Tam giác vuông có một góc nhọn bằng 45 là tam giác vuông cân

+ Tam giác cân có một góc vuông là tam giác vuông cân

II Các ví dụ

Ví dụ 1: Cho tam giác ABC cân tại A Trên tia đối của tia BC lấy điểm D; trên tia

đối của tia CB lấy điểm E sao cho BD = CE Chứng minh tam giác ADE cân

Lời giải:

Trang 5

Vì tam giác ABC cân tại A nên AB AC

=



 

=

 (tính chất)

Vì ABD;ABClà hai góc kề bù ABD+ABC 180= 

ABD 180 ABC

 =  − (1)

Vì ACE;ACBlà hai góc kề bù ACE+ACB 180= 

ACE 180 ACB

 =  − (2)

Mà ABC ACB= (chứng minh trên) (3)

Từ (1); (2); (3) ABD=ACE

Xét tam giác ABD và tam giác ACE có:

ABD=ACE(chứng minh trên)

AB = AC (do tam giác ABC cân tại A)

BD = CE (giả thuyết)

Do đó ABD= ACE(c – g – c)

 = (hai cạnh tương ứng)

Xét tam giác ADE có:

AD = AE (chứng minh trên)

Tam giác ADE cân tại A

Ví dụ 2: Cho tam giác ABC vuông tại A, B 30=  Trên tia đối của tia AC lấy điểm D sao cho AD = AC

a) Tam giác BCD là tam giác gì? Vì sao?

b) Chứng minh BC = 2AC

Lời giải:

Trang 6

a) Xét tam giác ABC vuông tại A có:

A+ + =B C 180(định lý tổng ba góc trong một tam giác)

90 30 C 180

  +  + = 

C 60

 = 

Xét tam giác ABD và tam giác ABC có:

AB chung

AD = AC (giả thuyết)

DAB=CAB=  90

Do đó ABD= ABC(c – g – c)

 = (hai cạnh tương ứng)

Xét tam giác BDC có:

BD = BC (chứng minh trên)

BDC

  cân tại B

Mà BDC có C 60=  BDClà tam giác đều

b) Vì tam giác BDC là tam giác đều nên CD = BC

Trang 7

Xét tam giác BDA và tam giác BA có:

BA chung

BD = BC (do tam giác BDC đều)

BAD=BAC=  90

Do đó BDA = BCA (cạnh huyền – cạnh góc vuông)

Nên A là trung điểm của CD

1

AC CD

2

Mà CD = BC nên AC 1BC

2

= (điều phải chứng minh)

Ví dụ 3: Cho tam giác ABC vuông cân tại A Trên các cạnh góc vuông AB và AC

lấy các điểm D và E sao cho AD = AE Qua D vẽ đường thẳng vuông góc với BE cắt BC ở H Gọi M là giao điểm của DK và AC Chứng minh tam giác MDC cân

Lời giải:

Xét tam giác ADC và tam giác AEB có:

AD = AE (giả thuyết)

DAC=EAB=  90

AC = AB (do tam giác ABC vuông cân)

Do đó : ADC= AEB (c – g – c)

DC EB

 = (hai cạnh tương ứng) (1)

Gọi G là giao điểm của DK và BE

DG vuông góc với EB tại G

Xét tam giác DGB vuông tại G có:

GDB GBD+ =  (tính chất) 90

GDB 90 GBD

 = − (2)

Trang 8

Xét tam giác AEB vuông tại A có:

AEB ABE+ = (tính chất) 90

AEB 90 ABE

 =  − (3)

Từ (2) và (3) GDB=AEB

Lại có GDB=ADM(đối đỉnh)

Nên AEB ADM=

Xét hai tam giác AEB và tam giác ADM có:

AE = AD (giả thuyết)

AEB=ADM

Trang 9

EAB=DAM=  90

Do đó: AEB = ADM (góc nhọn – cạnh góc vuông)

EB DM

 = (hai cạnh tương ứng) (4)

Từ (1) và (4) ta có DC = DM

Xét tam giác MDC có:

DM = DC (chứng minh trên)

Do đó tam giác MDC cân tại D

Ngày đăng: 08/02/2023, 11:31

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm