1. Trang chủ
  2. » Luận Văn - Báo Cáo

FINITE COMPLETION OF COMMA-FREE CODES. Part II

13 13 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Finite Completion of Comma-Free Codes (Part II)
Tác giả Lam, Nguyen Huong
Trường học Hanoi Institute of Mathematics
Chuyên ngành Algebraic Systems, Formal Languages and Conventional and Unconventional Computation Theory
Thể loại Textversion
Năm xuất bản 2004
Thành phố Hanoi
Định dạng
Số trang 13
Dung lượng 1,27 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

FINITE COMPLETION OF COMMA-FREE CODES. Part II

Trang 1

Author(s) Lam, Nguyen Huong

Citation 数理解析研究所講究録 (2004), 1366: 129-140

Issue Date 2004-04

URL http://hdl.handle.net/2433/25370

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University

Trang 2

FINITE COMPLETION OF COMMA-FREE CODES. Part II

NGUYEN HUONG LAM*

Hanoi Institute of Mathematics

Keywords Comma-free Code, Completion, Finite Maximal Comma-ffee Code.

comma-free codes

in$\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{y}\mathrm{o}\mathrm{f}^{\mathrm{c}\mathrm{o}\mathrm{m}}\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{o}\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{e}_{\mathrm{s}[\mathrm{g}_{\mathrm{p}}\mathrm{j}\mathrm{a}_{\mathrm{h}\mathrm{a}}^{\mathrm{C}}\mathrm{o}\mathrm{d}_{\mathrm{h}\mathrm{a}}^{\mathrm{e}}\mathrm{o}\mathrm{f}}^{\mathrm{p}1\mathrm{e}}\mathrm{n}$

$\mathrm{S}\mathrm{o}_{\mathrm{o}\mathrm{m}\mathrm{e}}^{\mathrm{m}\mathrm{e}\mathrm{c}}1\mathrm{a}_{\mathrm{t}\mathrm{e}}^{\mathrm{s}}$$\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}_{0}^{\mathrm{i}\mathrm{n}}\mathrm{t}\mathrm{h}_{\mathrm{e}\mathrm{s}}^{\mathrm{i}\mathrm{s}}\mathrm{c}_{\mathrm{a}\mathrm{r}\mathrm{c}\mathrm{h}\mathrm{e}}^{1\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{i}}\mathrm{s}_{\mathrm{S}}$

$\mathrm{m}^{0}\mathrm{n}\mathrm{g}\mathrm{p}\mathrm{T}_{\mathrm{y}}^{\mathrm{o}\mathrm{b}}1_{\mathrm{a}}^{\mathrm{e}}\mathrm{m}\mathrm{s}$

or Berstel and Perrin $[\mathrm{B}\mathrm{P}]).\mathrm{T}\mathrm{h}\mathrm{e}$ situationis samefor finite bifixcodes: there exist finite

finite outfix code is included in a finite maximal outfix code (a set $X$ is an outfix code

completion problem

con-tains a “short” $\mathrm{i}\mathrm{l}\mathrm{r}$-word with rich properties and starting from this word we construct

comma-free code (in \S 5).

emptyword 1 andasusual $\mathit{4}^{+}$

we use interchangeably the plus and minus signs to denote the union and difference of

$*$

Trang 3

word 1 as the unit For subsets $X$ and $X’$ of $A^{*}$ we denote

$XX’=\{xx’ : x\in X, x’\in X’\}$

$X^{0}=\{1\}$

$X^{i+1}=X^{i}X$, $i=0,1,2$,$\ldots$

$X^{*}=$ ,$J_{i\geq 0}Xi$.

A comma-ffee code is called$m$ aximal ifitis not a propersubset ofanyother

In view of Zorn’s lemma, every comma-free code always has completions

We shall usefrequentlythe following result (FineandWilf): If$u\{u, v\}$* and $\{u, v\}$ ’

have a common left factor of length at least $|u|+|\mathrm{t}$ $|$, in particular, if$uv=vu$, then $u$

for some non-empty words $s,t\in A^{+}$ and $w\in A^{+}$, or equivalently,

$us=tv$

$X^{*}= \bigcup_{i>0}X^{i}$.

Acomma-ffeecode is called maximal ifitis not a propersubset ofanyother

In view of Zorn’s lemma, every comma-ffee code always has completions

We shall useffequentlythe following result (FineandWilf): If$u\{u, v\}^{*}$ and $\{u, v\}^{*}$

have a common left factor of length at least $|u|+|v|$, in particular, if$uv=vu,$ then $u$

words $u$ and $v$, not necessarily distinct, overlap if

for some non-empty words $s$,$t\in A^{+}$ and $w\in A^{+}$, or equivalently,

$us=tv$

for some non-emptywords $s$,$t$ such that $|t$ and $|s|<|\mathrm{t}^{\mathrm{t}}|$. We call $w$ an overlap, $s$

paper [L] Let $N$ be apositive integer

paper [L] Let $N$ be apositive integer

;hat$\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{y}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{r}nn\leq|p|,|s|<n’+N\mathrm{n}0<n\mathrm{d}^{1:}|,s\in E(X),$ $\mathrm{o}\mathrm{r}\mathrm{j}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{i}\mathrm{s}\mathrm{a}\mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}$ ps$\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n},\mathrm{a}p$7$\mathrm{h}4*1^{\mathrm{C}}$(K$\mathrm{r}$

) and $s\not\in R(X)A^{*}$.

Trang 4

Ouraim nowis to prove that we can complete every finite $N$-canonical comma-free

1 $u\not\in A^{*}XA^{*}$.

2 $u\not\in F(X^{2})$.

3 $u\not\in A^{*}L(X)+R(X)A^{*}$.

4 $u\in$ I(X) $=\{u:u^{2}\not\in A^{*}XA^{*}\}$.

5 $A^{+}u\cap uP(X)=\emptyset$ and $uA^{+}$ $\mathrm{f}" 1$ $S(X)u=\emptyset$

(r) $u$ avoids $X$ (i.e $u$ has no factors in $X$), $u$ has no left factor in $R(X)$:

$u\in A^{+}-R(X)A^{*}-A^{*}XA^{*}$.

(1) $u$ avoids $X$, $u$ has no right factor in$L(X)$:

$u\in A^{+}-A^{*}L(X)-A^{*}XA^{*}$.

The good word $u$ is called $R$-good if$uv$ avoids $X$ for all $r$-words $v$. Similarly, $u$ is

We say that the word $u$ is an Lr-lr-word if it is an $1x$-word and for all $\mathrm{r}$ words $v$, $\mathrm{w}$

$v$. $uv$ avoids $X$.

factor of$u^{+}$ for some word $u$ oflength less or equal to $k$, $|u|\leq k,$ or equivalently, $\mathrm{m}$ is is

(ii) $u$ is a left factor of$x^{+}$,

(ii) $u$ is aright factor of$y^{+}$,

Trang 5

In the following simple statement we show that we can pick out of three special

integer

$eq^{2}u\mathrm{a}lt|v|\leq$No. $Supposethatu,uv_{1}en\mathrm{a}teastoneo$ $anduv_{1}v_{2}dothemisprim$intiovte.self-overlap with borders shorter or

LEMMA 3.3 Let $u$ and $v$ be words such that $|u|\geq 3N$,$0<|v|\leq N$, $u=\lambda^{m}$,$uv=\mu^{n}$

$with$ borders oflength shorter than or equal to$\overline{N}$

for some primitive words $\lambda$, $\mu$. Then $\mu=$ XX$n$

primitive word $\overline{\lambda}$ such that A is aleft factor of ) $+and$ $|$ ) $|< \frac{|v|}{2}$.

ilr-words,

of $w$, $w=uv$ and $v\neq 1$, which is a $k$-sesquipovver, that is, $u=$ $u\mathrm{j}\mathrm{T}\mathrm{J}2$ with $u_{2}$ a

properleft factor of$u_{1}$, $u_{1}$ primitive and $|\mathrm{t}\mathrm{t}_{1}$ $|\leq k.$ Then for every integer$t$ such that

$|u \mathrm{x}u_{2}|\geq\min$ $(| \mathrm{L}1\mathrm{S}t1u_{2}|, 2k)$ the $word$ us$t1u_{2}?7^{\cdot}\mathrm{s}$ not ak-sesquipower

$\mathrm{L}\mathrm{E}\mathrm{M}\mathrm{M}\mathrm{A}3.3.Letuandvwithprim\mathrm{i}tivewords\lambda,$

$\mu$ anbed$integersm\geq 2,nwordssuchthat|u>2.|\begin{array}{l}\geq 3N,0<I\mathrm{f}b\end{array}|$

not $othofu\mathrm{a}nduvseif-overlapv|\leq N,u=\lambda^{m}uv=\mu^{n}$

for some primitive words $\lambda$, $\mu$. Then $\mu=\lambda\overline{\lambda}^{n}$ for some positive integer $n$ and some

primitive word $\lambda-$ such that $\lambda$ is aleft factor of$\lambda-+$ and $| \overline{\lambda}|<\frac{|v|}{2}$.

ilr-words

properleft factor of$u_{1}$, $u_{1}$ primitive and $|u_{1}|\leq k.$ Then for every integer$t$ such that

$|u_{1}^{t}u_{2}| \geq\min(|u_{1}^{t}u_{2}|, 2k)$ the word $u_{1}^{t}u_{2}v$ is not ak-sesquipower

LEMMA 3.6. Let $p$ not be a factor of$q$ and $|q|\geq 2|p|$. Then $qp^{n}$ is primitive for all integers $n>0.$

$X\}\S 4 \mathrm{S}\mathrm{h}\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{l}\mathrm{r}- \mathrm{w}\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{s}\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}h\mathrm{i}\acute{\mathrm{s}}$ $\mathrm{a}\mathrm{p}_{\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}}$ $\mathrm{i}\mathrm{l}\mathrm{r}- \mathrm{w}\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{f}\mathrm{o}\mathrm{r}X\mathrm{o}\mathrm{f}\mathrm{l}\mathrm{e}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}N- \mathrm{c}\mathrm{a}\mathrm{n}\mathrm{o}\mathrm{n}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l}$ wngorhd $\mathrm{w}\mathrm{i}\mathrm{g}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{h}_{\mathrm{m}}m\mathrm{m}:\{|x\mathrm{v}\mathrm{u}\mathrm{e}$

$x\mathrm{p}\mathrm{u}\mathrm{t}$

Proof. We first prove that $f$ has a factorization $f=f’f’$ such that either $f’$ is an

$\frac{|f|}{2}|-m<|f’|$, $|f’|<| \frac{|f|}{2}|+m.$

Let $f=f_{1}f_{2}$ be a factorization such that

$\lfloor\frac{|f|}{2}\rfloor+1\geq|f_{1}$ $|$, $|f_{2}|$ $\geq\lfloor\frac{|f|}{2}\rfloor$

$X$ or $E_{l}$ $(X)$ such that fiui contains afactor, not a right one, in $X$

$X$ or $E_{l}(X)$ such that fiui contains afactor, not a right one, in $X$

Trang 6

Since $f_{1}$ avoids $X$ and $u$ contains no proper factor in $X$, we see that $f_{1}$ has a right

$f_{1}=f_{1}’x_{1}$

Consider now the word $x_{1}f_{2}$ If there is some word $u_{2}$ in $X+E_{r}(X)$ such that

$u_{2}x_{1}f_{2}$ contains afactor, not a left one, $xEX$, that is

$u_{2}x_{1}f_{2}=$ llJxv

for some words $w\in A^{+}$ and $v\in A^{*}$. Since #1/2, being a factor of$f$, avoids $X$ and $u_{2}$

$x_{1}f_{2}=x_{2}f_{2}’$.

$f=f_{1}x_{2}f_{2}’$

with $|f_{1}x_{2}|< \lfloor\frac{|f|}{2}\rfloor+m$ and $|f_{1}x_{2}|=|f_{2}|$ $-|x2|>\lfloor_{2}^{\cup f}\rfloor-m$, because $0<|x_{2}|<m.$

Note that

$|x_{1}|<|x_{2}|$.

Consider now the word $x_{1}f_{2}$ If there is some word $u_{2}$ in $X+E_{r}(X)$ such that

$u_{2}x_{1}f_{2}$ contains afactor, not a left one, $x\in X,$ that is

$u_{2}x_{1}f_{2}=wxv$

for some words $w\in A^{+}$ and $v\in A^{*}$. Since $x_{1}f_{2}$, being a factor of$f$, avoids $X$ and $u_{2}$

$x_{1}f_{2}=x_{2}f_{2}’$.

$f=f_{1}x_{2}f_{2}’$

$f_{1}$ inthe former factorization for$f$ to obtain aleft factor $x_{3}$ of$x$ andsome factorization

$|x_{1}$ $|<|x_{2}$ $|<|x_{3}$ $|$

and so on. However we cannot iterate the argument infinitely, as the length of factors

$f=f’f’$

Suppose for definiteness that $f’$ is an Lr-lr-word Recall that $|f\prime\prime|>\lfloor \mathrm{j}^{\mathrm{L}}$ $\rfloor-m.$

$u$ $=$ $\mathrm{e}\mathrm{n}_{1}^{\mathrm{s}}u_{2}$

for $s\geq 0$ and $n_{2}$ is a proper left factor of$u_{1}$ Since $f$ is a power of a primitiveword, $h$,

$|u|<|$ $\mathrm{f}|+m$

otherwise $u_{1}\in h^{+}$, hence $|u1$ $|>m,$ a contradiction.

Put $u_{0}=u$ if $|u|<2m$ and $n_{0}$ $=u_{1}^{t}u_{2}$, where $t$ is the smallest integer such that

$|u\mathrm{i}u_{2}|\geq 2m,$ otherwise In any case, we have

$\min(|u|, 2m)\leq|u_{0}|<3m.$

for $s\geq 0$ and $u_{2}$ is aproper left factor of$u_{1}$ Since $f$ is apower ofaprimitive word, $h$,

$|u|<|f|+m$

otherwise $u_{1}\in h^{+}$, hence $|u_{1}|>m,$ acontradiction.

Put $u_{0}=u$ if $|u|<2m$ and $u_{0}=u_{1}^{t}u_{2}$, where $t$ is the smallest integer such that

$|u_{1}^{t}u_{2}|\geq 2m,$ otherwise In any case, we have

$\min(|u|, 2m)\leq|u_{0}|<3m.$

Trang 7

Note that $n_{0}$ is a right, and left, factor of$u$ Now let $u_{3}$ be the left factor of $f’f’f^{lJ}$ of

for some words $l\in A^{*}$, $r$,$v\in A^{+}$

where

$lu_{0}=u,$ $\mathrm{L}\mathrm{L}_{0?}=(L_{3}$.

If$u=u_{0}$, that is if $l=1,$ then

$\geq\frac{3}{2}|f|-4m$$\geq 9K+9N-4m>3N.$

If $|u|\geq 2K$ then $|u_{0}|\geq 2m$ and $|l|=|$ ?J $|-|u_{0}|<|7$ $|+$ $\mathrm{r}\mathrm{z}\mathrm{z}$ $-2m=|f|-m,$ hence

$>| \frac{|f|}{2}|-m\mathit{1}-$$m-3K$ $\geq\frac{|f|}{2}-3K$ $=3N.$

Nowwe usethe hypothesis Since$X$is $N$-canonical and$f^{2}\in$ L{X), for the factorization

$f^{2}=f’lu_{3}v$

with respect to the factor $v$ of length $|\mathrm{t}\mathrm{z}|\geq 3N,$ there exist three words $v_{1}$,VIV2 V3 such that $0<|1^{)}1$ $|$, $|\mathrm{t}^{)}21$ $|v_{3}|\leq N$ and $v_{1}$,$v_{1}v_{2}$,$\mathrm{V}1\mathrm{V}2\mathrm{V}3$ all are left factors of$v$ and

$f’lu_{3}v_{1}$, $f’lu_{3}v_{1}v_{2}$, $f’lu_{3}v_{1}v_{2}v_{3}$ $\not\in A^{*}L(X)$

$u_{3}v_{1}$, u$viV2, $\mathrm{U}3\mathrm{V}1\mathrm{V}2\mathrm{V}3\not\in A^{*}L(X)$.

$\mathrm{U}3\mathrm{V}1\mathrm{V}2\mathrm{V}3,\overline{\mathrm{h}\mathrm{e}}\mathrm{n}\mathrm{c}\mathrm{e}$all ofthemcannot be $m$-sesquipowers in view ofthe maximalityof $|u|$.

If $|u|\geq 2K$ then by Lemma 3.5 all ofthem cannot be $m$-sesquipowers either So in any

case

$u_{3}v_{1}$, u$viV2, $n_{3^{t)}1^{\mathit{1})}2^{\mathit{1})}3}$

$\mathrm{U}\mathrm{Z}\mathrm{V}1\mathrm{V}2\mathrm{V}3$, should be primitive

an $\mathrm{L}- \mathrm{g}\mathrm{o}\mathrm{o}\mathrm{d}\mathrm{o}\mathrm{n}\mathrm{e}.\mathrm{L}\mathrm{e}\mathrm{t}\mathrm{u}\mathrm{s}\mathrm{N}\mathrm{o}\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{e}$t,ofovre!$\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{c}\mathrm{e}\mathrm{a},g\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{c}\mathrm{k}$$v\mathrm{t}\mathrm{L}^{2^{\mathrm{V}}}\mathrm{P}\mathrm{o}\mathrm{i}_{\mathrm{t}\mathrm{s}}^{\mathrm{S}\mathrm{a}}$ $\xi_{3),(4)\mathrm{a}\mathrm{n}\mathrm{d}(5)\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}}^{\mathrm{o}\mathrm{o}\mathrm{d}\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{d},\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}}$ ’

left factor of $f’$ if $n_{0}$ $=u$ and t&3 has $u_{0}$ as a left factor, which is a left factor of $u$ of

Certainly

$+|v3|$ $\leq 3K+3N$

Trang 8

what is desired to prove.

not exceeding $m$ Second, there is a primitive $\mathrm{i}\mathrm{l}\mathrm{r}$-word longer than $m$. This implies the existence ofan $\mathrm{L}$ or $\mathrm{R}$-good word, claimed in Theorem 4.1

answer is an easy consequence of the following results by Ito, Katsura, Shyr and Yu [IKSY] :

$o$(?l$R_{gth}\mathrm{C}onLX^{i}ns_{e}^{in}\mathit{2}\%_{e}el(,m\mathrm{a}nyp3n-$primitive words if and only ifit containsaprimitiveword

word

$3K<|g|\leq 3K+3N$

(a) If for almost all (i.e all but finitely many) primitive $\mathrm{i}\mathrm{l}\mathrm{r}$words $v$, $v$ contains a

factorin$X+g$, or,$vg$ contains a factor in$X$ or an occurencesof$g$dferent fromthelast

(b) We can effectively pick out aprimitive $\mathrm{i}\mathrm{l}\mathrm{r}$word $v$ such that

$|v|>2|g|$

state that $vg$ is both an L- and an $\mathrm{R}$-good word for $X$. Indeed,

onthe set ofilr-words

2 $vg$ is not in $F(X^{2})$, as $|vg|>|g|>3m>2m,$ too long to be afactor of$X^{2}$.

$xvg=vgy$

$\mathrm{W}\mathrm{d}\mathrm{o}^{\mathrm{e}\mathrm{r}\mathrm{e}x\in A^{+}}\mathrm{e}\mathrm{s}\mathrm{n}\mathrm{o}\mathrm{t}" \mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{n}’ \mathrm{a}!^{x|=|y|<}\mathrm{n}\mathrm{y}\mathrm{o}\mathrm{c}\mathrm{c}\mathrm{u}\mathrm{r}\mathrm{e}\mathrm{n}\mathrm{c}$levsgol,fig$\mathrm{a}_{\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{a}^{X}\{!\mathrm{o}\mathrm{m}\mathrm{t}\mathrm{h}\mathrm{e}1\mathrm{a}\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{n}\mathrm{e}.\mathrm{T}\mathrm{h}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{b}\mathrm{o}\mathrm{r}_{\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{a}\mathrm{r}}^{\mathrm{a}\mathrm{n}\mathrm{d}v}\mathrm{e}}\mathrm{o}\mathrm{W}\mathrm{S}|y|\mathrm{f}\mathrm{o}\mathrm{r}g\mathrm{o}\mathrm{e}\mathrm{s}\mathrm{n}\mathrm{c}\mathrm{o}\mathrm{a}\dot{\mathrm{m}}$,

Trang 9

(c) Put $p=vg.$ So$p$ is both an L- andan $\mathrm{R}$-good word and $|p|>3|g|>9K\geq 9m.$

Otherwise we can choose (again, effectively) an 1-word $q\in$ Ei(X) with $|$ ( $7|\geq 2|p|$ such

one.

$(n-1)|p|>|q|+6N.$

Let $G_{i}$, for every $i=0,1$,$\ldots$,$n-$ l, bethe set consisting of words of the form

$up^{i}qp^{n}$

(i) $|u|\geq|p|$

(i) $u$ is an 1-word and up avoids $X:u\in E_{l}(X)$, $up\not\in A^{*}XA^{*}$

(iiii) $up^{i}qp^{n}$ is primitive $up^{i}qp^{n}\in Q.$

REMARK 5.2 Since $|p|>9m>m$ and$p$is primitive, $|q|\geq 2|p|$ and$p$is not afactor of

$\mathrm{g}$, all words of $G_{i}$ are not m-sesquipowers

REMARK 5.3 All words of$G_{i}$ avoid $X$ and are not factors of$X^{2}$.

REMARK 5.4. All words of $G_{i}$ are $\mathrm{i}\mathrm{l}\mathrm{r}$words, $G_{i}\subseteq E(X)$, because $u$ is an 1-word and $p$

is an $\mathrm{R}$-good word

contain$p$, $n>2$ and$p$ is primitive

(gg) All $w$ ords of$G_{i}$ are not factors of$p^{n}qp^{n}$.

satisfying

(j) $|v|\geq|(\mathrm{j}|(\geq 2|p|>|p|)$

(jj) $v$ is 1-word and $vp$ avoids $X$, in other words, $vp$ is 1-word: $vp\in E_{l}(X)$.

(jjjj) $vp^{n}$ is primitive: $vp^{n}\in Q.$

5.6 are al $0$ valid for $H$ (insteadof$G_{i}$) Also, by the similar reasons, we have

(gg) All words of$G_{i}$ are not factors of$p^{n}qp^{n}$.

satisffing

(j) $|v|\geq|q|(\geq 2|p|>|p|)$

(jj) $v$ is 1-word and $vp$ avoids $X$, in other words, $vp$ is l-wOrd: $vp\in$ Ei(X).

(jjjj) $vp^{n}$ is primitive: $vp^{n}\in Q.$

5.6 are also valid for $H$ (insteadof$G_{i}$) Also, by the similar reasons, we have

Trang 10

REMARK 5.7. If $vp^{n}$ has another occurrence of$p^{n}$ different bom the last one, then it must be one in $vp$.

$\mathrm{b}^{1}\mathrm{e}\mathrm{t}$

$\overline{G}_{i}=G_{i}-A^{+}G_{i}$

$\overline{H}=H-A^{+}H$

“minimal” words are of bounded length, hence $\overline{G}_{i}$ and $\overline{H}$ are finite

PROPOSITION 5.8. (i) If$wp^{i}qp^{n}$ is a $lr$-word with $n>i\geq 0$, $|\mathrm{t}\mathrm{p}|\geq 6N+|p|$ and if$p$ is not a right factor of$w$ then $wp^{i}qp^{n}$ has aright factor in $G_{i}$, hence in $\overline{G}_{i}$.

(ii) If$wp^{n}$ is an $lr$-word with $|\mathrm{r}\mathrm{p}|\geq 6N+|q|$ and if both$p$, $q$ are not rightfactors of$w$

then $wp^{n}$ has aright factors in$H$, hence in $\overline{H}$.

Proof, (i) Since $|\mathrm{t}\mathrm{P}|\geq 6N+|p|$ and $X$ is $N$-canonical, we can write

$\mathit{4}l\mathit{1}$ $=w’w_{6}w_{5}w_{4}w_{3}w_{2}w_{1}w_{0}$

where $w’\in A^{*}$, $|w_{0}|=|p|$, $|w_{j}|$ $\leq N$ and

$UJ_{j}$ . $\mathrm{f}\mathrm{f}_{1^{\mathrm{j}\mathrm{j}7}}\mathrm{o}p^{i}qp^{n}$

is an 1-word (hence a $1\mathrm{r}$-word) for $j=1$, ’6. In view of Proposition 3.2, there exist

$1\leq s\leq 3<t\leq 6$

such that

$U\mathit{1}_{S}$ . 1111$u$ ) $\mathit{0}p^{i}qp^{n}$

and

$w_{t}$ .$w_{1}$ $u$ ) $0p^{i}qp^{n}$

where $w’\in A^{*}$, $|w_{0}|=|p|$, $|w_{j}|\leq N$ and

$w_{j}\ldots w_{1}w0p^{i}qp^{n}$

$1<s<3<t<6$

such that

$w_{s}\ldots w_{1}w_{0}p^{i}qp^{n}$

and

$w_{t}\ldots w_{1}w_{0}p^{i}qp^{n}$

bothareprimitive, for,first $|p^{i}qp^{n}|>3N,$ and, second all$w_{j}\ldots$$w_{1}w_{0}p^{\overline{t}}qp^{n}$ ,$j=1$,$\ldots$ ,6

$w_{s}$ .$w_{1}w_{0}p^{i}qp^{n}$

has no left factor$p$. Finally,

$w_{s}$ .$w_{1}n$ ) $0p^{i}qp^{n}$

as a factor ofan $1\mathrm{r}$-word, avoids $X$. All together, the facts above mean that

$\mathrm{U}^{\mathrm{j}}1_{\theta}$ . $\mathit{4}\mathit{1}J_{1}$ $UJ_{0p^{i}qp^{n}}$ $\in G_{i}$.

is no longer than $6N+$ $\mathrm{r}\mathrm{z}|p|+|(\mathrm{j}|$.

Ngày đăng: 06/02/2023, 09:27

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w