1. Trang chủ
  2. » Khoa Học Tự Nhiên

TÀI LIỆU LUYỆN THI ĐẠI HỌC VÀ THPT CHUYÊN; MÔN TOÁN; CHUYÊN ĐỀ HÀM SỐ VÀ ĐỒ THỊ BÀI TẬP VỀ MỘT SỐ HÀM SỐ KHÁC (PHẦN 4) doc

10 690 3
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 284,65 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Tìm giá trị n để đồ thị C cắt đường thẳng : d y2x tại hai điểm phân biệt nằm về hai phía đối với trục 1 hoành... Trong mặt phẳng với hệ tọa độ Oxy cho hai đồ thị   2 Chứng minh rằng

Trang 1

CHUYÊN ĐỀ HÀM SỐ VÀ ĐỒ THỊ

BÀI TẬP VỀ MỘT SỐ HÀM SỐ KHÁC (PHẦN 4)

- Bài 1 Xét hàm số cho bởi phương trình x22xy2 1 0 (1)

1 Chứng minh đồ thị hàm số là một cặp đường thẳng

2 Vẽ đồ thị hàm số đã cho

3 Sử dụng đồ thị, tìm m để hệ phương trình sau có hai nghiệm

x

  

1 Coi hàm số là hàm số f x Tính   Tf  1  f  3  f  5

2 Vẽ đồ thị hàm số đã cho

3 Sử dụng đồ thị, hãy biện luận số nghiệm của hệ phương trình y 1 2x 3

 

Bài 3 Xét hàm số cho bởi phương trình y2xy2x23x3y 0

1 Phân tích biểu thức đã cho thành thừa số

2 Vẽ đồ thị hàm số đã cho

3 Sử dụng đồ thị, hãy biện luận số nghiệm của hệ phương trình

2012

 

1 Giải phương trình trong trường hợp y3x

2 Vẽ đồ thị hàm số đã cho

3 Tìm m để hệ phương trình sau có nghiệm

1 Vẽ tập hợp các điểm M x y có tọa độ thỏa mãn (1)  ; 

2 Biện luận số nghiệm của phương trình theo đồ thị 1,

 

Bài 6 Xét hàm số yx24x 4 4x24x 1 ax (1)

1 Xác định a để hàm số (1) luôn đồng biến

2 Tìm a để đồ thị hàm số đi qua điểm B1; 6 Vẽ đồ thị hàm số đã cho với a tìm được

3 Sử dụng đồ thị, hãy biện luận số nghiệm của phương trình x24x4 4x24x 1 xm

1 Giải phương trình trên khi xy

2 Vẽ đồ thị hàm số đã cho

3 Sử dụng đồ thị biện luận số nghiệm của hệ phương trình 2 1 3

Trang 2

Bài 9 Cho hàm số 2 22 8 8

4

y

x

1 Tìm tập xác định của hàm số

2 Vẽ đồ thị d của hàm số đã cho

3 Qua điểm M2; 2có thể kẻ được mấy đường thẳng không cắt đồ thị d của hàm số ?

yxx  xx

1 Vẽ đồ thị hàm số đã cho

2 Tìm giá trị nhỏ nhất của y và giá trị tương ứng của x

3 Với giá trị nào của x thì y  ? 4

4 Biện luận số nghiệm của phương trình ym theo m

2

2

mx

Ký hiệu đồ thị hàm số là (C)

1 Với m  , tính 1 f 3

2 Tìm m để (C) đi qua điểm M2;8

3 Xác định điểm cố định của đồ thị hàm số khi m thay đổi

4 Tìm m để đồ thị (C) cắt trục hoành tại hai điểm phân biệt

Bài 12 Cho hàm số

2

1 1

y x

Ký hiệu đồ thị hàm số là (C)

1 Tìm m để đồ thị hàm số đi qua điểm S1;8

2 Tìm điểm cố định mà mọi đồ thị (C) luôn luôn đi qua khi m thay đổi

3 Tìm m để đồ thị (C) cắt trục hoành tại hai điểm phân biệt

4 Tìm m để đồ thị (C) cắt đường thẳng d y: 2x tại hai điểm phân biệt nằm khác phía với đường 1 x  2

Bài 13 Cho họ hàm số

2

1

mx m y

x m

Ký hiệu họ đồ thị hàm số là (C)

1 Tìm m để đồ thị hàm số đi qua gốc tọa độ

2 Chứng minh rằng mọi đồ thị (C) luôn tiếp xúc với hai đường thẳng cố định

3 Tìm tất cả các đường thẳng trong mặt phẳng tọa độ không cắt bất kỳ đường cong nào của họ (C)

 

1 Tìm m để đồ thị (C) đi qua điểm M  3; 4

2 Chứng minh rằng với mọi giá trị của m, đồ thị (C) luôn đi qua hai điểm cố định

3 Biện luận số giao điểm của đồ thị (C) và đường thẳng :xy 1

Bài 15 Cho họ đồ thị (C):

2

2mx 3x 2 3m m y

x

1 Tìm m để đồ thị hàm số đi qua điểm M  1;5

2 Chứng minh rằng mọi đường cong (C) đều chắn trên đường phân giác góc phần tư thứ nhất hai đoạn thẳng

có độ dài không đổi

3 Tìm m để (C) có điểm chung với đường thẳng d y: 3x 4

Bài 16 Cho họ đồ thị (C):

2

2

y

1 Tìm n để đồ thị hàm số đi qua điểm K1; 3

2 Chứng minh rằng đồ thị (C) luôn đi qua hai điểm cố định với  n 0;n  6

3 Tìm giá trị n để đồ thị (C) cắt đường thẳng : d y2x tại hai điểm phân biệt nằm về hai phía đối với trục 1 hoành

Trang 3

Bài 17 Cho hàm số 3   2

y xmm xxmm (1)

Ký hiệu (C) là đồ thị hàm số (1)

1 Tìm m để đồ thị (C) đi qua gốc tọa độ

2 Tìm điểm cố định của (C)

y  mm xmxx (1)

Ký hiệu (C) là đồ thị hàm số đã cho Tìm tất cả các điểm cố định mà (C) luôn đi qua với mọi giá trị của m

ymxmxmx (1)

1 Chứng minh rằng đồ thị hàm số (1) luôn đi qua điểm ba điểm cố định

2 Chứng minh ba điểm cố định thẳng hàng

3 Chứng minh rằng đồ thị hàm số đã cho luôn luôn cắt trục hoành với mọi giá trị m

Bài 20 Tìm n để hai đồ thị của hai hàm số sau cùng đi qua một điểm cố định M

2

2

y

x a

(1) Ký hiệu đồ thị hàm số là (C)

1 Tìm a để đồ thị (C) đi qua điểm M1;5

2 Trong mặt phẳng tọa độ Oxy, tìm tọa độ các điểm A mà đồ thị (C) không thể đi qua với mọi giá trị m

3 Với giá trị nào của m thì (C) cắt trục hoành tại hai điểm phân biệt ?

yxmxxmx Ký hiệu đồ thị hàm số là (C)

1 Tìm tọa độ giao điểm của (C) và trục hoành trong trường hợp m  2

2 Tìm trong mặt phẳng tọa độ Oxy các điểm A sao cho đồ thị (C) không thể đi qua với mọi giá trị của m

3m 1 x m m y

có đồ thị là (C)

1 Tìm m để đồ thị (C) đi qua gốc tọa độ O

2 Tìm tọa độ các điểm trên mặt phẳng tọa độ sao cho không có đường cong (C) nào đi qua

yxx  Ký hiệu đồ thị là (C)

1 Tìm tọa độ giao điểm của (C) với đường thẳng 3 1

3

yx

2 Tìm m để đồ thị (C) cắt đường thẳng 2 1

3

ymx tại ba điểm phân biệt có hoành độ khác 1

3 Chứng minh rằng trên (C) không tồn tại các điểm có tọa độ nguyên

Bài 25 Cho hàm số

2

1

y

x

 (1)

1 Ký hiệu (C) là đồ thị hàm số (1) Tìm trên đồ thị (C) các điểm M có tọa độ nguyên

2 Tìm m để đồ thị (C) cắt đường thẳng yxmtại hai điểm nằm về hai phía của đường thẳng x  1

3 Tìm tọa độ các điểm A trên (C) có hoành độ lớn hơn 1 đồng thời tung độ của A đạt giá trị nhỏ nhất

Bài 26 Cho hàm số

2

1

x y x

(1) Ký hiệu (C) là đồ thị hàm số đã cho

1 Tìm các tọa độ điểm M thuộc (C) có tung độ bằng 1

2

2 Tìm các điểm A thuộc (C) sao cho A có tọa độ nguyên

3 Tìm m để đồ thị (C) cắt đường thẳng : d y2x mtại hai điểm M và N sao cho

a) Tam giác OMN vuông cân tại gốc tọa độ O

b) Độ dài đoạn thẳng MN bằng 4

Trang 4

Bài 27 Cho hàm số  

4

2 1 2

x

1 Tính giá trị Tf 1 f  2

2 Ký hiệu đồ thị hàm số đã cho là (C) Tìm trên đồ thị (C) các điểm N có tọa độ nguyên

3 Tìm giá trị của m để (C) cắt đường thẳng d (song song với tia phân giác góc phần tư thứ nhất) tại hai điểm A

và B sao cho độ dài đoạn AB bằng 5

Bài 28 Cho hàm số

2

1

y x

(1) Đồ thị là đường cong (C)

1 Tìm điểm thuộc đồ thị (C) có tọa độ nguyên dương

2 Tìm trên đồ thị hàm số (1) các điểm M cách đều hai đường thẳng d x: 3; d: 4x3y  1 0

Bài 29 Cho hàm số

2

2

y x

(1) Ký hiệu đồ thị hàm số là (C)

1 Tìm tọa độ các điểm M thuộc đồ thị (C) có tọa độ nguyên

2 Tìm giá trị của m để (C) và đường thẳng ymx có điểm chung 1

3 Tìm tọa độ các điểm N thuộc (C) sao cho N cách đều hai trục tọa độ

Bài 30 Cho hàm số

2

2

y x

(1) Ký hiệu đồ thị hàm số là (C)

1 Tìm tọa độ các điểm M thuộc đồ thị (C) có tọa độ nguyên

2 Tìm các điểm N thuộc (C) sao cho khoảng cách từ N đến đường thẳng : 3 d xy  đạt giá trị lớn nhất 6 0

3 Xác định giá trị m để (C) cắt đường thẳng :y3x2m tại hai điểm PQ sao cho PQ  3

1

x y x

có đồ thị (C)

1 Tìm tất cả các điểm E thuộc (C) có tọa độ nguyên

2 Tìm các điểm P thuộc (C) sao cho khoảng cách từ P đến đường thẳng x   ngắn nhất y 2 0

3 Với giá trị nào của m thì đồ thị (C) cắt đường thẳng : 2x y 3m  tại hai điểm phân biệt A và B sao cho 0

tam giác OAB có diện tích bằng 3 (O là gốc tọa độ)

Bài 32 Cho hàm số

2

1 1

y x

 

có đồ thị (C)

1 Tìm trên đồ thị (C) của hàm số các điểm cách đều hai trục tọa độ

2 Tìm trên (C) các cặp điểm đối xứng nhau qua đường thẳng yx

3 Tìm m sao cho trên đồ thị (C) tồn tại hai điểm A x y 1; 1,B x y 2; 2phân biệt thỏa mãn hệ thức 1 1

Bài 33 Cho hàm số

y

x m

có đồ thị là (C)

1 Tìm m để đồ thị (C) của hàm số đi qua điểm S2;5

2 Tìm các điểm trên mặt phẳng tọa độ sao cho có đúng hai đường cong của họ (C) đi qua

Bài 34 Trong mặt phẳng với hệ tọa độ Oxy cho hai đồ thị

 

2

Chứng minh rằng trên parabol (P) luôn tồn tại hai điểm không thuộc đồ thị (C) với mọi giá trị của m

Bài 35 Cho hàm số

2

1 1

y

x

có đồ thị là đường cong (C)

1 Tìm m để điểm A2; 6thuộc (C)

2 Tìm m để đường thẳng ym  cắt đồ thị (C) tại hai điểm phân biệt A và B sao cho OA vuông góc với OB 1

Trang 5

Bài 36

1 Tìm tọa độ điểm M trên đồ thị

2

1

y

x

 cách đều hai trục tọa độ

2 Tìm tọa độ các điểm nguyên trên đồ thị hàm số

2

2

y

x

yxxmxm

1 Tìm giao điểm của đồ thị hàm số và trục hoành trong trường hợp m  1

2 Tìm giá trị của m để đồ thị hàm số cắt trục hoành tại ba điểm khác nhau

Bài 38 Cho hàm số yx33x2 Ký hiệu đồ thị hàm số là (C) 1

1 Tìm tọa độ các giao điểm của đồ thị (C) với đường thẳng y  1

2 Tìm m để (C) cắt đường thẳng d y: 2m1x4m 1

a) Tại ba điểm phân biệt, trong đó có một điểm có hoành độ lớn hơn 3

b) Tại hai điểm phân biệt

Bài 39 Cho hàm số yx36x29x  Ký hiệu đồ thị hàm số là (C) 6

1 Tìm tọa độ các điểm trên (C) có tung độ bằng 6

2 Tìm giá trị của m để (C) cắt đường thẳng :y mx 2m  tại ba điểm phân biệt thỏa mãn 4 0

a) Ba điểm nằm cùng phía với trục tung

b) Ba điểm đều có hoành độ nhỏ hơn 3

3 Tìm m để (C) cắt :y mx 2m  tại ba điểm có hoành độ 4 0 x x x thỏa mãn 1, 2, 3 2 2 2

xxx

Bài 40 Cho hàm số yx33mx23x3m2 Ký hiệu đồ thị hàm số là (C)

Tìm giá trị m để đồ thị (C) cắt trục hoành tại ba điểm có hoành độ tương ứng x x x sao cho 1, 2, 3 x12x22x22 15

Tìm m để (C) cắt trục hoành tại ba điểm có hoành độ x x x1, 2, 3x1x2 x3sao cho x3x2 x2x1

yxx  ; Ký hiệu đồ thị là (C)

1 Tìm tọa độ giao điểm của (C) và trục hoành

2 Tìm m để đồ thị (C) cắt đường thẳng d y: mx2m tại ba điểm 2 A2; 2 , ,  B Dsao cho tích hoành độ

hai điểm B và D bằng 5

3 Lập phương trình đường thẳng l cắt đồ thị (C) tại ba điểm phân biệt E, F, G sao cho điểm G có hoành độ bằng 2 và đoạn EF có độ dài bằng 2 2

Bài 43 Cho hàm số y 2x36x2 Ký hiệu đồ thị là (C) 1

1 Tìm điểm M thuộc đồ thị có hoành độ bằng 2

2 Xét sự tương giao giữa đồ thị (C) với đường thẳng : d y 1 mx

a) Tìm m để (C) cắt d tại hai điểm phân biệt

b) Tìm m để (C) cắt d tại ba điểm phân biệt A0;1 , , B D sao cho B là trung điểm của AD

yxxx Ký hiệu đồ thị là (C)

1 Tìm điểm M thuộc (C) có tung độ bằng 0

2 Tìm m để (C) cắt đường thẳng : ymx tại ba điểm A, B và gốc tọa độ O Chứng minh rằng khi m thay đổi, trung điểm I của đoạn thẳng AB luôn di động trên một đường thẳng cố định

Tìm m để đồ thị (C) cắt đường thẳng : d y2x m  tại ba điểm 1

1 Có hoành độ không nhỏ hơn 1

2 Có hoành độ lớn hơn 1

2

Trang 6

Bài 46 Cho hàm số y4x 6mx 1 Ký hiệu đồ thị hàm số là (C)

Tìm m để (C) cắt đường thẳng :y  tại 1 x A0;1 , , B C sao cho hai điểm B và C đối xứng với nhau qua đường

phân giác của góc phần tư thứ nhất

Bài 47 Cho hàm số yx32mx2mx3x  Gọi đồ thị của hàm số là (C) 4

Xét đường thẳng :d y  và điểm x 4 M1;3 Tìm m để (C) cắt đường thẳng d tại ba điểm A0; 4 , , B C sao cho

tam giác MBC có diện tích bằng 8 2

Bài 48 Cho hàm số

2

2 1

y

x

 , có đồ thị (C)

1 Tìm m để đồ thị (C) đi qua điểm 4;1

3

A 

 

2 Tìm m để đường thẳng :xy   cắt đồ thị (C) tại hai điểm phân biệt M và N sao cho OMN là tam 4 0 giác đều

Bài 49 Cho hàm số

2

2 2

y x

, có đồ thị là (C)

1 Tìm các điểm M thuộc (C) có tọa độ nguyên

2 Xét đường thẳng d đi qua điểm A0; 2và có hệ số góc k Tìm k để d cắt (C) tại hai điểm thuộc hai nhánh

khác nhau của đồ thị (hai điểm nằm về hai phía của đường thẳng x  ; theo lý thuyết tiệm cận) 2

Bài 50 Cho hàm số

2

1 1

y x

 

, có đồ thị là (C)

1 Tìm tập giá trị của hàm số đã cho

2 Xác định m để đường thẳng :ymx  cắt đồ thị (C) tại hai điểm thuộc cùng một nhánh của đồ thị (hai 1 điểm nằm về một phía đối với đường thẳng x   ; theo lý thuyết tiệm cận) 1

1

yx  m xm , có đồ thị là (C)

1 Với giá trị nào của m thì (C) đi qua gốc tọa độ ?

2 Tìm tất cả các giá trị của m để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt có hoành độ dương

1 Tìm tập xác định của hàm số đã cho

2 Tìm m để đồ thị hàm số cắt trục hoành tại ba điểm có hoành độ lớn hơn 1

có hoành độ x1x2x3thỏa mãn x2x3 2x1

Bài 54 Cho hàm số

2

2 1

y x

1 Ký hiệu đồ thị là (C) Chứng minh rằng đồ thị (C) luôn cắt đường phân giác của góc phần tư thứ hai tại hai điểm phân biệt A và B

2 Tìm giá trị của k sao cho tam giác OAB là tam giác vuông tại O

2

x y

x

1 Chứng minh rằng đường thẳng ym  luôn cắt đồ thị hàm số trên tại hai điểm phân biệt A và B x

2 Tìm m để tam giác OAB có diện tích bằng 4

3 Tìm tọa độ các điểm M thuộc đồ thị hàm số sao cho M có tọa độ nguyên

Bài 56 Cho hàm số

2

4 1

y x

Chứng minh rằng với mọi a, đường thẳng y3x a luôn cắt đồ thị tại hai điểm có hoành độ x x 1, 2

Tìm giá trị nhỏ nhất của biểu thức Txx

Trang 7

Bài 57 Cho hàm số 3

2

x y x

có đồ thị (C)

1 Tìm điểm P trên (C) các điểm có hoành độ bằng 1

2 Tìm tọa độ giao điểm của (C) với trục tung

3 Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến hai trục tọa độ đạt giá trị nhỏ nhất

2

x y x

có đồ thị (C)

1 Tìm đồ thị (H) đối xứng với đồ thị (C) qua điểm A1; 3

2 Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến hai trục tọa độ đạt giá trị nhỏ nhất

Bài 59

1 Tìm hai điểm E và F khác nhau thuộc hai nhánh khác nhau của đồ thị

2

1 1

y x

 

sao cho độ dài đoạn EF đạt giá trị nhỏ nhất

2 Tìm k để đường thẳng ykx10 5 kcắt đồ thị  

2

:

2

x

tại hai điểm phân biệt A và B nhận điểm I5;10làm trung điểm

yxmxmx

1 Tìm tọa độ giao điểm của đồ thị hàm số với trục tung trong trường hợp m  1

2 Tìm m để đường thẳng y   cắt đồ thị hàm số đã cho tại ba điểm phân biệt x 1

yxmxmx  (1); với m là tham số

Tìm giá trị của m để đồ thị hàm số (1) cắt đường thẳng : d y   tại ba điểm A, B, C sao cho x 4

1 Diện tích tam giác ABC bằng 4 với điểm M1; 3

2 Độ dài đoạn BC bằng 5 (B và C là các giao điểm có hoành độ khác 0)

yxmxmx m (1); với m là tham số thực

Tìm giá trị của m để đồ thị hàm số (1) cắt trục hoành tại ba điểm phân biệt có hoành độ dương

1

x y x

có đồ thị (C)

1 Tìm các điểm M thuộc (C) có tọa độ nguyên

2 Tìm m để đồ thị (C) cắt đường thẳng :ymx m tại hai điểm A và B sao cho 2

a) Độ dài đoạn thẳng AB nhỏ nhất

b) Trung điểm của đoạn thẳng AB nằm trên đường phân giác góc phần tư thứ nhất

1

x y x

có đồ thị (C)

1 Tìm đồ thị (H) đối xứng với đồ thị (C) qua trục hoành

2 Tìm giá trị của m để đường thẳng ym1xm2cắt đồ thị (C) tại hai điểm phân biệt A và B sao cho

a) Tam giác OAB có diện tích bằng 3

2

b) Trung điểm của đoạn thẳng AB nằm trên trục tung

1

x y x

có đồ thị (C)

1 Tìm đồ thị (H) đối xứng với đồ thị (C) qua gốc tọa độ

2 Tìm giá trị của m để đường thẳng ym2x cắt đồ thị (C) tại hai điểm A và B thỏa mãn

a) Tam giác OAB có diện tích bằng 3

b) Độ dài đoạn thẳng AB bằng 2 3

3 Tìm tất cả các điểm M nằm trên (C) có tọa độ nguyên

Trang 8

Bài 66 Cho hàm số yx 2x 1m x m (với m là tham số thực)

1 Trong trường hợp m  , tìm giao điểm của đồ thị hàm số với trục hoành 0

2 Tìm giá trị của m để đồ thị hàm số đã cho cắt trục hoành tại ba điểm phân biệt có hoành độ x x x sao cho 1, 2, 3

xxx

x y x

có đồ thị (C)

1 Tìm tất cả điểm nguyên M thuộc (C)

2 Tìm đồ thị (H) đối xứng với (C) qua đường thẳng :y2x

3 Tìm giá trị của m để đồ thị (C) cắt đường thẳng ym tại hai điểm A và B sao cho 2 2 37

2

Bài 68 Cho hàm số yx33x2 có đồ thị (C) 4

1 Tìm đồ thị (H) đối xứng với đồ thị (C) qua điểm K 1;1

2 Gọi d là đường thẳng đi qua điểm A  1; 0và có hệ số góc k Tìm k để d cắt (C) tại ba điểm phân biệt A, B

và C sao cho tam giác ABC có diện tích bằng 1 (trong đó A  1; 0)

3 Tìm m để đường thẳng :ym1xcắt đồ thị (C) tại ba điểm phân biệt A, B, C sao cho độ dài đoạn BC

nhỏ hơn 2 2 (trong đóA  1; 0)

Bài 69 Cho hàm số

2

2

y x

có đồ thị (C)

1 Tìm đồ thị (H) đối xứng với đồ thị (C) qua điểm K  2; 4

2 Tìm m để đồ thị (C) cắt đường thẳng d y: 2mx mcắt đồ thị (C) tại hai điểm thuộc hai nhánh của (C)

Bài 70 Cho hàm số

 

2

y

x

 có đồ thị (C)

1 Tìm độ thị (H) đối xứng với (C) qua đường thẳng y2x 4

2 Tìm m để đồ thị (C) cắt đường thẳng ym tại hai điểm phân biệt A và B sao cho độ dài AB bằng 2

3 Với giá trị nào của m thì (C) cắt đường thẳng :ymx2m  tại hai điểm M và N sao cho đoạn MN nhận 3 điểm P2;3là trung điểm

1

x

có đồ thị (C)

1 Tìm tất cả các điểm thuộc đồ thị có tọa độ nguyên

2 Xét sự tương giao giữa đồ thị (C) và đường thẳng : d y2xm

a) Tìm m để (C) và d cắt nhau tại hai điểm nằm bên trái trục tung

b) Tìm m để (C) và d cắt nhau tại hai điểm mà khoảng cách giữa hai điểm đạt giá trị nhỏ nhất

Bài 72 Cho hàm số

2

1

y

x

 

Tìm giá trị của m để đồ thị hàm số đã cho cắt trục hoành tại hai điểm phân biệt có hoành độ dương

Bài 73 Cho hàm số

2

1

y

x

 

có đồ thị (C)

1 Tìm đồ thị (H) đối xứng với (C) qua điểm D1;3

2 Xác định m để đồ thị (C) cắt đường thẳng : d ym2x tại hai điểm phân biệt A và B sao cho trung điểm của đoạn thẳng AB nằm trên trục tung

3 Định m để (C) cắt đường thẳng : 2x y m tại hai điểm phân biệt nằm trong hình tròn có biên là 0 đường tròn tâm O bán kính bằng 3

Trang 9

Bài 74 Cho hàm số 2

1

x y x

 có đồ thị (C)

1 Tìm đồ thị hàm số đối xứng với đồ thị (C) qua điểm S3; 4

2 Tìm m để đường thẳng :ymx3m cắt đồ thị (C) tại hai điểm phân biệt trong đó một điểm có hoành độ

lớn hơn 1

yxmxmx và đường thẳng d y: 2mx4m 3

1 Chứng minh rằng đồ thị hàm số đã cho và đường thẳng d luôn đi qua một điểm cố định

2 Tìm m để đồ thị hàm số đã cho cắt đường thẳng d cắt nhau tại ba điểm phân biệt có hoành độ dương

Bài 76 Cho hàm số yx42m x2 2 1

1 Chứng minh rằng đồ thị hàm số trên luôn nằm phía trên trục hoành

2 Chứng minh đồ thị hàm số đã cho luôn cắt đường thẳng :d y  tại hai điểm phân biệt x 1

1

x y

x

có đồ thị (C)

1 Tìm điểm M thuộc (C) có tọa độ nguyên

2 Với giá trị nào của m thì đường thẳng :y2x m cắt đồ thị hàm số tại hai điểm phân biệt sao cho khoảng cách giữa hai điểm đó bằng 5

1

x y x

có đồ thị (C)

1 Tìm đồ thị (H) đối xứng với đồ thị (C) qua đường thẳng :y2x 5

2 Tìm giá trị của k để đường thẳng d đi qua điểm I  1;1và có hệ số góc k cắt đồ thị (C) tại hai điểm M và N sao cho I là trung điểm của MN

3 Tìm tọa độ các điểm P và Q thuộc (C) thỏa mãn OP3OQ0

Bài 79 Cho hàm số

2

y x

 có đồ thị (C)

1 Trong trường hợp m 4 Tìm đồ thị (H) đối xứng với đồ thị (C) qua gốc tọa độ

2 Tìm m để (C) cắt đường thẳng : 2x2y 1 0tại hai điểm phân biệt A và B sao cho tam giác OAB có

diện tích bằng 3

8

3 Tìm tọa độ các điểm M và N thuộc (C) đối xứng với nhau qua điểm K2; 7

1

x y

x

 có đồ thị (C)

1 Tìm đồ thị (H) đối xứng với (C) qua điểm 1;3

2

D 

 

2 Gọi d là đường thẳng đi qua điểm M1; 1 và có hệ số góc k Tìm k để d cắt (C) tại hai điểm phân biệt A và

B sao cho AB 3 10

3 Với giá trị nào của m thì (C) cắt đường thẳng :y 3 4x tại hai điểm P và Q cách đều gốc tọa độ O

Bài 81 Cho hàm số

2

3 1

x y x

có đồ thị (C)

1 Tìm đồ thị (H) đối xứng với (C) qua điểm E2;8

2 Viết phương trình đường thẳng d đi qua điểm 2;2

5

M 

 và cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho

M là trung điểm đoạn AB

3 Tìm giao điểm của đồ thị (C) và parabol   2

P yx   x

Trang 10

Bài 82 Cho hàm số y x 1

x

  có đồ thị (C)

1 Tìm tọa độ giao điểm của (C) với trục hoành

2 Tìm m để đồ thị (C) cắt đường thẳng : d ym  tại hai điểm A và B sao cho độ dài đoạn AB bằng 4 x

Bài 83 Cho hàm số

1

x y x

có đồ thị (C)

1 Tìm đồ thị (H) đối xứng với đồ thị (C) qua đường thẳng : 2

3

d y x

2 Xác định m để đường thẳng : d ym  cắt đồ thị (C) tại hai điểm M và N thỏa mãn x MN  10

Đường thẳng :d y   cắt đồ thị hàm số tại ba điểm phân biệt2 A0; 2 , ,  B C Tìm m sao cho S OBC  13

yxmx xmm Chứng minh đồ thị hàm số luôn cắt trục hoành tại ít nhất hai điểm phân biệt

yxxx có đồ thị (C)

1 Tìm đồ thị (H) đối xứng với đồ thị (C) qua điểm Z1; 4

2 Tìm đường thẳng d song song với Ox cắt (C) tại hai điểm phân biệt A, B sao cho tam giác OAB cân tại O

yxmxm

Tìm m để đồ thị hàm số cắt đường thẳng y   tại bốn điểm phân biệt có hoành độ nhỏ hơn 2 1

yxmxm

1 Tìm m để đồ thị hàm số đã cho cắt trục Ox tại ba điểm có hoành độ đều nhỏ hơn 3

2 Tìm m để đồ thị hàm số đã cho cắt trục Ox tại ba điểm phân biệt có hoành độ lập thành một cấp số cộng

Bài 89 Cho hàm số yx35x23x 9

Gọi d là đường thẳng đi qua điểm A  1; 0có hệ số góc k Tìm k để đường thẳng d cắt đồ thị (C) của hàm số tại ba điểm phân biệt A, B, C sao cho điểm G2; 2là trọng tâm tam giác OBC (O là gốc tọa độ)

1

x y x

có đồ thị (C)

1 Tìm đồ thị (H) đối xứng với đồ thị (C) qua điểm T2; 3

2 Tìm k để đường thẳng :ykx2k  cắt đồ thị (C) tại hai điểm A và B sao cho 1

a) Hai điểm A và B cách đều trục hoành

b) Hai điểm A và B nằm về hai phía của đường x   y 1 0

1

x y x

có đồ thị (C)

1 Tìm điểm M thuộc đồ thị (C) sao cho M có tọa độ nguyên

2 Với giá trị nào của m thì đường thẳng : d ymx m cắt đồ thị (C) tại hai điểm M và N sao cho độ dài 2

đoạn thẳng MN đạt giá trị nhỏ nhất

1

x y x

có đồ thị (C)

1 Tìm tập xác định của hàm số đã cho

2 Tìm đồ thị (H) đối xứng với đồ thị (C) qua điểm Q1;3

3 Xác định m để đường thẳng : d y3xm cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho

a) Trọng tâm tam giác OAB nằm trên đường thẳng x2y 2

b) OA OB   7

Ngày đăng: 25/03/2014, 15:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w