New characterizations of Sobolev spaces on the Heisenberg group
Trang 1Contents lists available at ScienceDirect
www.elsevier.com/locate/jfa
New characterizations of Sobolev spaces on the
Heisenberg group✩
Xiaoyue Cuia, Nguyen Lama, Guozhen Lub,a,∗
a Department of Mathematics, Wayne State University, Detroit, MI 48202, USA
b School of Mathematical Sciences, Beijing Normal University, Beijing, 100875,
character-iff ∈ L p(H),p >1, thenf ∈ W 1,p(H) if and only if
Bour-in the setting of Heisenberg group Second, corresponding to the casep= 1, we give a characterizations of BV functions on the Heisenberg group ( Theorems 4.1 and 4.2 ) Third, we give some more generalized characterizations of Sobolev spaces on the Heisenberg groups ( Theorems 5.1 and 5.2 ).
It is worth to note that the underlying geometry of the clidean spaces, such as that any two points in RN can be connected by a line-segment, plays an important role in the proof of the main theorems in [29] Thus, one of the main techniques in [29] is to use the uniformity in every directions
Eu-of the unit sphere in the Euclidean spaces More precisely, to
✩
Research is partly supported by a US NSF grant DMS#1301595.
* Corresponding author at: Department of Mathematics, Wayne State University, Detroit, MI 48202, USA.
E-mail addresses:xiaoyue.cui@wayne.edu (X Cui), nguyenlam@wayne.edu (N Lam), gzlu@wayne.edu
(G Lu).
http://dx.doi.org/10.1016/j.jfa.2014.08.004
0022-1236/© 2014 Elsevier Inc All rights reserved.
Trang 2deal with the general caseσ∈ SN−1 , it is often assumed that
σ = e N = (0, , 0,1) and, hence, one just needs to work on the one-dimensional case This can be done by using the ro- tation in the Euclidean spaces Due to the non-commutative nature of the Heisenberg group, the absence of this unifor- mity on the Heisenberg group creates extra difficulties for us
to handle Hence, we need to find a different approach to tablish this characterization.
es-© 2014 Elsevier Inc All rights reserved.
Theclassicaldefinitionof Sobolevspaceisas follows:TheSobolevspaceW k,p (Ω) is
definedto betheset of allfunctionsu ∈ L p (Ω) suchthatforeverymulti-index αwith
|α| ≤ k,theweakpartialderivativeD α ubelongstoL p (Ω),i.e
W k,p (Ω) =
u ∈ L p (Ω) : D α u ∈ L p (Ω), ∀|α| ≤ k
.
Here,ΩisanopensetinRn and1≤ p≤ +∞.Thenaturalnumberkiscalledtheorder
ofthe Sobolevspace W k,p (Ω). This definitioncanbe extendedeasily to other settingssuchasRiemannianmanifolds,sincethegradientiswell-definedthere[18].Moreover,wecanalsodefinethefractionalSobolevspace,wheretheorderkisnotanaturalnumber,viaBesselpotentials [33]
Sobolevspaces onRiemannianmanifoldsor with metricmeasure spaces as targetedspaceshavebeenstudiedby,e.g.,KorevaarandSchoen[19],Hebey[18],etc.TherehavebeencharacterizationsofSobolevspacesindoublingmetricmeasurespaces.Forinstance,variouscharacterizationsoffirstorderSobolevspacesinmetricmeasurespaceshavebeengiven using a Lipschitztype (pointwise) estimate by Hajlasz [17], then using PoincarétypeinequalitiesbyFranchi,LuandWheeden[16]forthefirstorderSobolevspaces(seealsoFranchi,HajlaszandKoskela[15]),andsubsequentlybyLiu,LuandWheeden [21]forhighorderSobolevspaces,etc.TheHeisenberggroup(andmoregenerally, stratifiedgroups) is aspecial case of metric measure spaces with doubling measures The char-acterizations given in [17,16] and [21] also give alternative definitions of non-isotropicSobolevspacesontheHeisenberggroup.Indeed,itwasshownin[21]thatthedefinition
ofnon-isotropicFolland–Steinspaces[14]isequivalenttotheSobolevspacesonstratifiedgroupsusing thehigherorder Poincaréinequalities(seealso[23,24,26,27,10])
Nevertheless,themainpurposeofourpaperfocusesonthosetypesofcharacterizations
of Sobolev spaces on the Heisenberg group in the spirit of characterizations given by
Trang 3To thisend,wewill firstrecallthoseresultsof[5]and[29]
Theorem A.(See Bourgain, Brezis and Mironescu [5] ) Let g ∈ L p(RN ), 1 < p < ∞ Then g ∈ W 1,p(RN ) iff
This resultis studiedfurtherandextendedin[2–4,7,20,28,31]
Recently, Hoai-Minh Nguyen [29] established some new characterizations of theSobolev spaceW 1,p(RN) that areclosely relatedto Theorem A Moreprecisely, itwasconjecturedbyBrezisandconfirmedin[29]that
Theorem B.(See H.M Nguyen [29] ) Let1< p < ∞ Then
(a) There exists a positive constant C N,p depending only on N and p such that
Trang 4Inthispaper,wewillestablishresultsofthetypesimilartoTheorem Binthesetting
of Heisenberg groups Let H = Cn× R be the n-dimensionalHeisenberg groupwhosegroupstructure isgivenby
However,forsimplicitywe willwrite ruto denoteδ r u TheJacobiandeterminantof δ r
isr Q,where Q = 2n+ 2 isthehomogeneousdimensionof H
Weuseξ = (z, t) todenoteanypoint(z, t)∈ H andρ (ξ) = (|z|4+ t2)1 todenotethehomogeneousnormofξ∈ H.Withthis norm,we candefine aHeisenberg ballcentered
at ξ = (z, t) withradius R: B (ξ, R)= {v ∈ H : ρ(ξ−1· v) < R}.Thevolumeof suchaball isσ Q = C Q R Q forsomeconstant C Q depending onlyon Q Wealso define Σ theunitsphereintheHeisenberggroupH:
Σ=
ξ ∈ H : ρ(ξ) = 1
.
Trang 5Weuse∇Hf toexpressthehorizontalsubgradientofthefunctionf : H→ R:
Theorem 1.1.Let1< p < ∞ and f ∈ W 1,p (H) Then
(a) There exists a positive constant C Q,p depending only on Q, p such that
Σ
|
(e, 0), σ
|p dσ
for any (e,0)∈ Σ.
(c) There exists a positive constant C Q,p such that
Trang 6OurTheorem 1.1 extendsTheorem 3 of H.M Nguyen[29] in theEuclidean spaces.UsingTheorem 1.1,wesetupnewcharacterizationsoftheSobolevspaceW 1,p(H) which
isoneof themain purposesofthispaper Moreprecisely,weprovethat
Theorem1.2 Let1< p < ∞ and f ∈ L p (H) Then the following are equivalent:
for some 1≤ q < p, where r (B) is the radius of the ball B.
Theequivalenceof(1),(2)and(3)intheaboveTheorem 1.2intheEuclideanspaceswasgiveninTheorem 3of[29]
The following remarks are in order First, the proofs of the main theorems (e.g.,Theorem B) in [29] rely on the underlying geometry of the Euclidean spaces, such asthat any two points can be connected by a line-segment Second, it is worth to notethatoneof themain techniques inthe proof ofTheorem B is to usethe uniformityineverydirectionsoftheunitsphereintheEuclidean spaces.Moreprecisely, todealwiththe generalcase σ∈ SN −1, it is oftento be assumed thatσ = e N = (0, , 0,1) and,hence, one just needs to work on 1-dimensional case This can be done by using therotationintheEuclideanspaces.InthecaseofHeisenberggroups,thistypeofproperty
is not available because of the structure of the Heisenberg groups, in particular, the
Trang 7dilation Hence, we need to find a different approach to this characterization In fact,
wewill usetherepresentationformulaontheHeisenberggroupprovedin[22]to obtainestimate (2.1) This estimate will allow us to establish auseful lemma (Lemma 2.2 inSection2) Third,aswehaveshownin[21],(1),(4)and(5)areallequivalent.Therefore,the new ingredienthere is that (1), (2) and (3) are equivalent Fourth, results of thispapertogetherwithcharacterizationsofsecondorderSobolevspacesinEuclideanspacesestablishedin[12]havebeenpresentedin[11].Wehavealsoextendedresultsinthispaper
to generalstratifiedgroupsin[13]
The plan of this paper is as follows: In Section2, we will study some helpful mas andusethem toproveTheorem 1.1whichgivespropertiesofSobolevfunctionsin
lem-W 1,p(H) for 1< p <∞ Theorem 1.2 givesthe characterizationsof Sobolev functions
in W 1,p(H) for 1 < p < ∞ and will be considered in Section 3 The borderline case
p = 1 (i.e., for BV functions) will be investigated in Section 4 We also study somegeneralizationsandvariantsinSection5whichextendsTheorems 1.1 and1.2
2 ProofofTheorem 1.1
2.1 Some preliminary lemmas
Wefirstrecallanelementarylemmafrom [29]andincludeaproof
Lemma 2.1 Let Ω be a measurable set in Rm , Φ and Ψ be two measurable nonnegative functions on Ω, and α > −1 Then
Trang 8thateverytwopointscanbeconnectedbyaline-segmentandthenusedthemean-valuetheoremtocontrolthedifferenceof|f (x) − f (x + he)| (where h∈ RN ande∈ SN −1)bythe Hardy–Littlewood maximal function of the partial derivative of f inthe direction
ofe Such anargument doesnotworkon theHeisenberg group.Therefore, weneed toadaptanewargumentbyusing therepresentation formulaonthe HeisenberggroupHestablishedin[22]
Lemma2.2 Let f ∈ W 1,p (H),1< p < ∞ Then we have
where C Q,p is a positive constant depending only on Q and p.
Proof First,werecallthefollowingpointwiseestimateonstratifiedgroupsprovedin[22](seeLemma 3.1onpage 382there),foranymetricball B in H andeveryu ∈ B,wehave
andA Q,p istheuniversalconstantdependingonlyonQandp
Nownotingthatby(2.1):
weget
Trang 10Theproofnowiscompleted ✷
Beforewestateandprovethenextlemma,welike tomakethefollowingremark.Let
ByLemma 2.2,lim infδ→0 I (δ) doesexist.InthesettingofEuclideanspaces[29],thislimitis rather easyto evaluate Moreprecisely, bypolar coordinatesand therotations
inthe Euclidean spaces, it is often assumed in[29] thatσ = e N = (0, , 0,1) Thus,
to deal with the general case σ ∈ SN −1, the author in [29] just needs to consider theone-dimensionalcase.Then,usingrealanalysistechniquessuchastheMaximalfunction,Lebesgue’s dominated convergence theorem, Hoai-Minh Nguyen finds successfully theexactvalueoflim infδ→0 I (δ).InoursettingofHeisenberggroupH,thisapproachisnotavailablebecause oftheunderlyinggeometry ontheHeisenberg group.Hence,weneed
toproposeanewmethodinordertocalculatelim infδ→0 I (δ). Indeed,ourmain ideaisthatwewill firststudytherelationsofI (δ) and J (ε).
Trang 11Infact,wecanprovethefollowingresultsontheHeisenberggroupwhichareimportantfor us to establish the characterizationsof Sobolev spaces W 1,p(H) on the Heisenberggroup.
Lemma 2.3.Let f ∈ W 1,p (H), 1< p < ∞ There hold
Trang 14Proof First,wenoticebythechangeof variablethat
Trang 15Lemma 2.5.Let f ∈ C1(H) Then
Inthefollowing,Cwill beaconstantindependentofu, h, σ, ε
Since f ∈ C1(H), bytriangleinequalityand Taylorexpansion[25],wehave
Trang 17(b)From Lemmas 2.4,2.3,2.5andthedensityargument,wehave (b).
(c) ThisisLemma 2.2
(d)This isaconsequenceofLemmas 2.4,2.3,2.5andthedensityargument
3 ProofofTheorem 1.2
Theproof isdividedinto six steps
Step1:(1)⇒ (2).Thisisaconsequenceofpart(a)ofTheorem 1.1andthefactthat
Trang 18Thus,withanextraassumptionf ∈ L∞(H), wehavethat(2)⇒ (1).
Forthegeneralcase,wemakeuseofthetruncated function.ForR >0,define
≤f(u) − f(v) for all u, v ∈ H.
Asaconsequence,onehas
Trang 19Since R >0 isarbitrary,we candeducethatf ∈ W 1,p(H).
Step3:(1)⇒ (3).Thisisaconsequenceofpart(c) ofTheorem 1.1andthefactthat
Multiplying (3.1)byεδ ε−1, 0< ε <1,and integrating with respect toδ over (0,1),
byLemma 2.1withα = p + ε− 1,Φ (u, v)= |f (u) − f (v)|, Ψ (u, v)=ρ(u−11·v) Q +p,onehas
As aconsequenceofStep 2,wehavef ∈ W 1,p(H)
Theproof isnowcompleted
4 Thecasep= 1 andBVfunctionsonthe Heisenberggroup
Inthissection,wewillinvestigatethespecialcasep= 1.First,werecallthedefinition
of thespace BV (Ω) offunctionswithbounded variationinΩ⊂ H
Trang 20Definition4.1(Horizontal vector fields).Thespaceof smoothsectionsofHΩ,thezontalsubbundleonΩ,isdenotedbyΓ (HΩ).ThespaceΓ c (HΩ) denotesalltheelements
hori-ofΓ (HΩ) withsupportcontainedinΩ.ElementsofΓ (HΩ) arecalledhorizontalvectorfields
Definition 4.2 (H-BV functions). We say that a function u ∈ L1(Ω) is afunction of
where the symbol div denotes the Riemannian divergence We denote by BV (Ω) the
spaceofallfunctionsofH-bounded variation
See[1,8,9] fordefinitionsofBV spacesonmoregeneralsettings
Inthissection,wewillprovethefollowingproperty:
Theorem4.1 Let f be a function in L1(H) satisfying
forsomepositiveconstantC >0
Proceeding similarly as in Step 4of the proof of Theorem 1.2, multiplying (4.1) by
εδ ε−1 ,0< ε <1,integrating with respect to δ over (0,1),and then using Lemma 2.1,
Trang 21Now, wealsosplittheproofinto two steps:
Step 1:Wesuppose furtherthatf ∈ L∞(H) Now, we define f k as inStep 2 of theproof of Theorem 1.2 Notingthatthefunctiont 1+ε isstill convex onR+, wecanalsohave
Then onehasf R ∈ L∞(H), f R (u) R→∞ −→ f (u) pointwisefora.e.u∈ H,and
f R (u) − f R (v)
≤f(u) − f(v) for all u, v ∈ H.
As aconsequence,onegets
Trang 22SinceR >0 isarbitrary,wecandeducethatf ∈ BV (H) ✷
UsingTheorem 4.1,wecanalsohavethefollowingLipschitztypecharacterizationof
BV space:
Trang 23Theorem4.2 Let f ∈ L1(H) be such that there exists a nonnegative function F ∈ L1(H)
Beforewebeginourproofofthistheorem,weliketomakesomeremarks.Wenotethat
in ourTheorem 1.2, part(4), theSobolev spaces W 1,p(H) for p >1 was characterized
if the above estimate (4.2) holds for F ∈ L p(H) But this characterization does nothold for p= 1 (see also the paper [17]) Therefore, our theorem can be viewed as theborderline case of the Sobolev space when p = 1 on the Heisenberg group H Morerecently,ithasbeenshownin[32]thatiftheaboveestimate(4.2)holdsforF ∈ L1(H),then f ∈ W 1,1(H)
ProofofTheorem4.2 First,wenoteherethatforallδ ∈ (0,1):
Trang 24h2dhdudσ
= 2ˆ
5 Somegeneralizationsandvariantsofcharacterizations
In this section, we will study some generalizations of the above results The nextTheoremisageneralizedresultofTheorem 1.2:
Theorem 5.1 Let f ∈ L p (H), 1< p < ∞ and F : [0,∞)→ [0, ∞) be continuous such that
∞
ˆ
0
F (t)t −p−1 dt = 1.
Trang 28andusingTheorem 1.2,wegetf∈ W 1,p(H) Hence, f ∈ W 1,p(H) ✷
Thesecondresultinthissectionistoweakenthestatement(3)inTheorem 1.2.Moreprecisely,wewill provethat
Theorem5.2 Let1< p < ∞ and f ∈ L p (H) be such that
Trang 29sincebyTheorem 1.2,wegettheassertion.
Now, foreveryε ∈ (0,1),since
Trang 30ρ (u−1· v) Q+p χ {|f (u)−f (v)|>δ n}(u, v)dudv. (5.7)
Now,fix(u, v) suchthat
0 <
f(u) − f(v) ≤ 1anddenoten (u,v) thesmallestintegernumbersuchthat
Trang 32[3] B Bojarski, Sobolev spaces and Lagrange interpolation, arXiv:1201.4708.
[4] R Borghol, Some properties of Sobolev spaces, Asymptot Anal 51 (3–4) (2007) 303–318.
[5] J Bourgain, H Brezis, P Mironescu, Another look at Sobolev spaces, in: J.L Menaldi, E Rofman,
A Sulem (Eds.), Optimal Control and Partial Differential Equations, A Volume in Honour of
A Bensoussan’s 60th Birthday, IOS Press, 2001, pp 439–455.
[6] J Bourgain, H.-M Nguyen, A new characterization of Sobolev spaces, C R Math Acad Sci Paris
343 (2) (2006) 75–80.
[7] H Brezis, How to recognize constant functions A connection with Sobolev spaces, Uspekhi Mat Nauk 57 (4(346)) (2002) 59–74 (in Russian), translation in Russian Math Surveys 57 (4) (2002) 693–708.
[8] J Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom Funct Anal 9 (1999) 428–517.
[9] J Cheeger, B Kleiner, Differentiating maps into L1 , and the geometry of BV functions, Ann of Math (2) 171 (2) (2010) 1347–1385.
[10] W.S Cohn, G Lu, P Wang, Sub-elliptic global high order Poincaré inequalities in stratified Lie groups and applications, J Funct Anal 249 (2) (2007) 393–424.
[11] X Cui, N Lam, G Lu, Characterizations of Sobolev spaces in Euclidean spaces and Heisenberg groups, Appl Math J Chinese Univ Ser B 28 (4) (2013) 531–547.
[12] X Cui, N Lam, G Lu, Characterizations of second order Sobolev spaces, preprint.
[13] X Cui, G Lu, New characterizations of Sobolev spaces and constant functions on the stratified groups, in preparation.
[14] G.B Folland, E.M Stein, Hardy Spaces on Homogeneous Groups, Math Notes, vol 28, Princeton University Press/University of Tokyo Press, Princeton, NJ/Tokyo, 1982.
[15] B Franchi, P Hajłasz, P Koskela, Definitions of Sobolev classes on metric spaces, Ann Inst Fourier (Grenoble) 49 (6) (1999) 1903–1924.
[16] B Franchi, G Lu, R.L Wheeden, A relationship between Poincaré-type inequalities and tation formulas in spaces of homogeneous type, Int Math Res Not IMRN (1) (1996) 1–14 [17] P Hajłasz, Sobolev spaces on an arbitrary metric space, Potential Anal 5 (4) (1996) 403–415 [18] E Hebey, Sobolev Spaces on Riemannian Manifolds, Lecture Notes in Math., vol 1635, Springer- Verlag, Berlin, 1996, x+116 pp.
represen-[19] N.J Korevaar, R.M Schoen, Sobolev spaces and harmonic maps for metric space targets, Comm Anal Geom 1 (1993) 561–659.