1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi thử THPT QG môn Toán năm 2023 có đáp án (Lần 2) - Sở GD&ĐT Bắc Ninh (Mã đề 501)

39 11 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi thử THPT QG môn Toán năm 2023 có đáp án (Lần 2) - Sở GD&ĐT Bắc Ninh (Mã đề 501)
Trường học Trường THPT Lương Tài Số 2
Chuyên ngành Toán
Thể loại Đề thi thử
Năm xuất bản 2023
Thành phố Bắc Ninh
Định dạng
Số trang 39
Dung lượng 1,17 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Với mong muốn giúp các em có thêm tài liệu ôn tập thật tốt trong kì thi sắp tới. TaiLieu.vn xin gửi đến các em Đề thi thử THPT QG môn Toán năm 2023 có đáp án (Lần 2) - Sở GD&ĐT Bắc Ninh (Mã đề 501). Vận dụng kiến thức và kỹ năng của bản thân để thử sức mình với đề thi nhé!

Trang 1

SỞ GIÁO DỤC & ĐÀO TẠO BẮC NINH

TRƯỜNG THPT LƯƠNG TÀI SỐ 2

Mã đề thi: 501

(50 câu trắc nghiệm)

ĐỀ THI THỬ TỐT NGHIỆP THPT LẦN 2

Năm học: 2022 - 2023 Bài thi môn: TOÁN

Thời gian làm bài: 90 phút (không kể thời gian giao đề);

Ngày thi: 25 tháng 12 năm 2022

(Thí sinh không được sử dụng tài liệu)

Câu 9: Cho hàm số y f x= ( ) liên tục trên đoạn [−3;1] và có đồ thị như hình vẽ

Trên đoạn [−3;1] hàm số đạt giá trị lớn nhất tại điểm nào dưới đây?

A x =0 B x = −2

C x =1 D x = −3

Câu 10: Trong các hàm số được cho bởi các phương án A, B, C, D dưới đây, hàm số nào đồng biến trên tập

xác định của nó

A y=log0,5x B y=log 2 1− x C y=log0,2x D y=log2x

Câu 11: Nghiệm của phương trình log2(x − =1) 3 là

Trang 2

Câu 12: Cho hàm số y f x= ( ) có bảng biến thiên như hình vẽ

Giá trị cực tiểu của hàm số đã cho bằng

Câu 13: Cho hàm số y f x= ( ) liên tục trên  và có bảng xét dấu f x'( ) như hình vẽ

Điểm cực đại của hàm số đã cho là

Câu 18: Cho hàm số y f x= ( )có bảng biến thiên như hình vẽ

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

C loga( )xy =loga x+loga y D loga x loga x loga y

Trang 3

Câu 22: Cho hình lập phương ABCD A B C D ' ' ' ' có AC= 6a Tính khoảng cách giữa hai đường thẳng AC

B D ' '

Câu 23: Cho hàm số y f x= ( ) liên tục trên  và có đồ thị của hàm

số f x'( ) như hình vẽ Hàm số y f x= ( ) đồng biến trên khoảng nào

Câu 29: Cho khối trụ (T), cắt khối trụ (T) bằng mặt phẳng qua trục của nó ta được thiết diện là một hình

vuông có cạnh bằng 2 3a Tính thể tích của khối trụ đã cho

Trang 4

Câu 35: Cho hàm số y f x= ( ) có bảng biến thiên như hình vẽ

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

Trang 5

Câu 45: Cho hàm số y 2 12x

x m

+

=+ (m là tham số) Có tất cả bao nhiêu giá trị nguyên của m để hàm số đã cho

nghịch biến trên khoảng (2;+∞)?

Câu 48: Cho hình trụ (T) có bán kính đáy r = 6 và chiều cao gấp đôi bán kính đáy Gọi O và O' lần lượt là

tâm của hai đáy trụ Trên đường tròn tâm O lấy điểm A, trên đường tròn tâm O' lấy điểm B sao cho thể tích

của tứ diện OO AB' lớn nhất Tính AB?

Câu 50: Cho hàm số f x( )=e2022xe− 2022x+ln2023(x+ x2+ Trên khoảng 1) (−25;25) có tất cả bao nhiêu

giá trị nguyên của tham số m sao cho phương trình f e( x m+ +m) (+ f x x− 2−lnx2)= có đúng 3 nghiệm 0phân biệt?

-

- HẾT -

Trang 6

SỞ GIÁO DỤC & ĐÀO TẠO BẮC NINH

TRƯỜNG THPT LƯƠNG TÀI SỐ 2

Mã đề thi: 502

(50 câu trắc nghiệm)

ĐỀ THI THỬ TỐT NGHIỆP THPT LẦN 2

Năm học: 2022 - 2023 Bài thi môn: TOÁN

Thời gian làm bài: 90 phút (không kể thời gian giao đề);

Ngày thi: 25 tháng 12 năm 2022

(Thí sinh không được sử dụng tài liệu)

Câu 8: Cho hàm số y f x= ( ) liên tục trên đoạn [−3;1] và có đồ thị như hình vẽ

Trên đoạn [−3;1] hàm số đạt giá trị lớn nhất tại điểm nào dưới đây?

A x = −3 B x =1

C x = −2 D x =0

Câu 9: Trong các hàm số được cho bởi các phương án A, B, C, D dưới đây, hàm số nào đồng biến trên tập xác

định của nó

A y=log0,5x B y=log 2 1− x C y=log0,2x D y=log2x

Câu 10: Tập nghiệm của bất phương trình 32 +x ≥27 là

Trang 7

Câu 11: Cho hàm số y f x= ( ) liên tục trên  và có bảng xét dấu f x'( ) như hình vẽ

Điểm cực đại của hàm số đã cho là

Câu 16: Cho hàm số y f x= ( )có bảng biến thiên như hình vẽ

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

C loga( )xy =loga x+loga y D loga x loga x loga y

Câu 20: Cho hàm số y f x= ( ) có bảng biến thiên như hình vẽ

Giá trị cực tiểu của hàm số đã cho bằng

Câu 21: Cho khối hộp chữ nhật ABCD A B C D ' ' ' ' có AA' 3 ,= a AB=4 ,a AC=5a Thể tích của khối hộp đã cho là

A V =36a3 B V =12a3 C V =60a3 D V =20a3

Trang 8

Câu 22: Cho hình chóp S.ABC có cạnh bên SA vuông góc với mặt đáy (ABC) và SA=2a Khi SB=4a thì

Câu 28: Cho hàm số y f x= ( ) liên tục trên  và có đồ thị của hàm số f x'( ) như hình vẽ

Hàm số y f x= ( ) đồng biến trên khoảng nào dưới đây?

Trang 9

Câu 35: Cho hàm số y f x= ( ) có bảng biến thiên như hình vẽ

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

nghịch biến trên khoảng (2;+∞)?

Trang 10

Câu 46: Cho hàm số f x( )=e2022xe− 2022x+ln2023(x+ x2+ Trên khoảng 1) (−25;25) có tất cả bao nhiêu

giá trị nguyên của tham số m sao cho phương trình f e( x m+ +m) (+ f x x− 2−lnx2)= có đúng 3 nghiệm 0phân biệt?

Câu 49: Cho hình trụ (T) có bán kính đáy r = 6 và chiều cao gấp đôi bán kính đáy Gọi O và O' lần lượt là

tâm của hai đáy trụ Trên đường tròn tâm O lấy điểm A, trên đường tròn tâm O' lấy điểm B sao cho thể tích

của tứ diện OO AB' lớn nhất Tính AB?

Trang 11

SỞ GIÁO DỤC & ĐÀO TẠO BẮC NINH

TRƯỜNG THPT LƯƠNG TÀI SỐ 2

Mã đề thi: 503

(50 câu trắc nghiệm)

ĐỀ THI THỬ TỐT NGHIỆP THPT LẦN 2

Năm học: 2022 - 2023 Bài thi môn: TOÁN

Thời gian làm bài: 90 phút (không kể thời gian giao đề);

Ngày thi: 25 tháng 12 năm 2022

(Thí sinh không được sử dụng tài liệu)

Họ, tên thí sinh: SBD:

Câu 1: Trong các hàm số được cho bởi các phương án A, B, C, D dưới đây, hàm số nào đồng biến trên tập xác

định của nó

A y=log0,5x B y=log0,2x C y=log 2 1− x D y=log2x

Câu 2: Cho hàm số y f x= ( ) liên tục trên  và có bảng xét dấu f x'( ) như hình vẽ

Điểm cực đại của hàm số đã cho là

Trang 12

Giá trị cực tiểu của hàm số đã cho bằng

Câu 13: Cho hàm số y f x= ( )có bảng biến thiên như hình vẽ

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

C loga( )xy =loga x+loga y D loga x loga x loga y

Câu 20: Cho hàm số y f x= ( ) liên tục trên đoạn [−3;1] và có đồ thị như hình vẽ

Trên đoạn [−3;1] hàm số đạt giá trị lớn nhất tại điểm nào dưới đây?

Trang 13

Câu 26: Cho hàm số y f x= ( ) liên tục trên  và có đồ thị của hàm số f x'( ) như hình vẽ

Hàm số y f x= ( ) đồng biến trên khoảng nào dưới đây?

Câu 34: Cho hàm số y f x= ( ) có bảng biến thiên như hình vẽ

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

Trang 14

Câu 35: Cho hình chóp S.ABC có cạnh bên SA vuông góc với mặt đáy (ABC) và SA=2a Khi SB=4a thì

nghịch biến trên khoảng (2;+∞)?

Trang 15

Câu 46: Cho hình chóp S.ABC có cạnh bên SA vuông góc với đáy, SA=2 6a Gọi M, N lần lượt là hình chiếu của A trên các cạnh SB và SC Biết góc giữa hai mặt phẳng (AMN) và (ABC) bằng 60°, tính diện tích

mặt cầu ngoại tiếp đa diện ABCMN?

A S=36πa2 B S=8πa2 C S=72πa2 D S =24πa2

Câu 47: Cho hàm số f x( )=ax bx3+ 2+cx d+ có đồ thị như hình vẽ Tính

giá trị của biểu thức T = f a b c d( − + − + +5) f f a b c d( ( + + + + +3 3) )

A T = 2 B T =8

C T = − 4 D T = −6

Câu 48: Cho hình trụ (T) có bán kính đáy r = 6 và chiều cao gấp đôi bán kính đáy Gọi O và O' lần lượt là

tâm của hai đáy trụ Trên đường tròn tâm O lấy điểm A, trên đường tròn tâm O' lấy điểm B sao cho thể tích

của tứ diện OO AB' lớn nhất Tính AB?

Câu 49: Cho hàm số f x( )=e2022xe− 2022x+ln2023(x+ x2+ Trên khoảng 1) (−25;25) có tất cả bao nhiêu

giá trị nguyên của tham số m sao cho phương trình f e( x m+ +m) (+ f x x− 2−lnx2)= có đúng 3 nghiệm 0phân biệt?

Trang 16

SỞ GIÁO DỤC & ĐÀO TẠO BẮC NINH

TRƯỜNG THPT LƯƠNG TÀI SỐ 2

Mã đề thi: 504

(50 câu trắc nghiệm)

ĐỀ THI THỬ TỐT NGHIỆP THPT LẦN 2

Năm học: 2022 - 2023 Bài thi môn: TOÁN

Thời gian làm bài: 90 phút (không kể thời gian giao đề);

Ngày thi: 25 tháng 12 năm 2022

(Thí sinh không được sử dụng tài liệu)

Câu 5: Cho hàm số y f x= ( ) có bảng biến thiên như hình vẽ

Giá trị cực tiểu của hàm số đã cho bằng

Câu 9: Cho hàm số y f x= ( ) liên tục trên  và có bảng xét dấu f x'( ) như hình vẽ

Điểm cực đại của hàm số đã cho là

Trang 17

Câu 11: Trong các hàm số được cho bởi các phương án A, B, C, D dưới đây, hàm số nào đồng biến trên tập

xác định của nó

A y=log 2 1− x B y=log0,5x C y=log2x D y=log0,2x

Câu 12: Đường tiệm cận ngang của đồ thị hàm số 3 2

1

x y x

C loga( )xy =loga x+loga y D loga x loga x loga y

Câu 18: Cho hàm số y f x= ( ) liên tục trên đoạn [−3;1] và có đồ thị như hình vẽ

Trên đoạn [−3;1] hàm số đạt giá trị lớn nhất tại điểm nào dưới đây?

A x =0 B x = −3

C x =1 D x = −2

Câu 19: Cho hàm số y f x= ( )có bảng biến thiên như hình vẽ

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Trang 18

A V =20a3 B V =36a3 C V =60a3 D V =12a3

Câu 23: Cho khối trụ (T), cắt khối trụ (T) bằng mặt phẳng qua trục của nó ta được thiết diện là một hình

vuông có cạnh bằng 2 3a Tính thể tích của khối trụ đã cho

Câu 28: Cho hàm số y f x= ( ) liên tục trên  và có đồ thị của hàm số f x'( ) như hình vẽ

Hàm số y f x= ( ) đồng biến trên khoảng nào dưới đây?

Câu 33: Cho hàm số y f x= ( ) có bảng biến thiên như hình vẽ

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

Trang 19

Câu 34: Tìm giá trị lớn nhất của hàm số f x( )= − +x3 3x2+3 trên đoạn [ ]1;3

nghịch biến trên khoảng (2;+∞)? A 7 B 9 C Vô số D 8

Trang 20

Câu 46: Cho hàm số f x( )=ax bx3+ 2+cx d+ có đồ thị như hình vẽ

Tính giá trị của biểu thức

Câu 48: Cho hàm số f x( )=e2022xe− 2022x+ln2023(x+ x2+ Trên khoảng 1) (−25;25) có tất cả bao nhiêu

giá trị nguyên của tham số m sao cho phương trình f e( x m+ +m) (+ f x x− 2−lnx2)= có đúng 3 nghiệm 0phân biệt?

Câu 50: Cho hình trụ (T) có bán kính đáy r = 6 và chiều cao gấp đôi bán kính đáy Gọi O và O' lần lượt là

tâm của hai đáy trụ Trên đường tròn tâm O lấy điểm A, trên đường tròn tâm O' lấy điểm B sao cho thể tích

của tứ diện OO AB' lớn nhất Tính AB?

-

- HẾT -

Trang 21

Mã đề Câu Đ/A Mã đề Câu Đ/A Mã đề Câu Đ/A Mã đề Câu Đ/A

Trang 22

BẢNG ĐÁP ÁN VÀ LỜI GIẢI

11.B 12.B 13.C 14.A 15.B 16.C 17.D 18.A 19.B 20.B

21.A 22.D 23.B 24.D 25.A 26.C 27.D 28.D 29.C 30.D

31.B 32.A 33.A 34.D 35.A 36.A 37.D 38.D 39.A 40.A

41.A 42.A 43.C 44.C 45.D 46.C 47.D 48.B 49.B 50.A

Lời giải Chọn D

Hình lập phương có tất cả mặt.6

1 2

Lời giải Chọn C

Công thức tính diện tích xung quanh của hình trụ là Sxq 2 rl

Lời giải Chọn C

Thể tích của khối chóp đã cho là 1 1

Trang 23

Công sai là d u 2   u1 6 3 3.

số đạt giá trị lớn nhất tại điểm nào dưới đây?

Lời giải Chọn B

Từ đồ thị hàm số, trên đoạn 3;1, hàm số đạt giá trị lớn nhất bằng tại 2 x 2

tập xác định của nó

Lời giải Chọn D

Lời giải Chọn B

Trang 24

Ta có   3

2

log x    1 3 x 1 2  x 9

Giá trị cực tiểu của hàm số đã cho bằng

Lời giải Chọn B

Giá trị cực tiểu của hàm số đã cho bằng 3

Điểm cực đại của hàm số đã cho là

Lời giải Chọn C

Điểm cực đại của hàm số đã cho là x 1

A y2x44x21 B y x 33x2

C y  x3 3x21 D y 2x44x21

Lời giải Chọn A

Đồ thị trong hình vẽ là hình dạng của hàm bậc bốn y ax 4bx2c Do đó loại phương án B

và C

Trang 25

Lại có lim Do đó loại phương án D

1

x y

1

x y x

Độ dài đường sinh của hình nón là lh2r2  4252  41

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Lời giải Chọn A

Lời giải Chọn B

a xn a x logax y loga xloga y

Trang 26

Câu 21: Tìm giá trị lớn nhất của hàm số f x   x3 3x23 trên đoạn  1;3

Lời giải Chọn A

đồng biến trên khoảng nào dưới đây?

 

yf x

Lời giải Chọn B

Dựa vào đồ thị hàm số f x , ta thấy hàm số đồng biến trên các khoảng 1;1 và 4; nên chọn đáp ánB.

Lời giải Chọn D

Phương trình hoành độ giao điểm: 3 do đó đồ thị hàm số cắt trục

hoành tại ba điểm phân biệt

f xx xxbao nhiêu điểm cực trị?

Trang 27

A 2 B 1 C 3 D 0.

Lời giải Chọn A

Ta có:     2 

f xx xx 0

12

x x x

x  0 1 2 

 '

213

1113

Lời giải Chọn C

- Không gian mẫu: 3

213

A

C P

vuông có cạnh bằng 2 3a Tính thể tích của khối trụ đã cho

Lời giải Chọn C

Trang 28

SAABCSB ABC,  SBA.

Ta có SAB vuông tại A suy ra  2 1  0

AB4 ,a AC5aADAC2AB2 3a

3 4 3 36

VA A AB AD  a a aa

Trang 29

Câu 33: Cho tam giác ABC vuông tại A, xoay tam giác ABC quanh cạnh AB ta được hình nón (N) Tính

diện tích xung quanh của nón (N) biết rằng AB6 ,a ABC30 

Lời giải Chọn A

2 14 12 x ln12 212 x ln12

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

Lời giải Chọn A

Ta có lim   5; lim   2 5; 2 là các đường tiệm cận ngang

Trang 30

A 7 B 10 C 9 D 6

Lời giải Chọn A

Từ sự tương giao trên hình vẽ, phương trình f ' 2 f x 30 có 7 nghiệm

định trên khoảng 0;?

Lời giải Chọn D

Trang 31

Câu 38: Cho hàm số   2 , với a, b là tham số Nếu thì bằng

với đáy Góc giữa SB và mặt phẳng đáy ABC bằng 60 Gọi MN lần lượt là trung điểm của SBSC Tính thể tích khối đa diện ABCMN?

Do

Trang 32

Để đồ thị hàm số có đúng đường tiệm cận đứng thì phương trình: 2 x22mx3m10 0 có hai nghiệm thỏa mãn: x x1, 2 phân biệt và hai nghiệm khác 1.

Do m,m  25;25 Có 42 giá trị nguyên thỏa mãn.m

log 25x log x  8 0đây?

Lời giải Chọn A

x

Trang 33

Kết hợp điều kiện   2 x 254 suy ra nghiệm của bất phương trình là 5 254.

x x

 

  

Vậy bất phương trình có tập nghiệm là S   2;0  5; 254

Do đó tập nghiệm của bất phương trình có 252 số nguyên

và 2 thì hàm số yf x 21 có tất cả bao nhiêu điểm cực trị?

Lời giải Chọn C

đi qua đỉnh nón và tạo với đáy nón một góc 60 cắt khối nón  N theo thiết diện là một tam giác

có diện tích bằng 8 3a2 Thể tích của khối nón  N bằng

A 64 a  3 B 96 a  3 C 32 a  3 D 192 a  3

Lời giải Chọn C

60 0

I O

A S

B

Gọi thiết diện là tam giác SAB và là trung điểm của đoạn I AB

Ta có OIABSIAB nên SIO 60 

Trang 34

x m

cho nghịch biến trên khoảng 2;?

Lời giải Chọn D

Tính giá trị của biểu thức Tf a b c d     5 f f a b c d      3 3

Lời giải Chọn C

Từ đồ thị ta thấy được f        1 a b c d 4 và f  1      a b c d 2

Trang 35

chiếu của A trên các cạnh SB và S C. Biết góc giữa hai mặt phẳng (AMN) và (ABC) bằng 60,

tính diện tích mặt cầu ngoại tiếp đa diện ABCMN?

Lời giải Chọn D

Gọi là tâm đường tròn ngoại tiếp tâm giác O ABC D là điểm đối xứng với qua A O

Ta có BD AB DBSABDB AM ,DoAMSAB 

Trang 36

Do đó ta có    ANDAMDACDABD900 Olà tâm mặt cầu ngoại tiếp đa diện

2 2

AD ABCMN  Ra

Diện tích mặt cầu ngoại tiếp hình đa diện là 2  2 2

S R a a

lượt là tâm của hai đáy trụ Trên đường tròn tâm O lấy điểm A, trên đường tròn tâm O' lấy điểm

B sao cho thể tích của tứ diện OO AB' lớn nhất Tính AB?

Lời giải Chọn B

GọiA là hình chiếu vuông góc của xuống mặt đáy A  O

với có đồ thị là đường cong mảnh như hình vẽ Đồ thị hàm

Trang 37

m q

 

Vậy f x x33x22

Ta có g 0  0 f c  c3 3c2 2 0 1

c c

 

Trang 38

Câu 50: Cho hàm số f x e2022xe 2022xln2023xx21 Trên khoảng 25; 25 có tất cả bao

nhiêu giá trị nguyên của tham số m sao cho phương trình f ex m m  f x x 2lnx20 có đúng 3 nghiệm phân biệt?

Lời giải Chọn A

xx2  1 x x2   x x 0 nê hàm số f x e2022xe2022xln2023xx21 có tập xác định là 

Trang 39

Từ bảng biến thiên hàm số h x  suy ra PT đã cho có 3 nghiệm khi m2 ln 2 2 0, 614 

Do m  25; 25 nên suy ra m  24; 23; ; 1  

Vậy có 24 số nguyên thỏa mãn yêu cầu bài toán.m

HẾT

Ngày đăng: 27/01/2023, 10:48

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm