Hiendvtiger.violet.vn KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG ĐỀ THI THỬ TỐT NGHIỆP Môn thi: TOÁN − Giáo dục trung học phổ thông CODE 12 Thời gian làm bài: 150 phút, không kể thời gian g
Trang 1Hiendvtiger.violet.vn KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG
ĐỀ THI THỬ TỐT NGHIỆP Môn thi: TOÁN − Giáo dục trung học phổ thông
CODE 12 Thời gian làm bài: 150 phút, không kể thời gian giao đề
-
-I PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)
Câu I (3,0 điểm): Cho hàm số:
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số
2) Tính diện tích hình phẳng giới hạn bởi đồ thị và trục hoành
3) Tìm m để phương trình sau đây có đúng 2 nghiệm phân biệt:
Câu II (3,0 điểm):
1) Giải phương trình:
3) Viết phương trình tiếp tuyến của đồ thị hàm số , biết tiếp tuyến song song với đường
Câu III (1,0 điểm):
Cho hình chóp tam giác đều có cạnh đáy bằng , đường cao h = 2 Hãy tính diện tích của mặt cầu ngoại
tiếp hình chóp đó
II PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần dưới đây
1 Theo chương trình chuẩn
Câu IVa (2,0 điểm): Trong không gian Oxyz , cho
1) Viết phương trình mặt cầu đi qua 4 điểm O,A,B,C và xác định toạ độ tâm I của nó.
2) Tìm toạ độ điểm M sao cho Viết phương trình đường thẳng BM.
Câu Va (1,0 điểm): Tính , biết là hai nghiệm phức của phương trình sau đây:
2 Theo chương trình nâng cao
Câu IVb (2,0 điểm): Trong không gian với hệ toạ độ Oxyz cho đường thẳng d và mặt phẳng (P) lần lượt có
1) Viết phương trình mặt cầu có tâm thuộc d, bán kính bằng 3 và tiếp xúc (P).
2) Viết phương trình đường thẳng đi qua điểm M(0;1;0), nằm trong mp(P) và vuông góc với đường
thẳng d.
Câu Vb (1,0 điểm): Gọi là hai nghiệm của phương trình trên tập số phức Hãy xác định
Hết
-Thí sinh không được sử dụng tài liệu Giám thị coi thi không giải thích gì thêm.
Họ và tên thí sinh: Số báo danh:
Chữ ký của giám thị 1: Chữ ký của giám thị 2:
Trang 2x y
-4.5
-2
-4
BÀI GIẢI CHI TIẾT
Câu I: Hàm số:
Tập xác định:
Đạo hàm:
Cho
Giới hạn:
Bảng biến thiên
y
–4
Hàm số ĐB trên các khoảng , NB trên các khoảng
Hàm số đạt cực đại tại
Hàm số đạt cực tiểu tại
Giao điểm với trục hoành:
Cho
Giao điểm với trục tung: cho
Bảng giá trị: x –2 –1 0 1 2
Đồ thị hàm số: như hình vẽ bên đây
Giao của với Oy: cho
Diện tích cần tìm:
(đvdt)
Số nghiệm của pt(*) bằng với số giao điểm của và
Từ đó, dựa vào đồ thị ta thấy pt(*) có đúng 2 nghiệm phân biệt khi và chỉ khi
Đặt (ĐK: t > 0), phương trình (*) trở thành:
Trang 3M O I B
S
Vậy, phương trình đã cho có nghiệm duy nhất:
Với , họ các nguyên hàm của f(x) là:
Vậy,
Viết pttt của song song với đường thẳng d:
TXĐ của hàm số :
Do tiếp tuyến song song với nên có hệ số góc
pttt tại là: (loại vì trùng với đường thẳng d)
pttt tại là:
Vậy, có 1 tiếp tuyến cần tìm là:
Câu III
Giả sử hình chóp đều đã cho là S.ABC có O là chân đường cao xuất
phát từ đỉnh S Gọi I là điểm trên SO sao cho IS = IA, thì
Do đó, I là tâm mặt cầu ngoại tiếp hình chóp.
Theo giả thiết, SO = 2
và
Trong tam giác vuông IAO, ta có
Vậy, diện tích mặt cầu ngoại tiếp hình chóp là
(đvdt) THEO CHƯƠNG TRÌNH CHUẨN
Câu IVa:
Phương trình mặt cầu có dạng:
Vậy, phương trình mặt cầu
Và toạ độ tâm của mặt cầu là:
Giả sử toạ độ điểm M là thì
Trang 4
Ta có,
Đường thẳng BM đi qua điểm:
có vtcp:
Phương trình đường thẳng BM:
Câu Va:
Ta có,
Phương trình đã cho có 2 nghiệm phức:
Từ đó,
THEO CHƯƠNG TRÌNH NÂNG CAO
Câu IVb:
Mặt cầu có tâm nên toạ độ của
Do có bán kính bằng 3 và tiếp xúc với mp(P) nên
Vậy, có 2 mặt cầu thoả mãn yêu cầu bài toán là:
mp(P) có vtpt , đường thẳng d có vtcp
Đường thẳng đi qua M(0;1;0)
Đường thẳng nằm trong (P), vuông góc với d nên có vtcp
PTTS của :
Câu Vb: Phương trình (*) có biệt thức
Suy ra, phương trình (*) có 2 nghiệm phức:
Hiendvtiger.violet.vn