1. Trang chủ
  2. » Giáo án - Bài giảng

Curcumin-loaded dual pH- and thermo-responsive magnetic microcarriers based on pectin maleate for drug delivery

8 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Curcumin-loaded dual pH- and thermo-responsive magnetic microcarriers based on pectin maleate for drug delivery
Tác giả Elizângela A.M.S. Almeida, Ismael C. Bellettini, Francielle P. Garcia, Maroanne T. Farinácio, Celso V. Nakamura, Adley F. Rubira, Alessandro F. Martins, Edvani C. Muniz
Trường học Universidade Estadual de Maringá
Chuyên ngành Materials Science and Engineering
Thể loại research article
Năm xuất bản 2017
Thành phố Maringá
Định dạng
Số trang 8
Dung lượng 2,13 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Magnetic microgels with pH- and thermo-responsive properties were developed from the pectin maleate, N-isopropyl acrylamide, and Fe3O4 nanoparticles. The hybrid materials were characterized by infrared spectroscopy, scanning electron microscope coupled with X–ray energy dispersive spectroscopy, wide angle X–ray scattering, Zeta potential, and magnetization hysteresis measurements.

Trang 1

jo u r n al h om ep a g e :w w w e l s e v i e r c o m / l o c a t e / c a r b p o l

Elizângela A.M.S Almeidaa, Ismael C Bellettinid, Francielle P Garciae,

Maroanne T Farinácioa, Celso V Nakamurae, Adley F Rubiraa, Alessandro F Martinsb,c,∗,

Edvani C Muniza,b

a Grupo de Materiais Poliméricos e Compósitos (GMPC), Departamento de Química, Universidade Estadual de Maringá-UEM, 87020-900 Maringá-PR, Brasil

b Programa de Pós-graduac¸ ão em Ciência e Engenharia de Materiais (PPGCEM), Universidade Tecnológica Federal do Paraná (UTFPR), 86036-370

Londrina-PR, Brasil

c Programa de Pós-graduac¸ ão em Engenharia Ambiental (PPGEA), Universidade Tecnológica Federal do Paraná (UTFPR), 86812-460 Apucarana-PR, Brasil

d Departamento de Química, Universidade Federal de Santa Catarina–UFSC, 89065-300 Blumenau-SC, Brasil

e Laboratório de Microbiologia Aplicada aos Produtos Naturais e Sintéticos, Departamento de Ciências Básicas da Saúde, Universidade Estadual de

Maringá–UEM, 87020-900 Maringá-PR, Brasil

a r t i c l e i n f o

Article history:

Received 12 February 2017

Received in revised form 10 April 2017

Accepted 9 May 2017

Available online 11 May 2017

Keywords:

Pectin

Magnetite

Poly(N-isopropyl acrylamide)

Curcumin

Release

a b s t r a c t

MagneticmicrogelswithpH-andthermo-responsivepropertiesweredevelopedfromthepectinmaleate, N-isopropylacrylamide,andFe3O4nanoparticles.Thehybridmaterialswerecharacterizedbyinfrared spectroscopy,scanningelectronmicroscopecoupledwithX–rayenergydispersivespectroscopy,wide angleX–rayscattering,Zetapotential,andmagnetizationhysteresismeasurements.Curcumin(CUR) wasloadedintothemicrogels,andreleaseassayswerecarriedoutinsimulatedenvironments(SGF andSIF)atdifferentconditionsoftemperature(25or37◦C).AslowandsustainabilityCURreleasewas achievedunderexternalmagneticfieldinfluence.LoadedCURdisplayedstability,bioavailabilityand greatersolubilityregardingfreeCUR.Besides,thecytotoxicityassaysshowedthatmagneticmicrogels withoutCURcouldsuppresstheCaco-2cellsgrowth.So,thepectinmaleate,N-isopropylacrylamide, andFe3O4couldbetailoredtoelicithybrid-basedmaterialswithsatisfactoryapplicationinthemedical arena

©2017ElsevierLtd.Allrightsreserved

1 Introduction

Curcumin(CUR)iswidelyappliedinthebiomedicaland

phar-maceutical fields owing to its anti-inflammatory capacity, and

renownedpotentialtotreatcysticfibrosis,Alzheimer’sdiseaseand

manycancertypes(Maheshwari,Singh,Gaddipati,&Srimal,2006)

However,theclinicalapplicationofCURislimitedbecauseofits

lowwatersolubilityandweakoralbioavailability,aswellaslack

stabilityunderneutralandmildalkalineconditions(Tangetal.,

2010).Theseshortcomingsshouldbeovercometoachievean

effi-cientCURapproach.Microencapsulationcouldbeusedtoconceive

CURapplicability,andmanystudieshavebeendepictedtheuseof

liposomesandpolymericcomposites(beads,particles,andfilms)

∗ Corresponding author at: Programa de Pós-graduac¸ ão em Ciência e

Engen-haria de Materiais (PPGCEM), Universidade Tecnológica Federal do Paraná (UTFPR),

86036-370 Londrina-PR, Brasil.

E-mail address: afmartins50@yahoo.com.br (A.F Martins).

toimproveCURefficacy(Chenetal.,2009;Li,Ahmed,Mehta,& Kurzrock,2007;Martinsetal.,2013;Shietal.,2007)

Polymericmaterialsoftenimpartbiocompatibility, biodegrad-ability, and non-toxicity (Abolmaali, Tamaddon, & Dinarvand,

2013) to the composite materials Regarding the drug deliv-eryapproaches,polymericcompositesactasprotectivematrices, repressnon-specificinteractionswithbiologicalmolecules,foster controlledandsustainedrelease,andenhancethebioavailability and stability of the loadeddrug(Brewer, Coleman, &Lowman,

2011) Composite materials may increase the CUR solubility, decreasingitscrystallinitybecauseoftheestablishmentof new interactionsbetweenpolymerchainsandCUR(Facchietal.,2016) Smartpolymericdevicesaredevelopedfocusingresponsiveness

toanexternalmagneticfieldaswellaschangesintemperature andpH(Patraetal.,2015).Thesepropertiesaremainlyrequired fordrugdeliverypurposes.Biocompatibleandsuperparamagnetic iron nanoparticles(SPIONs) have beenhighlighted due totheir renowned magnetization property A magnetic-based material, containingaloadeddrugcanadjustthereleaserateunderexternal

http://dx.doi.org/10.1016/j.carbpol.2017.05.034

0144-8617/© 2017 Elsevier Ltd All rights reserved.

Trang 2

260 E.A.M.S Almeida et al / Carbohydrate Polymers 171 (2017) 259–266

Experimental conditions used to create the microparticles, loaded iron atom levels (g g −1 ) and Fe 3 O 4 encapsulation efficiencies (EE%).

magneticfield influence(Patraetal.,2015).Biopolymersshould

improvetheSPIONsbiocompatibility(Patel,Kumar,Jayawardana,

Woodworth,&Yuya,2014)and stability(Kim,Kim,Kim,&Lee,

2009),featuringpotentialfortargetdelivery(Menegucci,Santos,

Dias,Chaker,&Sousa,2015),magneticresonanceimaging(MRI)

(Songetal.,2015)andhyperthermiapurposes(Kimetal.,2009)

Overall,metallicnanoparticles(MNp)arecoveredbybiopolymer

layersorencapsulatedintoapolymericmatrix.Polymernetworks

stabilizetheMNpbysterichindrance,suppressingtheaggregation

duetothechangesofpHandionicstrength(Tiwari,Mishra,Mishra,

Arotiba,&Mamba,2011).TemperatureandpH-responsivenessare

alsoparamountforacquisitionoftargetdeliverydevices

Poly(N-isopropylacrylamide)(PNIPAAm)isathermo-responsivepolymer

widelystudiedbecausecontainsaLowerCriticalSolution

Temper-ature(LCST)around32◦C,justbelowhumanbodytemperature

Therefore,thePNIPAAmmaybeassociatedwithpolymericsystems

toyieldtargetdeliveryapproacheswithtemperaturesensibility

(Jaiswal,Banerjee,Pradhan,&Bahadur,2010)

Pectin (AP) is a polysaccharide formed by galacturonicacid

units, identified as a structural component of plant cell walls

It is found in leaves, fruits, flowers, roots, and seeds

Pectin-based hydrogels have been used in pharmacy because of the

biocompatibility,biodegradability,non-toxicityandpH-responsive

properties (Maxwell,Belshaw, Waldron, & Morris, 2012) Also,

theAPdecreasesthebloodcholesterollevel(Brounsetal.,2012;

Terpstra,Lapre,deVries, &Beynen, 1998), reducestheglucose

uptake (Kim, 2005), and supplies anti-tumor activity (Maxwell

etal.,2012;Zhang,Xu,&Zhang,2015).Inanaturalcondition,

galac-turonicacidunitsoverAP-basedhydrogelsareionized,permitting

repulsionamongthem,andhenceswellingandreleaseofdrugsby

diffusion.So,theseAP-systemsmaypromoteasatisfactorydrug

deliveryinthecolonplace,favoringtheuptake(Liu,Fishman,Kost,

&Hicks,2003;Wong,Colombo,&Sonvico,2011)

ThedevelopmentofmagneticmaterialswithpHandthermal

responseswasproposedinthis study.ThePNIPAAmgraftedon

thepectinmaleate(AP–MA),andFe3O4 wereassociatedtoelicit

microgels usingoil/water emulsion (O/W) and poly(vinyl

alco-hol)(PVA)as a stabilizingagent TheAP-MA synthesis, aswell

asitsphysicochemicalproperties,werepreviouslyreportedina

recentpaperpublishedbyourresearchgroup(Almeidaetal.,2014)

Hybridmaterialswereloadedwithcurcumin(CUR),and release

testsassessedasafunctionofanexternalmagneticfieldat

differ-entconditionsofpHandtemperature.Thisworkwilldemonstrate

thatas-obtainedmicrogelsbasedonAP–MA/PNIPAAm/Fe3O4can

killCaco-2cellsandtoprovideasuitablematrixforCURdelivery

Inthiscase,AP–MA/PNIPAAm/Fe3O4compositemayimprovethe

solubility,stability,andbioavailabilityoftheCUR

2 Materials and methods

2.1 Materials

Apple pectin (Mw=2.9×105gmol−1), sodium

persul-fate (98%), iron oxide (Fe3O4, 98%) of particle size up to

50nm and curcumin (Turmeric, ≥65%) were purchased

from Sigma-Aldrich (Brazil) Maleic anhydride (99%) and

N,N,N’,N’–tetramethylethylenediamine (TEMED, 99%) were

sup-pliedbyVetec(Brazil).Poly(vinylalcohol)(PVA,88%hydrolyzed with Mw=2.2×104gmol−1) and N–isopropyl acrylamide (99%) wereacquiredfromAcrossOrganics(Brazil).Otherreactantsalso utilizedinthiswork,wereofanalyticalgradeandusedasreceived

2.2 Pectinmaleate/poly[N–isopropylacrylamide]/Fe3O4 microparticlessynthesis

Firstly,theAP-MAwithasubstitutiondegreeof24%was syn-thesizedfromapplepectin(Mw=2.9×105gmol−1)accordingto thepreviouslyprocedurepublishedbyourresearchgroup(Almeida

etal.,2014).Then,formicroparticlessynthesis,theaqueousphase (W)containingAP–MA(2.5wt.%)andPVA (3.0wt.%)wasadded

to the oil phase (benzyl alcohol; BnOH) containing an appro-priateFe3O4 content(Table1 keepingthevolumeratioat1/3 (W/BnOH).TheemulsionwaspreparedintoicebathunderN2(g) fromthesonicationmethod(HielscherUltrasonicProcessor,model UP200S)at 100%amplitude for 5min.Then, suitable quantities

ofNIPAAm(2.0or10wt.%,Table1 sodiumpersulfate(1.5wt.%) and TEMED (1.0wt.%)wereadded totheemulsion, maintained thesonication for more 15min.The suspension containingthe AP–MA/PNIPAAm–Fe3O4wasprecipitatedinacetone,centrifuged, washedfivetimesalsowithacetone,stockedundervacuum(24h) and lyophilized (Mauricio, Guilherme, Kunita,Muniz, & Rubira,

2012).Theexperimentalproceduresaresummarized inTable1 ThemicroparticleswillbecalledasAP–MA/PNIPAAm(x)–Fe3O4(y),

where “x” and “y” correlate the NIPAAmand Fe3O4 levels(%), respectively

2.3 Characterization SpectraoftheAP-AMandAP-AMgraphitizedwithPNIPAAm (SupplementaryMaterial;Fig.S1)wereperformedinaVarian Mer-curyPlus300BBNMRspectrometer,operatingat300.06MHzfor

1Hfrequency.10mgofthesamplesweredissolvedin1.0mLD2O, containingTMSas reference.1HNMR spectrawereacquiredat roomtemperatureandthemainacquisitionparameterswereas follows:pulseof90◦,recycledelayof30sandacquisitionof64 transients Measurements of Infrared Spectroscopy (FTIR) were recordedusinga FourierTransform InfraredSpectrophotometer (ShimadzuScientificInstruments,Cary630Model),operatingfrom

500to2000cm−1,ataresolutionof4cm−1after64scans.Scanning ElectronMicroscope(SEM) coupledwith X–Ray Energy Disper-siveSpectroscopy(EDS)wasusedtoevaluatethemorphologyand

topredict thematerial composition, usinga Shimadzu appara-tus(SS550model).Averagediametersofthemicroparticleswere assessedbySEMimagesusingthesoftwareSizeMeter©,version 1.1.TheLCSTwasevaluatedbyZetapotentialmeasurementsat differenttemperatureconditions.Microgelsuspensionswere car-riedoutinaphosphatebuffersolution(pH7.0)at1.0mgmL−1and placedinaZetasizerNanoZSapparatusatdifferenttemperatures

aswell.The magnetizationwasestimatedusing a magnetome-ter (VSM),at 100Hz frequency under33Oe s−1 field scan rate (25◦C).Theamountofironintothemicroparticleswasassessed

byFlameAtomicAbsorptionSpectroscopy(FAAS),throughaVarian AA–175model(USA).WideangleX–rayscattering(WAXS)profiles

Trang 3

Fig 1. SEM images (left panel) and size distribution of the microparticles (right panel): (a, b and c) AP–MA/PNIPAAm(10)–Fe 3 O 4 (1), (d, e and f) AP–MA/PNIPAAm(2)–Fe 3 O 4 (10) and (g, h and i) AP–MA/PNIPAAm(10)–Fe 3 O 4 (10).

(2␪=5–70◦)wereobtainedfromaShimadzuXRD–600apparatus

(Japan),equippedwithaNi-filteredCu-K␣radiation

2.4 Curcuminloading

Curcumin(CUR; 1.0mg)wassolubilized in ethanol (100mL)

and, then 1.0g AP–MA/PNIPAAm(10)–Fe3O4(1) was added into

theCUR-solution(Martinsetal.,2013).Thesuspensionwaskept

under stirring for 20h (25◦C), avoiding light exposure After,

the loaded microparticles were centrifuged, dried under

vac-uum (24h) and lyophilized The entrapped CUR was assessed

at␭=430nm,usinganUV–visspectrophotometer(Femto800Xi

model)fromastandardcurverangingfrom0.080to5.0mgL−1;

y=−9.9044×10−4+0.13384x(R2=0.999)

2.5 Curcuminrelease

DifferentenvironmentswereusedtoevaluatetheCURrelease:

simulatedintestinalfluid(SIF;pH6.8)andsimulatedgastricfluid

(SGF;pH1.2)(Buenoetal.,2015).Thestudieswereperformedinan

USPtypeIdissolutorapparatus(EthikTechnology,299–6TSmodel

−Brazil)undermechanicalstirring(40rpm)at25◦Cor37◦Catthe

presenceorabsenceofthemagneticfield(63.8Oe).So,0.10gof

driedAP–MA/PNIPAAm(10)–Fe3O4(1)/CURwasdepositedin

cellu-losemembranes(12kDasizepore),containingSGForSIF(30mL)

Thesystem wasstored in a sealed flask,containing220 mLof

SGForSIF,avoiding thelight exposure For assessingthe

mag-neticfieldinfluence,anexternalmagneticfieldwascreatedbya

magnetplacedoutsidethesealedflaskcontainingthedialysisbag

ThereleasedCURwasdeterminedbyUV–visabsorbance(␭=430)

removing3.0mLaliquotsatappropriatetime intervals(Martins

etal.,2013).ThefractionofreleasedCURwasevaluatedfromEq

(1)

Relesead fraction= relesead amount

2.6 Cytotoxicityassay CytotoxicitytestswereassessedagainstVEROcells(kidneycells

ofAfricangreenmonkey)and Caco-2cells(humancolonic ade-nocarcinomacells),fromthesulforhodamineBmethod(Almeida

etal.,2014).ThecellswereculturedandmaintainedinDulbecco’s modifiedEagle’smedium(DMEM;Gibco®,GrandIsland,USA), sup-plementedwith10%heat-inactivatedfoetalbovineserum(FBS; Gibco®)and50␮gmL−1gentamycin,inanincubatorat37◦C,with 5%CO2and95%relativehumidity.Cellswereobtainedatadensity

of2.5×105 cellsmL−1aftertrypsinizationandaddedto96–well platefor24hatthesameconditionsdescribedpreviously.Afterthe adherence,afixedvolumeofeachmicroparticlesuspensionat dif-ferentconcentrations(10,100,500and1000␮gmL−1)wasadded intothe96–wellplateandincubatedfor48h.Thecellulartoxicity (CC50)isdefinedwhenthesamplelevelkills50%ofthetreatedcells regardingthecontrol(untreatedcells)

3 Results and discussion

3.1 Characterization Themethodologyusedtosynthesizethemicrogelswasbasedon inversepolymerizationtechnique(Mauricioetal.,2012).1HNMR analysisindicatedthatPNIPAAmwasgraftedintheAP–MAchains Theresonancesignalsrangingfrom6.5to6.2ppmonAP–MA1H NMRspectrum wasattributedtothehydrogenatomsinvinylic

Trang 4

262 E.A.M.S Almeida et al / Carbohydrate Polymers 171 (2017) 259–266

Fig 2. (a) FTIR spectra of the AP–MA/PNIPAAm(2), AP-MA and AP–MA/PNIPAAm(2)–Fe 3 O 4 (10) (left panel) (b and c) EDS spectra and WAXS profiles, respectively: (i) AP–MA/PNIPAAm(10)–Fe 3 O 4 (1), (ii) AP–MA/PNIPAAm(2)–Fe 3 O 4 (10), and (iii) AP–MA/PNIPAAm(10)–Fe 3 O 4 (10) (right panel).

Fig 3.(a) Paramagnetic response based on the hysteresis curves (b) Zeta potential measurements as a function of the temperature Sample codes: (i) AP–MA/PNIPAAm(10)–Fe 3 O 4 (1), (ii) AP–MA/PNIPAAm(2)–Fe 3 O 4 (10), and (iii) AP–MA/PNIPAAm(10)–Fe 3 O 4 (10).

moieties(SupportingMaterial,Fig.S1).Thesesignalsdisappeared

intheAP–MA/PNIPAAm1HNMRspectrum,indicatingthatNIPAAm

graftingonAP–MAwassuccessful.Suchgraphitizationwasalso

confirmedduetotheNIPAAmsignalsintheAP–MA/PNIPAAm1H

NMRspectrumat3.0and2.7ppmascribedtothehydrogenatoms

on CHand CH2,respectively(SupportingMaterial,Fig.S1)(Leal,

DeBorggraeve,Encinas,Matsuhiro,&Muller,2013)

The ultrasound waves ensured the obtaining of

multi-ple and stable oil emulsion seeking to create microparticles

(Reis et al., 2011) The cavitation energy induced by the

sonication led to the formation of rough, polydisperse and

spherical microparticles with small fractures and deformities,

due to the water randomly movements into the oil phase

drops (Fig 1) (Reis et al., 2011) The average diameters of

AP–MA/PNIPAAm(10)–Fe3O4(1), AP–MA/PNIPAAm(2)–Fe3O4(10)

andAP–MA/PNIPAAm(10)–Fe3O4(10)wereca.10,26,and20␮m,

respectively(Fig.1).Thesizeandpolydispersityofthemicrogels

wereraisedwhenthemagnetitelevelwasalsoimproved(from1.0

upto10wt.%;Table1 whiletheNIPAAmcontentdidnotchange thesefeaturessignificantly

AP–MA/PNIPAAm(2)–Fe3O4(10) FTIR spectrum was assigned

toFe–OstretchingduetotheFe3O4load(Fig.2a)(Mauricioetal.,

2012).Thebandat1740cm−1onAP–MAFTIRspectrumattributed

toC Ostretchingofcarboxylicacidswasshiftedfor1750cm−1

in theAP–MA/PNIPAAm(2)–Fe3O4(10)spectrum, suggestingthe establishmentofnewinteractions(Mauricioetal.,2012).Overall, alltheFTIRspectrapredictedinFig.2aweresimilarbetweenthem Themagnetitestabilizedtheemulsion(daSilvaetal.,2014;Fang

etal.,2014)becausemicroparticlesbasedonAP–MA/PNIPAAm(2) wasnotobtained(SupportingMaterial, Fig.S2).TheFe3O4 may neutralizetheexcessofnegativechargesovertheAP–MAchain segmentsbyhindranceeffectsowingtotheestablishmentofnew bondsamong COO−andFe(Fangetal.,2014).TheEDSspectra

Trang 5

Fig 4. Fraction of released curcumin (%) from the AP–MA/PNIPAAm(10)–Fe 3 O 4 (1) at SIF and SGF under or not magnetic field influence: (a) at 25 and (b) at 37 ◦ C (c) Cytotoxicity effects against Caco-2 and VERO cells: (i) AP–MA/PNIPAAm(10)–Fe 3 O 4 (1), (ii) AP–MA/PNIPAAm(2)–Fe 3 O 4 (10) and (iii) AP–MA/PNIPAAm(10)–Fe 3 O 4 (10) Error bars represent the standard deviation of triplicates (n = 3).

displayedtheironincidenceinthemicrogelsbecauseofthepeaks

at6.4and7.1keV(Fig.2b).Evenmore,theWAXSprofilesexhibited

characteristicdiffractionpeaksassigned totheFe3O4 crystalline

planesat2␪=30◦(220),35◦(311),43◦(400),54◦(422),57◦(511)

and 63◦ (440) (Fig.2c)(Purushotham &Ramanujan, 2010).The

AP–MA/PNIPAAm(10)–Fe3O4(1)WAXSpatternencompassed

low-ereddiffractionpeaksregardingtheothersamplesduetotheless

levelofloadediron(0.58×10−2gg−1;Table1)

Fig 3a displayed the paramagneticbehaviors of the

micro-gels, and in Table 1 was depicted the content of iron

(g−1) loaded in the microparticles The magnetization of the

AP–MA/PNIPAAm(10)–Fe3O4(1), AP–MA/PNIPAAm(2)–Fe3O4(10)

and AP–MA/PNIPAAm(10)–Fe3O4(10) reached0.68 ± 0.01, 6.20

± 0.10 and 4.20±0.05emug−1, respectively Polymernetworks

shouldscreentheironatoms,suppressingthemagneticresponse

(Fangetal.,2014).TheAP–MA/PNIPAAm(2)–Fe3O4(10)achieved

thehighest magnetic response (6.20±0.10emug−1)due tothe

largeFe3O4content(4.7×10−2gg−1;Table1).TGAanalysis

rein-forcedthisfactsincetheAP–MA/PNIPAAm(2)–Fe3O4(10)imparted

greaterresidualmassabove450◦C, owingtotheFe3O4 content

(SupportInformation,Fig.S3)

The thermo-sensitive feature was evaluated by Zeta

poten-tial(␨)analysisatdifferenttemperatureconditions,rangingfrom

25 to 50◦C (Fig 3b) For all samples, the ␨ achieved −10 to

−25mVat pH 7.0 owing to the COO sites onAP-MA chains

The␨valuesdecreasedathighertemperaturesbecausethe

sus-pension was collapsed and conceived the LCST event (Pietsch

et al., 2012) The LCST for AP–MA/PNIPAAm(2)–Fe3O4(10)was

allowedat37◦C,whereasforAP–MA/PNIPAAm(10)–Fe3O4(10)and

AP–MA/PNIPAAm(10)–Fe3O4(1)wascloseto43◦C.Theless PNI-PAAmcontentgraftedinAP–MA/PNIPAAm(2)–Fe3O4(10)lowered theLCST.AnLCST-typeabovethebodytemperature(≈37◦C)can

allowremarkableefficiencytothecompositematerialstoactas drugdeliveryvehicles(Fangetal.,2014;Jaiswaletal.,2010)

3.2 Curcumin(CUR)release The AP-MA/PNIPAAm(10)-Fe3O4(1) sample was chosen as a drugcarriermatrixduetoitshigherLCST(43◦C)andsmaller aver-agesize(≈10␮m).TheCURencapsulationefficiency(EE)reached 60%.Releaseassayswereassessedinsimulatedfluids(SIForSGF)

at25or37◦C,under(ornot)magneticfieldinfluence.InSIF(25◦C) andwithoutmagneticfieldinfluence,theequilibriumwasreached after35hwhen50%CURwasreleased.Ontheotherhand,inthe samecondition,butundermagneticfieldinfluence,the equilib-riumwaspermittedat80h,designing aslowed,modulatedand sustainedCURrelease(90%)(Fig.4a).InSGF(25◦C),theamount

ofCURreleasedwasnothigherthan10% forallevaluated con-ditions(Fig.4a).Theexpositiontothemagneticfieldmayinduce heatinsidetheAP–MA/PNIPAAm(10)-Fe3O4(1),decreasingthe sta-bilityandhenceenhancingCURreleaserate(Kumar&Mohammad, 2011;Patraetal.,2015).At37◦C,themagneticfielddidnot signif-icantlychangetheprofileofCURrelease(Fig.4b).InSIF(37◦C),the releasedfractionachieved95and80%inthepresenceorabsence

ofmagneticfield,respectively.InSGF(37◦C)thecontentofCUR releasedwaslower,featuring20%withoutand6%withmagnetic fieldinfluence

Trang 6

264 E.A.M.S Almeida et al / Carbohydrate Polymers 171 (2017) 259–266

Kinetic parameters (n, k, ␣, and kr) obtained by application of Ritger-Peppas and Reis et al mathematical models on the CUR release curves evaluated in SIF.

a CUR release under magnetic field influence − 1st and 2nd refer to first- and second-order kinetics.

TheamountofCURreleasedroseat37◦CduetothePNIPAAm

TheAP–MA/PNIPAAm(10)-Fe3O4(1)LCSTwasroughly43◦C,and

releasetestswerecarriedoutat37◦C(Fig.4b).Thesetemperature

conditionswereclose,andsomePNIPAAmchainscouldbecome

hydrophobic,causingpolymernetwork collapsesandenhancing

thereleasedlevelofCUR,especiallyinSIF(37◦C).Thesefeaturesare

alsoassociatedwithhydrogelpH-responsiveness.AtpH1.2(SGF),

allthecarboxylicgroupsonAP–MAareentirelyprotonated,

hinder-ingtheinteractionswithwatermolecules.Thisfactsuppressedthe

CURrelease.However,atpH6.8(SIF)thecarboxylicsitesarefully

ionized( COO− improvingnegativechargedensity,aspredicted

by␨measurements.Then,thewatermoleculesinteractbetterwith

thehybridmaterial,favoringtheCURdelivery.Fe3O4

nanoparti-clescausetortuosityintoapolymericmatrix,eliminatingtheburst

releaseofCUR(daSilvaetal.,2014)

CURcomprisescrystallinearrangementandhaslackwater

sol-ubility(≈11ngmL−1inabuffersolutionatpH5.0)(Martinsetal.,

2013) In this study, the solubility and stability of the loaded

CURwereimproved AP-MA/PNIPAAm(10)-Fe3O4(1)

microparti-clesprotectedtheCURintegrityallowingsustainedreleaseatpH

closetophysiologicalcondition.Accordingtotheassayperformed

at25◦C(SIFundermagneticfieldinfluence),thesolubilityofloaded

CURreached216␮gmL−1.Besides,theCURwasnotdegradedatpH

6.8(SIF),anditsbioavailabilitywasalsoenhanced.Thesefindings

opennewstrategiesfordevelopingofCUR-basedmaterialswith

applicationinthemedicalfield

3.3 Transportmechanism

Thereleaseofsolutesfromaflexiblematrixmaybedescribed

bydiffusiontransport(Ritger&Peppas,1987).Ritger-Peppas

pro-posedasemi-empiricalmathematicalmodeltoexplaintherelease

mechanismofsolutes(Eq.(1)(Ritger&Peppas,1987)

Mt

Where Mt/M∞ refers to the solute fraction released in the

desiredtimeinterval (t);k isthekineticconstant,anditsvalue

reliesonthefactorssuchassolvent,typeandshapeofthe

hydro-gel,aswellasdependsontheexperimentalconditions.InEq.(1),n

representsthediffusionexponentbeingassociatedwiththesolute

transport mechanism(Brazel&Peppas, 1999; Guilhermeet al.,

2010)and hydrogelgeometry.For n=1,themechanism is

gov-ernedbyazero–orderkineticandthereleaserateriseswiththe

timelinearlyandreliesonthemacromolecularrelaxation.Whenn

isroughly0.5,thereleasemechanismiscontrolledbyFickian

diffu-sion;fornvaluesrangingfrom0.5to1.0,theanomaloustransport

takesplacebecauseofthesimultaneousdiffusionand

macromolec-ularrelaxation.Regardingthesphericalmatrices,thenparameter

canassumethevalues:0.43(Fickiandiffusion),0.43–0.85

(anoma-lousornon-Fickian),and0.85(zero–orderkinetic)(Ritger&Peppas,

1987)

Thenandkparameterswereassessedfromthereleasecurves

performedinSIF(Table2).Fornvaluescloseto0.5,thereleasewas

explainedthroughnon-Fickiantransport(assayswithfractionsof releasedCURat80,90and95%;Figs.4a–b).However,forthetest with50%ofreleasedCUR,thelowernvalue(0.15)showedthat polymericmatrix/CURsetdidnothaveaffinitybytheSIF(assayat

25◦Cintheabsenceofmagneticfield)

Attheequilibriumcondition,thereleasedfraction(Fr)reachesa maximum(Fmax),andthetransportmechanismcanbetreatedasa diffusion-partitionphenomenon(Reis,Guilherme,Rubira,&Muniz,

2007).Forapplyingthismodel,theFrandFmaxparameterswere alsoassessedfromthecurvescarriedoutinSIF,andthekinetic vari-ables(kr)predictedforfirst–orderkinetic(Eq.(3)andsecond–order kinetic(Eq.(4))(Reisetal.,2007)weremeasuredaswell(Table2) Thepartitionactivity(␣coefficient)isdefinedwhenthesolute con-centrationreachesa constantvalue(Reisetal.,2007).For ␣>0, thesolutediffusiontakesplacebetweenthesolventandhydrogel phases,inferringbetteraffinitybetweensoluteandsolvent.When

␣=0thesolutereleasedoesnotoccur.Thereisnotanysolute parti-tionbetweenthesolventandhydrogelphases(Reisetal.,2007).All studiesshowed␣>0,indicatingthediffusion-partitionoccurrence (Table2)

krt=Fmaxln

max

Fmax−Fr



(3)

Krt=˛2ln

F

r−2FrFmax+Fmax

Fmax−Fr



(4) TheRitger–Peppasmodelisvalidforatimeintervalinwhich 60%soluteisreleased(Ritger&Peppas,1987),whilethe diffusion-partitionmodelcanpredictthereleasecurveprofileentirely(Reis

etal.,2007).TheRitger–Peppasmodelwasadjustedbettertothe experimentaloutcomesperformedat37◦C(R2≥0.940;Table2and Fig.S4).However,thediffusion-partitionmodelisingood accor-dancewiththeresultsintheintervalof60–160h(Fig.S4(e,f,g, andh))(Reisetal.,2007).Thereleaseassaysat37◦Cwerefollowed forasecond-orderkinetic(R2≥0.900;Table2)andthoseat25◦C werepredictedbyafirst-orderkinetic(R2≥0.964;Table2).All con-ditionscarriedout inSIFpinpointedlowand positivekr values, explainingthesustainedCURrelease(Table2)

3.4 Cytotoxicityassay CellviabilitytestsagainsttheCaco–2coloncancerandhealthy VEROcellswereevaluatedfromthemicroparticleswithoutCUR (Fig.4c).TheresultsindicatedthatAP–MA/PNIPAAm(10)–Fe3O4(1) imparted highest cytotoxic effect on the Caco–2 cells (65␮gmL−1CC50), while AP–MA/PNIPAAm(2)–Fe3O4(10) and AP–MA/PNIPAAm(10)–Fe3O4(10) CC50 achieved 215 and

435␮gmL−1, respectively The largest cytotoxicity found for AP–MA/PNIPAAm(10)–Fe3O4(1) towards Caco–2 cells could be attributedtothelowestloadedFe3O4amount(Table2).AP–MA (thepristinepectinmaleate)possessesgreaterinhibitoryactivity (CC50=25␮gmL−1)forCaco–2cellsaspreviouslyshowninwork publishedbyourresearchgroup(Almeidaetal.,2014).Theraw

APCC50reached140␮gmL−1.Fe3O4oxideandPNIPAAmcontents playsignificativeroleinthefindingsofcytotoxicity.Higherlevels

Trang 7

the AP–MA/PNIPAAm(10)–Fe3O4(10) CC50 was improved for

435␮g mLư1 Reports suggest theantitumor activityof AP-MA

was related to anhydride hydrolysis, and hence the formation

ofhydrogen–bondedfragments(Gaoetal.,2016;Pascalauetal.,

2016;Zhanget al.,2016).TheFe3O4/PNIPAAmexcessmay

hin-der the establishment of H–bonds among polymer networks,

decreasingtheantitumoractivity(Almeidaetal.,2014;Karakus,

Yenidunya,Zengin,&Polat,2011)

Forhealthy VEROcells,theAP–MA/PNIPAAm(10)–Fe3O4(10),

AP–MA/PNIPAAm(2)–Fe3O4(10)andAP–MA/PNIPAAm(10)–Fe3O4(1)

CC50 were 370, 365and 375␮g mLư1, respectively So, allthe

microparticleswerenotcytotoxictowardsVEROcells.Itwas

fea-turedthatAP–MA/PNIPAAm/Fe3O4 setcouldbetailoredtoelicit

cytocompatibility for Caco-2 cells, stability, and bioavailability

for CUR, comprising an efficient device for CUR delivery The

cytotoxicityoftheAP–MA/PNIPAAm/Fe3O4/CURcompositeswere

notassessed.Manystudies,includingtwopaperspublishedbyour

group,depictedthat CUR-based composites couldsuppressthe

growthofcancerouscells(Martinsetal.,2013;Pereiraetal.,2013)

4 Conclusions

Anewhybridandmagneticmaterialbasedonmaleatepectin

(AP–MA),PNIPAAm andFe3O4 waspHand thermal-responsive

Thecurcumin(CUR)wasloadedintothemicroparticlesandrelease

findingswerefavoredinSIF.Besides,themagneticfieldinfluenced

thetestscarriedoutat25◦C.Overall,theCURreleasewasslowly

andsustainably.ThestabilityandbioavailabilityoftheCURwere

alsoimproved,andcytotoxicityassaysrevealedthat

microparti-cleswithoutCURwerecytocompatibleforhealthyVEROcells.For

diseasedCaco-2cells,thegrowthwassuppressedmainlyunder

AP–MA/PNIPAAm(10)–Fe3O4(1)presence(CC50=65␮gmLư1).The

AP–MA/PNIPAAm/Fe3O4featurescanbeusefultoyieldapotential

carrierdeviceforCURdelivery

Acknowledgements

E.A.M.S.A.thankstheCNPqforherMasterfellowship.E.C M

thankstoCNPq(Proc.400702/2012–6and 308337/2013–1)and

Nanobiotec(Proc.851/09)forfinancialsupports.Theauthorsalso

acknowledgeProfessors:L.C.Varanda(IQSCưUSP),D.R.Cornejo

(IFSCưUSP),I.A.dosSantos(DFIưUEM)andE.Radovanovic(DQI

ưUEM)fortheirhelpduringthedevelopingofthiswork

Appendix A Supplementary data

Supplementarydataassociatedwiththisarticlecanbefound,in

theonlineversion,athttp://dx.doi.org/10.1016/j.carbpol.2017.05

034

References

Abolmaali, S S., Tamaddon, A M., & Dinarvand, R (2013) A review of therapeutic

challenges and achievements of methotrexate delivery systems for treatment

of cancer and rheumatoid arthritis Cancer Chemotherapy and Pharmacology,

71(5), 1115–1130.

Almeida, E A M S., Facchi, S P., Martins, A F., Nocchi, S., Schuquel, I T A.,

Nakamura, C V., & Muniz, E C (2014) Synthesis and characterization of pectin

derivative with antitumor property against Caco-2 colon cancer cells.

Carbohydrate Polymers, 115, 139–145.

Brazel, C S., & Peppas, N A (1999) Mechanisms of solute and drug transport in

relaxing, swellable, hydrophilic glassy polymers Polymer, 40(12), 3383–3398.

Brewer, E., Coleman, J., & Lowman, A (2011) Emerging technologies of polymeric

nanoparticles in cancer drug delivery Journal of Nanomaterials, 2011, 1–10.

Brouns, F., Theuwissen, E., Adam, A., Bell, M., Berger, A., & Mensink, R P (2012).

Cholesterol-lowering properties of different pectin types in mildly

hyper-cholesterolemic men and women European Journal of Clinical Nutrition,

Bueno, P V A., Souza, P R., Follmann, H D M., Pereira, A G B., Martins, A F., Rubira, A F., & Muniz, E C (2015) N, N-Dimethyl chitosan/heparin polyelectrolyte complex vehicle for efficient heparin delivery International Journal of Biological Macromolecules, 75, 186–191.

Chen, C., Johnston, T D., Jeon, H., Gedaly, R., McHugh, P R., Burke, T G., & Ranjan, D (2009) An in vitro study of liposomal curcumin: Stability, toxicity and biological activity in human lymphocytes and Epstein-Barr virus-transformed human B-cells International Journal of Pharmaceutics, 366(1-2), 133–139.

da Silva, E P., Sitta, D L A., Fragal, V H., Cellet, T S P., Mauricio, M R., Garcia, F P.,

& Kunita, M H (2014) Covalent TiO2/pectin microspheres with Fe3O4 nanoparticles for magnetic field-modulated drug delivery International Journal

of Biological Macromolecules, 67, 43–52.

Facchi, S P., Scariot, D B., Bueno, P V A., Souza, P R., Figueiredo, L C., Follmann, H.

D M., & Martins, A F (2016) Preparation and cytotoxicity of N-modified chitosan nanoparticles applied in curcumin delivery International Journal of Biological Macromolecules, 87, 237–245.

Fang, J H., Lai, Y H., Chiu, T L., Chen, Y Y., Hu, S H., & Chen, S Y (2014) Magnetic Core?Shell nanocapsules with Dual-Targeting capabilities and Co-Delivery of multiple drugs to treat brain gliomas Advanced Healthcare Materials, 3(8), 1250–1260.

Gao, N N., Lu, S Y., Gao, C M., Wang, X G., Xu, X B., Bai, X., & Liu, M Z (2016) Injectable shell-crosslinked F127 micelle/hydrogel composites with pH and redox sensitivity for combined release of anticancer drugs Chemical Engineering Journal, 287, 20–29.

Guilherme, M R., Reis, A V., Paulino, A T., Moia, T A., Mattoso, L H C., & Tambourgi, E B (2010) Pectin-Based polymer hydrogel as a carrier for release

of agricultural nutrients and removal of heavy metals from wastewater Journal

of Applied Polymer Science, 117(6), 3146–3154.

Jaiswal, M K., Banerjee, R., Pradhan, P., & Bahadur, D (2010) Thermal behavior of magnetically modalized poly(N-isopropylacrylamide)-chitosan based nanohydrogel Colloids and Surfaces B-Biointerfaces, 81(1), 185–194.

Karakus, G., Yenidunya, A F., Zengin, H B., & Polat, Z A (2011) Modification of maleic anhydride-Styrene copolymer with noradrenaline by chemical and enzymatic methods Journal of Applied Polymer Science, 122(4), 2821–2828 Kim, D H., Kim, K N., Kim, K M., & Lee, Y K (2009) Targeting to carcinoma cells with chitosan- and starch-coated magnetic nanoparticles for magnetic hyperthermia Journal of Biomedical Materials Research Part A, 88A(1), 1–11 Kim, M (2005) High-methoxyl pectin has greater enhancing effect on glucose uptake in intestinal perfused rats Nutrition, 21(3), 372–377.

Kumar, C S S R., & Mohammad, F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery Advanced Drug Delivery Reviews, 63(9), 789–808.

Leal, D., De Borggraeve, W., Encinas, M V., Matsuhiro, B., & Muller, R (2013) Preparation and characterization of hydrogels based on homopolymeric fractions of sodium alginate and PNIPAAm Carbohydrate Polymers, 92(1), 157–166.

Li, L., Ahmed, B., Mehta, K., & Kurzrock, R (2007) Liposomal curcumin with and without oxaliplatin: effects on cell growth, apoptosis, and angiogenesis in colorectal cancer Molecular Cancer Therapeutics, 6(4), 1276–1282.

Liu, L S., Fishman, M L., Kost, J., & Hicks, K B (2003) Pectin-based systems for colon-specific drug delivery via oral route Biomaterials, 24(19), 3333–3343 Maheshwari, R K., Singh, A K., Gaddipati, J., & Srimal, R C (2006) Multiple biological activities of curcumin: A short review Life Sciences, 78(18), 2081–2087.

Martins, A F., Bueno, P V A., Almeida, E A M S., Rodrigues, F H A., Rubira, A F., & Muniz, E C (2013) Characterization of N-trimethyl chitosan/alginate complexes and curcumin release International Journal of Biological Macromolecules, 57, 174–184.

Mauricio, M R., Guilherme, M R., Kunita, M H., Muniz, E C., & Rubira, A F (2012) Designing nanostructured microspheres with well-defined outlines by mixing carboxyl-functionalized amylose and magnetite via ultrasound Chemical Engineering Journal, 189, 456–463.

Maxwell, E G., Belshaw, N J., Waldron, K W., & Morris, V J (2012) Pectin ư An emerging new bioactive food polysaccharide Trends in Food Science & Technology, 24(2), 64–73.

Menegucci, J D., Santos, M., Dias, D J S., Chaker, J A., & Sousa, M H (2015) One-step synthesis of magnetic chitosan for controlled release of 5-hydroxytryptophan Journal of Magnetism and Magnetic Materials, 380, 117–124.

Pascalau, V., Soritau, O., Popa, F., Pavel, C., Coman, V., Perhaita, I., & Popa, C (2016) Curcumin delivered through bovine serum albumin/polysaccharides multilayered microcapsules Journal of Biomaterials Applications, 30(6), 857–872.

Patel, N G., Kumar, A., Jayawardana, V N., Woodworth, C D., & Yuya, P A (2014) Fabrication, nanomechanical characterization, and cytocompatibility of gold-reinforced chitosan bio-nanocomposites Materials Science & Engineering C-Materials for Biological Applications, 44, 336–344.

Patra, S., Roy, E., Karfa, P., Kumar, S., Madhuri, R., & Sharma, P K (2015).

Dual-Responsive polymer coated superparamagnetic nanoparticle for targeted drug delivery and hyperthermia treatment ACS Applied Materials & Interfaces, 7(17), 9235–9246.

Pereira, A G B., Fajardo, A R., Nocchi, S., Nakamura, C V., Rubira, A F., & Muniz, E.

C (2013) Starch-based microspheres for sustained-release of curcumin: preparation and cytotoxic effect on tumor cells Carbohydrate Polymers, 98(1), 711–720.

Trang 8

266 E.A.M.S Almeida et al / Carbohydrate Polymers 171 (2017) 259–266

Pietsch, C., Mansfeld, U., Guerrero-Sanchez, C., Hoeppener, S., Vollrath, A., Wagner,

M., & Schubert, U S (2012) Thermo-Induced self-Assembly of responsive

poly(DMAEMA-b-DEGMA)Block copolymers into multi- and unilamellar

vesicles Macromolecules, 45(23), 9292–9302.

Purushotham, S., & Ramanujan, R V (2010) Thermoresponsive magnetic

composite nanomaterials for multimodal cancer therapy Acta Biomaterialia,

6(2), 502–510.

Reis, A V., Guilherme, M R., Rubira, A F., & Muniz, E C (2007) Mathematical

model for the prediction of the overall profile of in vitro solute release from

polymer networks Journal of Colloid and Interface Science, 310(1), 128–135.

Reis, A V., Guilherme, M R., de Almeida, E A M S., Kunita, M H., Muniz, E C.,

Rubira, A F., & Tambourgi, E B (2011) Copolymer hydrogel microspheres

consisting of modified sulfate chondroitin-co-Poly(N-isopropylacrylamide).

Journal of Applied Polymer Science, 121(5), 2726–2733.

Ritger, P L., & Peppas, N A (1987) A simple equation for description of solute

release II Fickian and anomalous release from swellable devices Journal of

Controlled Release, 5(1), 37–42.

Shi, W., Dolai, S., Rizk, S., Hussain, A., Tariq, H., Averick, S., & Raja, K (2007).

Synthesis of monofunctional curcumin derivatives, clicked curcumin dimer,

and a PAMAM dendrimer curcumin conjugate for therapeutic applications.

Organic Letters, 9(26), 5461–5464.

Song, X., Luo, X., Zhang, Q., Zhu, A., Ji, L., & Yan, C (2015) Preparation and

characterization of biofunctionalized chitosan/Fe3O4 magnetic nanoparticles

for application in liver magnetic resonance imaging Journal of Magnetism and Magnetic Materials, 388, 116–122.

Tang, H., Murphy, C J., Zhang, B., Shen, Y., Van Kirk, E A., Murdoch, W J., & Radosz,

M (2010) Curcumin polymers as anticancer conjugates Biomaterials, 31(27), 7139–7149.

Terpstra, A H M., Lapre, J A., de Vries, H T., & Beynen, A C (1998) Dietary pectin with high viscosity lowers plasma and liver cholesterol concentration and plasma cholesteryl ester transfer protein activity in hamsters Journal of Nutrition, 128(11), 1944–1949.

Tiwari, A D., Mishra, A K., Mishra, S B., Arotiba, O A., & Mamba, B B (2011) Green synthesis and stabilization of gold nanoparticles in chemically modified chitosan matrices International Journal of Biological Macromolecules, 48(4), 682–687.

Wong, T W., Colombo, G., & Sonvico, F (2011) Pectin matrix as oral drug delivery vehicle for colon cancer treatment Aaps Pharmscitech, 12(1), 201–214 Zhang, W B., Xu, P., & Zhang, H (2015) Pectin in cancer therapy: A review Trends

in Food Science & Technology, 44(2), 258–271.

Zhang, Y M., Yang, C H., Wang, W W., Liu, J J., Liu, Q., Huang, F., & Lui, J F (2016) Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer Scientific Reports, 6

Ngày đăng: 07/01/2023, 21:00

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm