1. Trang chủ
  2. » Giáo án - Bài giảng

Effects of immobilization, pH and reaction time in the modulation of α-, β- or γ-cyclodextrins production by cyclodextrin glycosyltransferase: Batch and continuous process

9 6 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Effects of Immobilization, pH and Reaction Time in the Modulation of α-, β- or γ-Cyclodextrins Production by Cyclodextrin Glycosyltransferase: Batch and Continuous Process
Tác giả Jộssie da Natividade Schửffer, Carla Roberta Matte, Douglas Santana Charqueiro, Eliana Weber de Menezes, Tania Maria Haas Costa, Edilson Valmir Benvenutti, Rafael C. Rodrigues, Plinho Francisco Hertz
Trường học Universidade Federal do Rio Grande do Sul
Chuyên ngành Food Science and Biotechnology
Thể loại Research article
Năm xuất bản 2017
Thành phố Porto Alegre
Định dạng
Số trang 9
Dung lượng 1,75 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

This study reports the immobilization of a β-CGTase on glutaraldehyde pre-activated silica and its use to production of cyclodextrins in batch and continuous reactions. We were able tomodulate the cyclodextrin production (α-, β- and γ-CD) by immobilization and changing the reaction conditions.

Trang 1

a Grupo de Biotecnologia, Bioprocessos e Biocatálise, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS),

Porto Alegre, RS, Brazil

b Laboratório de Sólidos e Superfície, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil

a r t i c l e i n f o

Article history:

Received 6 February 2017

Received in revised form 28 March 2017

Accepted 3 April 2017

Available online 4 April 2017

Keywords:

CGTase immobilization

CDs modulated production

Packed-bed reactor

CDs continuous production

a b s t r a c t

Thisstudyreportstheimmobilizationofaˇ-CGTaseonglutaraldehydepre-activatedsilicaanditsuseto productionofcyclodextrinsinbatchandcontinuousreactions.Wewereabletomodulatethecyclodextrin production(˛-,ˇ-and-CD)byimmobilizationandchangingthereactionconditions.Inbatchreactions, theimmobilizedenzymereachedtomaximumproductionsof4.9mgmL−1of␣-CD,3.6mgmL−1ofˇ-CD and3.5mgmL−1of-CDatdifferentconditionsoftemperature,pHandreactiontime.Incontinuous reactor,varyingtheresidencetimeandpHitwaspossibletoproduceatpH4.0and141minofresidence timepreferentially-CD(0.75and3.36mgmL−1of␣-and-CD,respectively),oratpH8.0and4.81min

␣-andˇ-CDs(3.44and3.51mgmL−1)

©2017ElsevierLtd.Allrightsreserved

1 Introduction

1998)

phar-∗ Corresponding author at: Instituto de Ciência e Tecnologia de Alimentos (ICTA),

Universidade Federal do Rio Grande do Sul (UFRGS), Av Bento Gonc¸ alves, 9500, P.O.

Box: 15095, ZC 91501-970, Porto Alegre, RS, Brazil.

E-mail addresses: rafaelcrodrigues@yahoo.com.br (R.C Rodrigues),

plinho@ufrgs.br (P.F Hertz).

1 Web: http://www.ufrgs.br/bbb

Patra,2016;Pereva,Sarafska,Bogdanova,&Spassov,2016),food (Astray,Gonzalez-Barreiro,Mejuto,Rial-Otero,&Simal-Gandara,

2009;Astray,Mejuto,Morales,Rial-Otero,&Simal-Gandara,2010;

Li,Chen,&Li,2017;Yuan,Du,Zhang,Jin,&Liu,2016;Zhao&Tang,

2002)

http://dx.doi.org/10.1016/j.carbpol.2017.04.005

0144-8617/© 2017 Elsevier Ltd All rights reserved.

Trang 2

42 J.d.N Schöffer et al / Carbohydrate Polymers 169 (2017) 41–49

Table 1

Experimental designs and results of the CCD.

Fig 1.Thermogravimetric analyses of silica and its derivatives with different

amounts of amino groups (solid black line) Si, (dashed line) Si-NH-0.29, (dotted

line) Si-NH-0.45, (dash-dot line) Si-NH-0.65.

process,aswellasthedifferentpropertiesandpossibilitiesof

appli-cationofeachCD(Limaetal.,2016;Szenteetal.,2016),thetarget

(Blackwood&Bucke,2000;Ferrarottietal.,2006;Li,Chen,Gu,Chen,

&Wu,2014;Lietal.,2007;Szejtli,1998).Inthissense,changesin

2000;vanderVeen,Uitdehaag,Penningaetal.,2000;Xie,Song,Yue,

Chao,&Qian,2014;Yamamotoetal.,2000)

et al., 2012; Schöffer, Klein, Rodrigues, & Hertz, 2013; Sobral

etal.,2003; Sobral,Rodrigues, deOliveira,deMoraes, &Zanin,

tempera-ture(Abdel-Naby,1999;Martín,Plou,Alcalde,&Ballesteros,2003;

Tardioli,Zanin,&deMoraes,2006).Moreover,theimmobilization

Berenguer-Murcia,Fernandez-Lafuente,&Rodrigues,2011;Mateo, Palomo,Fernandez-Lorente,Guisan,&Fernandez-Lafuente,2007;

Rodrigues,Ortiz,Berenguer-Murcia,Torres,&Fernandez-Lafuente,

2013)

2 Experimental section

(Caldas etal.,2017).The silicasupportwasfunctionalized with

Trang 3

organofunction-Fig 2. Cyclodextrins production by (a) free CGTase, 50 ◦ C; (b) free CGTase, 70 ◦ C; (c) immobilized CGTase, 50 ◦ C; (d) immobilized CGTase, 70 ◦ C (䊏) ␣-CD, ( ) ␤-CD, ( )

␥-CD.

agent

groups

Pelt(2013).Theproteinconcentrationsweredetermined

Trang 4

44 J.d.N Schöffer et al / Carbohydrate Polymers 169 (2017) 41–49

Table 2

Textural and thermal analyses data.

(±7 m 2 g−1) ±0.01 cm 3 g−1)

a Maximum of BJH pore diameter distribution curve.

b Aminopropyl group amount estimated by TGA.

Table 3

CGTase immobilization parameters on Si-NH-G.

Si-NH-0.29-G 96.54 3.41 6333

Si-NH-0.45-G 98.18 3.92 7405

Si-NH-0.65-G 98.63 5.37 10173

a Measured by the phenolphthalein method.

Table1.Ineachcase,theCDsconcentrationsweredeterminedby HPLC

3 Results and discussion

enzyme

Trang 5

Table 4

Statistical analysis of the CCD for CDs production.

Linear

X 1 0.76 a 0.04 0.0002 0.23 a 0.03 0.0065 0.23 a 0.05 0.0231

X 2 0.65 a 0.04 0.0004 1.09 a 0.03 <0.0001 −0.56 a 0.05 0.0019

X 3 −1.40 a 0.04 <0.0001 −1.51 a 0.03 <0.0001 1.36 a 0.05 0.0001 Quadratic

X 1 1.32 a 0.04 <0.0001 0.98 a 0.03 <0.0001 −0.49 a 0.05 0.0030

X 2 0.39 a 0.04 0.0019 0.61 a 0.03 0.0004 0.40 a 0.05 0.0057

X 3 0.04 0.04 0.3608 −0.05 0.03 0.2555 −0.45 a 0.05 0.0039 Interactions

X 1 X 2 −0.17 a 0.05 0.0388 −0.26 a 0.04 0.0094 0.11 0.07 0.2089

X 1 X 3 −0.12 0.05 0.0823 0.07 0.04 0.1870 0.15 0.07 0.1145

X 2 X 3 −0.22 a 0.05 0.0192 −0.26 a 0.04 0.0099 −0.15 0.07 0.1069 Variables X 1 represent the temperature, X 2 the pH and X 3 the reaction time.

a Statistically significant at 95% of confidence level.

2016; Tardioliet al.,2006), perhaps byrestricted access ofthe

Fernandez-Lafuente,2011).Theadvantageofusingthis

Rodriguesetal.,2013;Sheldon,2007).Becauseofthehigher

GoelandNene(1995)statedthattheproportionof

vanderVeen,vanAlebeek,Uitdehaag,Dijkstra,&Dijkhuizen,2000)

1995;Yang&Su,1989;Zheng,Endo,&Zimmermann,2002)

Trang 6

46 J.d.N Schöffer et al / Carbohydrate Polymers 169 (2017) 41–49

Fig 3.Contour plots of CCD results Columns: ␣-, ␤- and ␥-CD at different pH and time and at 50 ◦ C, 70 ◦ C and 90 ◦ C (lines).

inTable1

(Rodriguesetal.,2013),whichmayhavebeenresponsibleforthe

deSouzaetal.(2013)proposedakineticmodelforcyclodextrins

Trang 7

Fig 4. Continuous production of (䊉) ␣-CD, (䊏) ␤-CD, () ␥-CD at 70 ◦ C, pH 8.0 (a) and pH 4.0 (b), on a packed-bed reactor with immobilized CGTase.

thanCDs(Mathew&Adlercreutz,2012;Svensson&Adlercreutz,

2011; Zehentgruber, Lundemo, Svensson,& Adlercreutz, 2011)

Wang,Wu,Chen,&Wu,2013)

reactor

4 Conclusion

Trang 8

48 J.d.N Schöffer et al / Carbohydrate Polymers 169 (2017) 41–49

Acknowledgements

References

Abdel-Naby, M A (1999) Immobilization of Paenibacillus macerans NRRL B-3186

cyclodextrin glucosyltransferase and properties of the immobilized enzyme.

Process Biochemistry, 34, 399–405.

Amud, A E., Presa da Silva, G R., Tardioli, P W., Faria Soares, C M., Moraes, F F., &

Zanin, G M (2008) Methods and supports for immobilization and stabilization

of cyclomaltodextrin glucanotransferase from Thermoanaerobacter Applied

Biochemistry and Biotechnology, 146(1–3), 189–201.

Astray, G., Gonzalez-Barreiro, C., Mejuto, J C., Rial-Otero, R., & Simal-Gandara, J.

(2009) A review on the use of cyclodextrins in foods Food Hydrocolloids, 23(7),

1631–1640.

Astray, G., Mejuto, J C., Morales, J., Rial-Otero, R., & Simal-Gandara, J (2010).

Factors controlling flavors binding constants to cyclodextrins and their

applications in foods Food Research International, 43(4), 1212–1218.

Barbosa, O., Ortiz, C., Berenguer-Murcia, A., Torres, R., Rodrigues, R C., &

Fernandez-Lafuente, R (2014) Glutaraldehyde in bio-catalysts design: A useful

crosslinker and a versatile tool in enzyme immobilization RSC Advances, 4(4),

1583–1600.

Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R C., &

Fernandez-Lafuente, R (2015) Strategies for the one-step

immobilization–purification of enzymes as industrial biocatalysts.

Biotechnology Advances, 33(5), 435–456.

Blackwood, A D., & Bucke, C (2000) Addition of polar organic solvents can

improve the product selectivity of cyclodextrin glycosyltransferase—Solvent

effects on CGTase Enzyme and Microbial Technology, 27(9), 704–708.

Bolivar, J M., Eisl, I., & Nidetzky, B (2016) Advanced characterization of

immobilized enzymes as heterogeneous biocatalysts Catalysis Today, 259(Part

1 (1)), 66–80.

Caldas, E M., Novatzky, D., Deon, M., de Menezes, E M., Hertz, P F., Costa, T M H.,

Arenas, L T., & Benvenutti, E V (2017) Pore size effect in the amount of

immobilized enzyme for manufacturing carbon ceramic biosensor.

Microporous and Mesoporous Materials, 247, 95–102.

Del Valle, E M M (2004) Cyclodextrins and their uses: A review Process

Biochemistry, 39(9), 1033–1046.

Dura, A., & Rosell, C M (2016) Physico-chemical properties of corn starch

modified with cyclodextrin glycosyltransferase International Journal of

Biological Macromolecules, 87, 466–472.

de Souza, M., Faria, S., Zanin, G., & Moraes, F (2013) Kinectics of cyclization

reaction catalyzed by the enzyme cyclomaltodextrin glucanotransferase.

Chemical Engineering Transactions, 23, 1111–1116.

Ferrarotti, S A., Bolivar, J M., Mateo, C., Wilson, L., Guisan, J M., &

Fernandez-Lafuente, R (2006) Immobilization and stabilization of a

cyclodextrin glycosyltransferase by covalent attachment on highly activated

glyoxyl-agarose supports Biotechnology Progress, 22(4), 1140–1145.

Garcia-Galan, C., Berenguer-Murcia, A., Fernandez-Lafuente, R., & Rodrigues, R C.

(2011) Potential of different enzyme immobilization strategies to improve

enzyme performance Advanced Synthesis & Catalysis, 353(16), 2885–2904.

Goel, A., & Nene, S (1995) A novel cyclomaltodextrin glucanotransferase from

Bacillus firmus that degrades raw starch Biotechnology Letters, 17(4), 411–416.

Graebin, N., Schöffer, J., Andrades, D., Hertz, P., Ayub, M., & Rodrigues, R (2016).

Immobilization of glycoside hydrolase families GH1, GH13, and GH70: State of

Gregg, S., & Sing, K (1982) Adsorption, surface area and porosity (2nd ed.) London: Academic Press.

Hernandez, K., & Fernandez-Lafuente, R (2011) Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalyst

or biosensor performance Enzyme and Microbial Technology, 48(2), 107–122.

Kamaruddin, K., Illias, R M., Aziz, S A., Said, M., & Hassan, O (2005) Effects of buffer properties on cyclodextrin glucanotransferase reactions and cyclodextrin production from raw sago (Cycas revoluta) starch Biotechnology and Applied Biochemistry, 41, 117–125.

Kelly, R M., Dijkhuizen, L., & Leemhuis, H (2009) The evolution of cyclodextrin glucanotransferase product specificity Applied Microbiology and Biotechnology, 84(1), 119–133.

Li, Z., Wang, M., Wang, F., Gu, Z., Du, G., Wu, J., et al (2007) Gamma-cyclodextrin:

A review on enzymatic production and applications Applied Microbiology and Biotechnology, 77(2), 245–255.

Li, Z., Chen, S., Gu, Z., Chen, J., & Wu, J (2014) Alpha-cyclodextrin: Enzymatic production and food applications Trends in Food Science & Technology, 35(2), 151–160.

Li, Y., Chen, Y., & Li, H (2017) Recovery and purification of cholesterol from cholesterol-␤-cyclodextrin inclusion complex using ultrasound-assisted extraction Ultrasonics Sonochemistry, 34, 281–288.

Lima, P S S., Lucchese, A M., Araújo-Filho, H G., Menezes, P P., Araújo, A A S., Quintans-Júnior, L J., et al (2016) Inclusion of terpenes in cyclodextrins: Preparation, characterization and pharmacological approaches Carbohydrate Polymers, 151(20), 965–987.

Loftsson, T., & Duchene, D (2007) Cyclodextrins and their pharmaceutical applications International Journal of Pharmaceutics, 329(1–2), 1–11.

Lowry, O H., Rosebrough, N J., Farr, A L., & Randall, R J (1951) Protein measurement with the folin phenol reagent Journal of Biological Chemistry, 193(1), 265–275.

Martín, M T., Plou, F J., Alcalde, M., & Ballesteros, A (2003) Immobilization on Eupergit C of cyclodextrin glucosyltransferase (CGTase) and properties of the immobilized biocatalyst Journal of Molecular Catalysis B—Enzymatic, 21(4–6), 299–308.

Mateo, C., Palomo, J M., Fernandez-Lorente, G., Guisan, J M., &

Fernandez-Lafuente, R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques Enzyme and Microbial Technology, 40(6), 1451–1463.

Mathew, S., & Adlercreutz, P (2012) Cyclodextrin glucanotransferase (CGTase) catalyzed synthesis of dodecyl glucooligosides by transglycosylation using

␣-cyclodextrin or starch Carbohydrate Polymers, 87(1), 574–580.

Matte, C R., Nunes, M R., Benvenutti, E V., Schöffer, J d N., Ayub, M A Z., & Hertz,

P F (2012) Characterization of cyclodextrin glycosyltransferase immobilized

on silica microspheres via aminopropyltrimethoxysilane as a spacer arm Journal of Molecular Catalysis B: Enzymatic, 78, 51–56.

Mihailiasa, M., Caldera, F., Li, J., Peila, R., Ferri, A., & Trotta, F (2016) Preparation of functionalized cotton fabrics by means of melatonin loaded ␤-cyclodextrin nanosponges Carbohydrate Polymers, 142, 24–30.

Moussa, Z., Hmadeh, M., Abiad, M G., Dib, O H., & Patra, D (2016) Encapsulation

of curcumin in cyclodextrin-metal organic frameworks: Dissociation of loaded CD-MOFs enhances stability of curcumin Food Chemistry, 212, 485–494.

Pavan, F A., Gobbi, S A., Costa, T M H., & Benvenutti, E V (2002) FTIR thermal analysis on anilinepropylsilica xerogel Journal of Thermal Analysis and Calorimetry, 68(1), 199–206.

Pereva, S., Sarafska, T., Bogdanova, S., & Spassov, T (2016) Efficiency of cyclodextrin-ibuprofen inclusion complex formation Journal of Drug Delivery Science and Technology, 35, 34–39.

Rakmai, J., & Cheirsilp, B (2016) Continuous production of ␤-cyclodextrin by cyclodextrin glycosyltransferase immobilized in mixed gel beads: Comparative study in continuous stirred tank reactor and packed bed reactor Biochemical Engineering Journal, 105(Part A (15)), 107–113.

Rodrigues, R C., Ortiz, C., Berenguer-Murcia, A., Torres, R., & Fernandez-Lafuente, R (2013) Modifying enzyme activity and selectivity by immobilization Chemical Society Reviews, 42, 6290–6307.

Schöffer, J d N., Klein, M P., Rodrigues, R C., & Hertz, P F (2013) Continuous production of ␤-cyclodextrin from starch by highly stable cyclodextrin glycosyltransferase immobilized on chitosan Carbohydrate Polymers, 98(2), 1311–1316.

Sheldon, R A., & van Pelt, S (2013) Enzyme immobilisation in biocatalysis: Why, what and how Chemical Society Reviews, 42(15), 6223–6235.

Sheldon, R A (2007) Enzyme immobilization: The quest for optimum performance Advanced Synthesis & Catalysis, 349(8–9), 1289–1307.

Singh, M., Sharma, R., & Banerjee, U C (2002) Biotechnological applications of cyclodextrins Biotechnology Advances, 20(5–6), 341–359.

Sobral, K C A., Rodrigues, R M O., de Oliveira, R D., de Moraes, F F., & Zanin, G M (2002) Immobilization of cyclodextringlycosyltransferase (CGTase) from Bacillus firmus in commercial chitosan Journal of Inclusion Phenomena and Macrocyclic Chemistry, 44(1), 383–386.

Sobral, K A., Rodrigues, R O., Oliveira, R D., Olivo, J E., de Moraes, F F., & Zanin, G.

M (2003) Evaluation of supports and methods for immobilization of enzyme cyclodextringlycosyltransferase Applied Biochemistry and Biotechnology, 105, 809–819.

Svensson, D., & Adlercreutz, P (2011) Immobilisation of CGTase for continuous production of long-carbohydrate-chain alkyl glycosides control of product distribution by flow rate adjustment Journal of Molecular Catalysis B—Enzymatic, 69(3–4), 147–153.

Trang 9

Svensson, D., Ulvenlund, S., & Adlercreutz, P (2009) Efficient synthesis of a long

carbohydrate chain alkyl glycoside catalyzed by cyclodextrin

glycosyltransferase (CGTase) Biotechnology and Bioengineering, 104(5),

854–861.

Szejtli, J (1982) Cyclodextrins and their inclusion complexes Starch, 34, 395–401.

Szejtli, J (1998) Introduction and general overview of cyclodextrin chemistry.

Chemical Reviews, 98(5), 1743–1753.

Szente, L., Szemán, J., & Sohajda, T (2016) Analytical characterization of

cyclodextrins: History, official methods and recommended new techniques.

Journal of Pharmaceutical and Biomedical Analysis, 130, 347–365.

Tardioli, P W., Zanin, G M., & de Moraes, F F (2006) Characterization of

Thermoanaerobacter cyclomaltodextrin glucanotransferase immobilized on

glyoxyl-agarose Enzyme and Microbial Technology, 39(6), 1270–1278.

Terada, Y., Yanase, M., Takata, H., Takaha, T., & Okada, S (1997) Cyclodextrins are

not the major cyclic alpha-1,4-glucans produced by the initial action of

cyclodextrin glucanotransferase on amylose Journal of Biological Chemistry,

272(25), 15729–15733.

Vikmon, M (1982) Rapid and simple spectrophotometric method for

determination of micro-amounts of cyclodextrins In J Szejtli (Ed.), Proceedings

of the first international symposium on cyclodextrins: Budapest, Hungary, 30

September–2 October, 1981 (pp 69–74) Dordrecht: Springer Netherlands.

van der Veen, B A., Uitdehaag, J C M., Dijkstra, B W., & Dijkhuizen, L (2000).

Engineering of cyclodextrin glycosyltransferase reaction and product

specificity Biochimica Et Biophysica Acta—Protein Structure and Molecular

Enzymology, 1543(2), 336–360.

van der Veen, B A., Uitdehaag, J C M., Penninga, D., van Alebeek, G., Smith, L M.,

Dijkstra, B W., et al (2000) Rational design of cyclodextrin glycosyltransferase

from Bacillus circulans strain 251 to increase alpha-cyclodextrin production.

Journal of Molecular Biology, 296(4), 1027–1038.

van der Veen, B A., van Alebeek, G., Uitdehaag, J C M., Dijkstra, B W., & Dijkhuizen,

L (2000) The three transglycosylation reactions catalyzed by cyclodextrin

glycosyltransferase from Bacillus circulans (strain 251) proceed via different

kinetic mechanisms European Journal of Biochemistry, 267(3), 658–665.

Wang, L., Wu, D., Chen, J., & Wu, J (2013) Enhanced production of ␥-cyclodextrin

by optimization of reaction of ␥-cyclodextrin glycosyltransferase as well as synchronous use of isoamylase Food Chemistry, 141(3), 3072–3076.

Wind, R D., Liebl, W., Buitelaar, R M., Penninga, D., Spreinat, A., Dijkhuizen, L.,

et al (1995) Cyclodextrin formation by the thermostable alpha-amylase of Thermoanaerobacterium thermosulfurigenes EM1 and reclassification of the enzyme as a cyclodextrin glycosyltransferase Applied and Environmental Microbiology, 61(4), 1257–1265.

Xie, T., Song, B., Yue, Y., Chao, Y., & Qian, S (2014) Site-saturation mutagenesis of central tyrosine 195 leading to diverse product specificities of an

␣-cyclodextrin glycosyltransferase from Paenibacillus sp 602-1 Journal of Biotechnology, 170(20), 10–16.

Yamamoto, T., Fujiwara, S., Tachibana, Y., Takagi, M., Fukui, K., & Imanaka, T (2000) Alteration of product specificity of cyclodextrin glucanotransferase from Thermococcus sp B1001 by site-directed mutagenesis Journal of Bioscience and Bioengineering, 89(2), 206–209.

Yang, C.-P., & Su, C.-S (1989) Study of cyclodextrin production using cyclodextrin glycosyltransferase immobilized on chitosan Journal of Chemical Technology & Biotechnology, 46(4), 283–294.

Yuan, C., Du, L., Zhang, G., Jin, Z., & Liu, H (2016) Influence of cyclodextrins on texture behavior and freeze-thaw stability of kappa-carrageenan gel Food Chemistry, 210, 600–605.

Zehentgruber, D., Lundemo, P., Svensson, D., & Adlercreutz, P (2011) Substrate complexation and aggregation influence the cyclodextrin glycosyltransferase (CGTase) catalyzed synthesis of alkyl glycosides Journal of Biotechnology, 155(2), 232–235.

Zhao, X.-H., & Tang, C.-H (2016) Spray-drying microencapsulation of CoQ10 in olive oil for enhanced water dispersion, stability and bioaccessibility: Influence

of type of emulsifiers and/or wall materials Food Hydrocolloids, 61, 20–30.

Zheng, M., Endo, T., & Zimmermann, W (2002) Synthesis of large-ring cyclodextrins by cyclodextrin glucanotransferases from bacterial isolates Journal of Inclusion Phenomena and Macrocyclic Chemistry, 44(1), 387–390.

Ngày đăng: 07/01/2023, 20:59

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w