This study reports the immobilization of a β-CGTase on glutaraldehyde pre-activated silica and its use to production of cyclodextrins in batch and continuous reactions. We were able tomodulate the cyclodextrin production (α-, β- and γ-CD) by immobilization and changing the reaction conditions.
Trang 1a Grupo de Biotecnologia, Bioprocessos e Biocatálise, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS),
Porto Alegre, RS, Brazil
b Laboratório de Sólidos e Superfície, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
a r t i c l e i n f o
Article history:
Received 6 February 2017
Received in revised form 28 March 2017
Accepted 3 April 2017
Available online 4 April 2017
Keywords:
CGTase immobilization
CDs modulated production
Packed-bed reactor
CDs continuous production
a b s t r a c t
Thisstudyreportstheimmobilizationofaˇ-CGTaseonglutaraldehydepre-activatedsilicaanditsuseto productionofcyclodextrinsinbatchandcontinuousreactions.Wewereabletomodulatethecyclodextrin production(˛-,ˇ-and-CD)byimmobilizationandchangingthereactionconditions.Inbatchreactions, theimmobilizedenzymereachedtomaximumproductionsof4.9mgmL−1of␣-CD,3.6mgmL−1ofˇ-CD and3.5mgmL−1of-CDatdifferentconditionsoftemperature,pHandreactiontime.Incontinuous reactor,varyingtheresidencetimeandpHitwaspossibletoproduceatpH4.0and141minofresidence timepreferentially-CD(0.75and3.36mgmL−1of␣-and-CD,respectively),oratpH8.0and4.81min
␣-andˇ-CDs(3.44and3.51mgmL−1)
©2017ElsevierLtd.Allrightsreserved
1 Introduction
1998)
phar-∗ Corresponding author at: Instituto de Ciência e Tecnologia de Alimentos (ICTA),
Universidade Federal do Rio Grande do Sul (UFRGS), Av Bento Gonc¸ alves, 9500, P.O.
Box: 15095, ZC 91501-970, Porto Alegre, RS, Brazil.
E-mail addresses: rafaelcrodrigues@yahoo.com.br (R.C Rodrigues),
plinho@ufrgs.br (P.F Hertz).
1 Web: http://www.ufrgs.br/bbb
Patra,2016;Pereva,Sarafska,Bogdanova,&Spassov,2016),food (Astray,Gonzalez-Barreiro,Mejuto,Rial-Otero,&Simal-Gandara,
2009;Astray,Mejuto,Morales,Rial-Otero,&Simal-Gandara,2010;
Li,Chen,&Li,2017;Yuan,Du,Zhang,Jin,&Liu,2016;Zhao&Tang,
2002)
http://dx.doi.org/10.1016/j.carbpol.2017.04.005
0144-8617/© 2017 Elsevier Ltd All rights reserved.
Trang 242 J.d.N Schöffer et al / Carbohydrate Polymers 169 (2017) 41–49
Table 1
Experimental designs and results of the CCD.
Fig 1.Thermogravimetric analyses of silica and its derivatives with different
amounts of amino groups (solid black line) Si, (dashed line) Si-NH-0.29, (dotted
line) Si-NH-0.45, (dash-dot line) Si-NH-0.65.
process,aswellasthedifferentpropertiesandpossibilitiesof
appli-cationofeachCD(Limaetal.,2016;Szenteetal.,2016),thetarget
(Blackwood&Bucke,2000;Ferrarottietal.,2006;Li,Chen,Gu,Chen,
&Wu,2014;Lietal.,2007;Szejtli,1998).Inthissense,changesin
2000;vanderVeen,Uitdehaag,Penningaetal.,2000;Xie,Song,Yue,
Chao,&Qian,2014;Yamamotoetal.,2000)
et al., 2012; Schöffer, Klein, Rodrigues, & Hertz, 2013; Sobral
etal.,2003; Sobral,Rodrigues, deOliveira,deMoraes, &Zanin,
tempera-ture(Abdel-Naby,1999;Martín,Plou,Alcalde,&Ballesteros,2003;
Tardioli,Zanin,&deMoraes,2006).Moreover,theimmobilization
Berenguer-Murcia,Fernandez-Lafuente,&Rodrigues,2011;Mateo, Palomo,Fernandez-Lorente,Guisan,&Fernandez-Lafuente,2007;
Rodrigues,Ortiz,Berenguer-Murcia,Torres,&Fernandez-Lafuente,
2013)
2 Experimental section
(Caldas etal.,2017).The silicasupportwasfunctionalized with
Trang 3organofunction-Fig 2. Cyclodextrins production by (a) free CGTase, 50 ◦ C; (b) free CGTase, 70 ◦ C; (c) immobilized CGTase, 50 ◦ C; (d) immobilized CGTase, 70 ◦ C (䊏) ␣-CD, ( ) -CD, ( )
␥-CD.
agent
groups
Pelt(2013).Theproteinconcentrationsweredetermined
Trang 444 J.d.N Schöffer et al / Carbohydrate Polymers 169 (2017) 41–49
Table 2
Textural and thermal analyses data.
(±7 m 2 g−1) ±0.01 cm 3 g−1)
a Maximum of BJH pore diameter distribution curve.
b Aminopropyl group amount estimated by TGA.
Table 3
CGTase immobilization parameters on Si-NH-G.
Si-NH-0.29-G 96.54 3.41 6333
Si-NH-0.45-G 98.18 3.92 7405
Si-NH-0.65-G 98.63 5.37 10173
a Measured by the phenolphthalein method.
Table1.Ineachcase,theCDsconcentrationsweredeterminedby HPLC
3 Results and discussion
enzyme
Trang 5Table 4
Statistical analysis of the CCD for CDs production.
Linear
X 1 0.76 a 0.04 0.0002 0.23 a 0.03 0.0065 0.23 a 0.05 0.0231
X 2 0.65 a 0.04 0.0004 1.09 a 0.03 <0.0001 −0.56 a 0.05 0.0019
X 3 −1.40 a 0.04 <0.0001 −1.51 a 0.03 <0.0001 1.36 a 0.05 0.0001 Quadratic
X 1 1.32 a 0.04 <0.0001 0.98 a 0.03 <0.0001 −0.49 a 0.05 0.0030
X 2 0.39 a 0.04 0.0019 0.61 a 0.03 0.0004 0.40 a 0.05 0.0057
X 3 0.04 0.04 0.3608 −0.05 0.03 0.2555 −0.45 a 0.05 0.0039 Interactions
X 1 X 2 −0.17 a 0.05 0.0388 −0.26 a 0.04 0.0094 0.11 0.07 0.2089
X 1 X 3 −0.12 0.05 0.0823 0.07 0.04 0.1870 0.15 0.07 0.1145
X 2 X 3 −0.22 a 0.05 0.0192 −0.26 a 0.04 0.0099 −0.15 0.07 0.1069 Variables X 1 represent the temperature, X 2 the pH and X 3 the reaction time.
a Statistically significant at 95% of confidence level.
2016; Tardioliet al.,2006), perhaps byrestricted access ofthe
Fernandez-Lafuente,2011).Theadvantageofusingthis
Rodriguesetal.,2013;Sheldon,2007).Becauseofthehigher
GoelandNene(1995)statedthattheproportionof
vanderVeen,vanAlebeek,Uitdehaag,Dijkstra,&Dijkhuizen,2000)
1995;Yang&Su,1989;Zheng,Endo,&Zimmermann,2002)
Trang 646 J.d.N Schöffer et al / Carbohydrate Polymers 169 (2017) 41–49
Fig 3.Contour plots of CCD results Columns: ␣-, - and ␥-CD at different pH and time and at 50 ◦ C, 70 ◦ C and 90 ◦ C (lines).
inTable1
(Rodriguesetal.,2013),whichmayhavebeenresponsibleforthe
deSouzaetal.(2013)proposedakineticmodelforcyclodextrins
Trang 7Fig 4. Continuous production of (䊉) ␣-CD, (䊏) -CD, () ␥-CD at 70 ◦ C, pH 8.0 (a) and pH 4.0 (b), on a packed-bed reactor with immobilized CGTase.
thanCDs(Mathew&Adlercreutz,2012;Svensson&Adlercreutz,
2011; Zehentgruber, Lundemo, Svensson,& Adlercreutz, 2011)
Wang,Wu,Chen,&Wu,2013)
reactor
4 Conclusion
Trang 848 J.d.N Schöffer et al / Carbohydrate Polymers 169 (2017) 41–49
Acknowledgements
References
Abdel-Naby, M A (1999) Immobilization of Paenibacillus macerans NRRL B-3186
cyclodextrin glucosyltransferase and properties of the immobilized enzyme.
Process Biochemistry, 34, 399–405.
Amud, A E., Presa da Silva, G R., Tardioli, P W., Faria Soares, C M., Moraes, F F., &
Zanin, G M (2008) Methods and supports for immobilization and stabilization
of cyclomaltodextrin glucanotransferase from Thermoanaerobacter Applied
Biochemistry and Biotechnology, 146(1–3), 189–201.
Astray, G., Gonzalez-Barreiro, C., Mejuto, J C., Rial-Otero, R., & Simal-Gandara, J.
(2009) A review on the use of cyclodextrins in foods Food Hydrocolloids, 23(7),
1631–1640.
Astray, G., Mejuto, J C., Morales, J., Rial-Otero, R., & Simal-Gandara, J (2010).
Factors controlling flavors binding constants to cyclodextrins and their
applications in foods Food Research International, 43(4), 1212–1218.
Barbosa, O., Ortiz, C., Berenguer-Murcia, A., Torres, R., Rodrigues, R C., &
Fernandez-Lafuente, R (2014) Glutaraldehyde in bio-catalysts design: A useful
crosslinker and a versatile tool in enzyme immobilization RSC Advances, 4(4),
1583–1600.
Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R C., &
Fernandez-Lafuente, R (2015) Strategies for the one-step
immobilization–purification of enzymes as industrial biocatalysts.
Biotechnology Advances, 33(5), 435–456.
Blackwood, A D., & Bucke, C (2000) Addition of polar organic solvents can
improve the product selectivity of cyclodextrin glycosyltransferase—Solvent
effects on CGTase Enzyme and Microbial Technology, 27(9), 704–708.
Bolivar, J M., Eisl, I., & Nidetzky, B (2016) Advanced characterization of
immobilized enzymes as heterogeneous biocatalysts Catalysis Today, 259(Part
1 (1)), 66–80.
Caldas, E M., Novatzky, D., Deon, M., de Menezes, E M., Hertz, P F., Costa, T M H.,
Arenas, L T., & Benvenutti, E V (2017) Pore size effect in the amount of
immobilized enzyme for manufacturing carbon ceramic biosensor.
Microporous and Mesoporous Materials, 247, 95–102.
Del Valle, E M M (2004) Cyclodextrins and their uses: A review Process
Biochemistry, 39(9), 1033–1046.
Dura, A., & Rosell, C M (2016) Physico-chemical properties of corn starch
modified with cyclodextrin glycosyltransferase International Journal of
Biological Macromolecules, 87, 466–472.
de Souza, M., Faria, S., Zanin, G., & Moraes, F (2013) Kinectics of cyclization
reaction catalyzed by the enzyme cyclomaltodextrin glucanotransferase.
Chemical Engineering Transactions, 23, 1111–1116.
Ferrarotti, S A., Bolivar, J M., Mateo, C., Wilson, L., Guisan, J M., &
Fernandez-Lafuente, R (2006) Immobilization and stabilization of a
cyclodextrin glycosyltransferase by covalent attachment on highly activated
glyoxyl-agarose supports Biotechnology Progress, 22(4), 1140–1145.
Garcia-Galan, C., Berenguer-Murcia, A., Fernandez-Lafuente, R., & Rodrigues, R C.
(2011) Potential of different enzyme immobilization strategies to improve
enzyme performance Advanced Synthesis & Catalysis, 353(16), 2885–2904.
Goel, A., & Nene, S (1995) A novel cyclomaltodextrin glucanotransferase from
Bacillus firmus that degrades raw starch Biotechnology Letters, 17(4), 411–416.
Graebin, N., Schöffer, J., Andrades, D., Hertz, P., Ayub, M., & Rodrigues, R (2016).
Immobilization of glycoside hydrolase families GH1, GH13, and GH70: State of
Gregg, S., & Sing, K (1982) Adsorption, surface area and porosity (2nd ed.) London: Academic Press.
Hernandez, K., & Fernandez-Lafuente, R (2011) Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalyst
or biosensor performance Enzyme and Microbial Technology, 48(2), 107–122.
Kamaruddin, K., Illias, R M., Aziz, S A., Said, M., & Hassan, O (2005) Effects of buffer properties on cyclodextrin glucanotransferase reactions and cyclodextrin production from raw sago (Cycas revoluta) starch Biotechnology and Applied Biochemistry, 41, 117–125.
Kelly, R M., Dijkhuizen, L., & Leemhuis, H (2009) The evolution of cyclodextrin glucanotransferase product specificity Applied Microbiology and Biotechnology, 84(1), 119–133.
Li, Z., Wang, M., Wang, F., Gu, Z., Du, G., Wu, J., et al (2007) Gamma-cyclodextrin:
A review on enzymatic production and applications Applied Microbiology and Biotechnology, 77(2), 245–255.
Li, Z., Chen, S., Gu, Z., Chen, J., & Wu, J (2014) Alpha-cyclodextrin: Enzymatic production and food applications Trends in Food Science & Technology, 35(2), 151–160.
Li, Y., Chen, Y., & Li, H (2017) Recovery and purification of cholesterol from cholesterol--cyclodextrin inclusion complex using ultrasound-assisted extraction Ultrasonics Sonochemistry, 34, 281–288.
Lima, P S S., Lucchese, A M., Araújo-Filho, H G., Menezes, P P., Araújo, A A S., Quintans-Júnior, L J., et al (2016) Inclusion of terpenes in cyclodextrins: Preparation, characterization and pharmacological approaches Carbohydrate Polymers, 151(20), 965–987.
Loftsson, T., & Duchene, D (2007) Cyclodextrins and their pharmaceutical applications International Journal of Pharmaceutics, 329(1–2), 1–11.
Lowry, O H., Rosebrough, N J., Farr, A L., & Randall, R J (1951) Protein measurement with the folin phenol reagent Journal of Biological Chemistry, 193(1), 265–275.
Martín, M T., Plou, F J., Alcalde, M., & Ballesteros, A (2003) Immobilization on Eupergit C of cyclodextrin glucosyltransferase (CGTase) and properties of the immobilized biocatalyst Journal of Molecular Catalysis B—Enzymatic, 21(4–6), 299–308.
Mateo, C., Palomo, J M., Fernandez-Lorente, G., Guisan, J M., &
Fernandez-Lafuente, R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques Enzyme and Microbial Technology, 40(6), 1451–1463.
Mathew, S., & Adlercreutz, P (2012) Cyclodextrin glucanotransferase (CGTase) catalyzed synthesis of dodecyl glucooligosides by transglycosylation using
␣-cyclodextrin or starch Carbohydrate Polymers, 87(1), 574–580.
Matte, C R., Nunes, M R., Benvenutti, E V., Schöffer, J d N., Ayub, M A Z., & Hertz,
P F (2012) Characterization of cyclodextrin glycosyltransferase immobilized
on silica microspheres via aminopropyltrimethoxysilane as a spacer arm Journal of Molecular Catalysis B: Enzymatic, 78, 51–56.
Mihailiasa, M., Caldera, F., Li, J., Peila, R., Ferri, A., & Trotta, F (2016) Preparation of functionalized cotton fabrics by means of melatonin loaded -cyclodextrin nanosponges Carbohydrate Polymers, 142, 24–30.
Moussa, Z., Hmadeh, M., Abiad, M G., Dib, O H., & Patra, D (2016) Encapsulation
of curcumin in cyclodextrin-metal organic frameworks: Dissociation of loaded CD-MOFs enhances stability of curcumin Food Chemistry, 212, 485–494.
Pavan, F A., Gobbi, S A., Costa, T M H., & Benvenutti, E V (2002) FTIR thermal analysis on anilinepropylsilica xerogel Journal of Thermal Analysis and Calorimetry, 68(1), 199–206.
Pereva, S., Sarafska, T., Bogdanova, S., & Spassov, T (2016) Efficiency of cyclodextrin-ibuprofen inclusion complex formation Journal of Drug Delivery Science and Technology, 35, 34–39.
Rakmai, J., & Cheirsilp, B (2016) Continuous production of -cyclodextrin by cyclodextrin glycosyltransferase immobilized in mixed gel beads: Comparative study in continuous stirred tank reactor and packed bed reactor Biochemical Engineering Journal, 105(Part A (15)), 107–113.
Rodrigues, R C., Ortiz, C., Berenguer-Murcia, A., Torres, R., & Fernandez-Lafuente, R (2013) Modifying enzyme activity and selectivity by immobilization Chemical Society Reviews, 42, 6290–6307.
Schöffer, J d N., Klein, M P., Rodrigues, R C., & Hertz, P F (2013) Continuous production of -cyclodextrin from starch by highly stable cyclodextrin glycosyltransferase immobilized on chitosan Carbohydrate Polymers, 98(2), 1311–1316.
Sheldon, R A., & van Pelt, S (2013) Enzyme immobilisation in biocatalysis: Why, what and how Chemical Society Reviews, 42(15), 6223–6235.
Sheldon, R A (2007) Enzyme immobilization: The quest for optimum performance Advanced Synthesis & Catalysis, 349(8–9), 1289–1307.
Singh, M., Sharma, R., & Banerjee, U C (2002) Biotechnological applications of cyclodextrins Biotechnology Advances, 20(5–6), 341–359.
Sobral, K C A., Rodrigues, R M O., de Oliveira, R D., de Moraes, F F., & Zanin, G M (2002) Immobilization of cyclodextringlycosyltransferase (CGTase) from Bacillus firmus in commercial chitosan Journal of Inclusion Phenomena and Macrocyclic Chemistry, 44(1), 383–386.
Sobral, K A., Rodrigues, R O., Oliveira, R D., Olivo, J E., de Moraes, F F., & Zanin, G.
M (2003) Evaluation of supports and methods for immobilization of enzyme cyclodextringlycosyltransferase Applied Biochemistry and Biotechnology, 105, 809–819.
Svensson, D., & Adlercreutz, P (2011) Immobilisation of CGTase for continuous production of long-carbohydrate-chain alkyl glycosides control of product distribution by flow rate adjustment Journal of Molecular Catalysis B—Enzymatic, 69(3–4), 147–153.
Trang 9Svensson, D., Ulvenlund, S., & Adlercreutz, P (2009) Efficient synthesis of a long
carbohydrate chain alkyl glycoside catalyzed by cyclodextrin
glycosyltransferase (CGTase) Biotechnology and Bioengineering, 104(5),
854–861.
Szejtli, J (1982) Cyclodextrins and their inclusion complexes Starch, 34, 395–401.
Szejtli, J (1998) Introduction and general overview of cyclodextrin chemistry.
Chemical Reviews, 98(5), 1743–1753.
Szente, L., Szemán, J., & Sohajda, T (2016) Analytical characterization of
cyclodextrins: History, official methods and recommended new techniques.
Journal of Pharmaceutical and Biomedical Analysis, 130, 347–365.
Tardioli, P W., Zanin, G M., & de Moraes, F F (2006) Characterization of
Thermoanaerobacter cyclomaltodextrin glucanotransferase immobilized on
glyoxyl-agarose Enzyme and Microbial Technology, 39(6), 1270–1278.
Terada, Y., Yanase, M., Takata, H., Takaha, T., & Okada, S (1997) Cyclodextrins are
not the major cyclic alpha-1,4-glucans produced by the initial action of
cyclodextrin glucanotransferase on amylose Journal of Biological Chemistry,
272(25), 15729–15733.
Vikmon, M (1982) Rapid and simple spectrophotometric method for
determination of micro-amounts of cyclodextrins In J Szejtli (Ed.), Proceedings
of the first international symposium on cyclodextrins: Budapest, Hungary, 30
September–2 October, 1981 (pp 69–74) Dordrecht: Springer Netherlands.
van der Veen, B A., Uitdehaag, J C M., Dijkstra, B W., & Dijkhuizen, L (2000).
Engineering of cyclodextrin glycosyltransferase reaction and product
specificity Biochimica Et Biophysica Acta—Protein Structure and Molecular
Enzymology, 1543(2), 336–360.
van der Veen, B A., Uitdehaag, J C M., Penninga, D., van Alebeek, G., Smith, L M.,
Dijkstra, B W., et al (2000) Rational design of cyclodextrin glycosyltransferase
from Bacillus circulans strain 251 to increase alpha-cyclodextrin production.
Journal of Molecular Biology, 296(4), 1027–1038.
van der Veen, B A., van Alebeek, G., Uitdehaag, J C M., Dijkstra, B W., & Dijkhuizen,
L (2000) The three transglycosylation reactions catalyzed by cyclodextrin
glycosyltransferase from Bacillus circulans (strain 251) proceed via different
kinetic mechanisms European Journal of Biochemistry, 267(3), 658–665.
Wang, L., Wu, D., Chen, J., & Wu, J (2013) Enhanced production of ␥-cyclodextrin
by optimization of reaction of ␥-cyclodextrin glycosyltransferase as well as synchronous use of isoamylase Food Chemistry, 141(3), 3072–3076.
Wind, R D., Liebl, W., Buitelaar, R M., Penninga, D., Spreinat, A., Dijkhuizen, L.,
et al (1995) Cyclodextrin formation by the thermostable alpha-amylase of Thermoanaerobacterium thermosulfurigenes EM1 and reclassification of the enzyme as a cyclodextrin glycosyltransferase Applied and Environmental Microbiology, 61(4), 1257–1265.
Xie, T., Song, B., Yue, Y., Chao, Y., & Qian, S (2014) Site-saturation mutagenesis of central tyrosine 195 leading to diverse product specificities of an
␣-cyclodextrin glycosyltransferase from Paenibacillus sp 602-1 Journal of Biotechnology, 170(20), 10–16.
Yamamoto, T., Fujiwara, S., Tachibana, Y., Takagi, M., Fukui, K., & Imanaka, T (2000) Alteration of product specificity of cyclodextrin glucanotransferase from Thermococcus sp B1001 by site-directed mutagenesis Journal of Bioscience and Bioengineering, 89(2), 206–209.
Yang, C.-P., & Su, C.-S (1989) Study of cyclodextrin production using cyclodextrin glycosyltransferase immobilized on chitosan Journal of Chemical Technology & Biotechnology, 46(4), 283–294.
Yuan, C., Du, L., Zhang, G., Jin, Z., & Liu, H (2016) Influence of cyclodextrins on texture behavior and freeze-thaw stability of kappa-carrageenan gel Food Chemistry, 210, 600–605.
Zehentgruber, D., Lundemo, P., Svensson, D., & Adlercreutz, P (2011) Substrate complexation and aggregation influence the cyclodextrin glycosyltransferase (CGTase) catalyzed synthesis of alkyl glycosides Journal of Biotechnology, 155(2), 232–235.
Zhao, X.-H., & Tang, C.-H (2016) Spray-drying microencapsulation of CoQ10 in olive oil for enhanced water dispersion, stability and bioaccessibility: Influence
of type of emulsifiers and/or wall materials Food Hydrocolloids, 61, 20–30.
Zheng, M., Endo, T., & Zimmermann, W (2002) Synthesis of large-ring cyclodextrins by cyclodextrin glucanotransferases from bacterial isolates Journal of Inclusion Phenomena and Macrocyclic Chemistry, 44(1), 387–390.