Acidic mammalian chitinase (AMCase) has been implicated in various pathophysiological conditions including asthma, allergic inflammation and food processing. AMCase is most active at pH 2.0, and its activity gradually decreases to up to pH 8.
Trang 1jo u r n al h om ep a g e :w w w e l s e v i e r c o m / l o c a t e / c a r b p o l
conditions
Satoshi Wakitaa,1, Masahiro Kimuraa,1, Naoki Katoa, Akinori Kashimuraa,
Shunsuke Kobayashia, Naoto Kanayamaa, Misa Ohnoa, Shotaro Hondaa,
Masayoshi Sakaguchia, Yasusato Sugaharaa, Peter O Bauerb,c, Fumitaka Oyamaa,∗
a Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
b Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
c Bioinova Ltd., Prague 142 20, Czechia
a r t i c l e i n f o
Article history:
Received 14 June 2016
Received in revised form 3 January 2017
Accepted 29 January 2017
Available online 31 January 2017
Keywords:
Acidic mammalian chitinase
Chitin
Chitin degradation products
Chitin oligomers
Fluorophore
Pre-acidification method
a b s t r a c t Acidicmammalianchitinase(AMCase)hasbeenimplicatedinvariouspathophysiologicalconditions includingasthma,allergicinflammationandfoodprocessing.AMCaseismostactiveatpH2.0,andits activitygraduallydecreasestouptopH8.HereweanalyzedchitindegradationbyAMCaseinweak acidictoneutralconditionsbyfluorophore-assistedcarbohydrateelectrophoresisestablishedoriginally foroligosaccharidesanalysis.Wefoundthatspecificfragmentswithslower-than-expectedmobilityas definedbychitinoligosaccharidemarkersweregeneratedatpH5.0∼8.0asby-productsofthereaction
Weestablishedanimprovedmethodforchitinoligosaccharidessuppressingthissidereactionby pre-acidificationofthefluorophore-labelingreactionmixture.Ourimprovedmethodspecificallydetects chitinoligosaccharidesandwarrantsquantificationofupto50nmolofthematerial.Usingthisstrategy,
wefoundthatAMCaseproduceddimerofN-acetyl-d-glucosamine(GlcNAc)atstrongacidictoneutral condition.Moreover,wefoundthatAMCasegenerates(GlcNAc)2aswellas(GlcNAc)3underphysiological conditions
©2017TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-ND
license(http://creativecommons.org/licenses/by-nc-nd/4.0/)
1 Introduction
Chitinisa -1,4-linked polymer,insolublein mostsolvents,
composedprimarilyofN-acetyl-d-glucosamine(GlcNAc)residues
Itis amajorcomponentoftheexoskeletonsof crustaceansand
insects,themicrofilarialsheathsofparasiticnematodesandfungal
cellwalls(Khoushab&Yamabhai,2010;Koch,Stougaard,&Spaink,
2015).Thus,chitinisthesecondmostabundantpolysaccharidein
nature
Chitinasesareglycosidasesthatbreakdownglycosidicbonds
in chitin They are important enzymes responsible for chitin
metabolisminawiderangeoforganisms,includingbacteria,fungi,
nematodesandarthropods(Bueter,Specht,&Levitz,2013;Hamid
etal.,2013;Khoushab&Yamabhai,2010;Kochetal.,2015;Lee
etal.,2011).Althoughmammalsdonotproducechitin,miceand
∗ Corresponding author.
E-mail address: f-oyama@cc.kogakuin.ac.jp (F Oyama).
1 These authors contributed equally to this article.
humansexpresstwoactivechitinases,chitotriosidase(Chit1)and acidicmammalianchitinase(AMCase)(Bussink,vanEijk,Renkema, Aerts,&Boot,2006;Leeetal.,2011).Chit1wasthefirstmammalian chitinasetobepurifiedanditsgenewascloned(Boot,Renkema, Strijland,vanZonneveld,&Aerts,1995;Renkema,Boot,Muijsers, Donker-Koopman,&Aerts,1995).AMCasewasthesecond mam-malianchitinasediscoveredandwasnamedforitsacidicisoelectric point(Bootetal.,2001)
AMCasehasattractedconsiderableattentionduetoitsincreased expression under certain pathological conditions related to immuneresponse,forexampleinaninducedasthmamousemodel andantigen-inducedmousemodelsofallergiclunginflammation (Reeseetal.,2007;Zhuetal.,2004).Somepolymorphismsand hap-lotypesintheAMCasegeneareassociatedwithbronchialasthma
inhumans(Bierbaumetal.,2005;Okawaetal.,2016;Seiboldetal.,
2009)andinhibitionofitsactivityhasbeensuggestedasa thera-peuticstrategyagainstasthma(Sutherlandetal.,2011;Yangetal.,
2009).Furthermore,AMCasehasbeenshowntobeinvolvedineye (Bucolo,Musumeci,Maltese,Drago,&Musumeci,2008; Bucolo,
http://dx.doi.org/10.1016/j.carbpol.2017.01.095
0144-8617/© 2017 The Authors Published by Elsevier Ltd This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.
Trang 2stomachdiseases(Cozzarinietal.,2009;Nookaewetal.,2013)
We havereported that AMCasemRNAis synthesizedin the
mousestomachatexceptionallyhighlevels.Theselevelsare
com-parabletopepsinogen,theprecursorofthemajordigestiveenzyme
in gastric fluid, pepsin, suggesting a digestive role of AMCase
(Ohnoetal.,2013; Ohno,Tsuda,Sakaguchi,Sugahara,&Oyama,
2012).Moreover,werecentlyshowedthatAMCaseisa
proteases-resistantglycosidaseinmousedigestivesystem,furthersupporting
thehypothesisofAMCasefunctioningasadigestiveenzyme(Ohno
etal.,2016).Wehavealsoshownthatbesidestomach,AMCase
mRNAishighlyexpressedinsubmaxillaryglandandlung(Ohno
etal., 2012).In addition,recombinant AMCaseand its catalytic
domainhad thehighestactivityataroundpH2.0,whenit
pro-ducesprimarily(GlcNAc)2,andloweractivitiesatmoreneutralpH
(pH3.0∼7.0)(Bootetal.,2001;Kashimuraetal.,2015;Kashimura
etal.,2013).TheAMCaseactivityundersomatictissueconditions
atpH5∼8remainstobeelucidated
Chitin and chitosan oligosaccharides
(N-acetyl-chitooligosaccharides) prepared either chemically or
enzymatically, have been shown to have anti-cancer and
anti-inflammatory properties (Azuma, Osaki, Minami, & Okamoto,
2015;Masudaetal.,2014)andhavevariousbiologicalactivities
in mammalian cells (Aam, Heggset, Norberg, Sorlie, Varum, &
Eijsink, 2010; Khoushab & Yamabhai, 2010) We hypothesized
that upregulated AMCaseunder certain pathological conditions
cangeneratespecificdegradationproductsassociatedwiththose
pathologies
HereweanalyzedthechitinaseactivityofAMCaseby
incubat-ingthe enzyme withchitin substratesat pH2.0∼8.0 followed
by fluorophore-assisted carbohydrate electrophoresis (FACE), a
methodbasedonlabelingthereducingendsofoligosaccharides
withafluorophore(Jackson,1990).FACEisverysensitive(pmol
amounts)ascomparedtohigh-performanceliquid
chromatogra-phy(HPLC)andnuclearmagneticresonance(NMR)spectrometry,
andisoftenusedfordetectionofverylowoligosaccharide
quanti-ties(Bootetal.,2001;Jackson,1990)
Duringourresearch,wefoundapH-dependentgenerationof
anunexpectedby-productwithaslowermobilitythan(GlcNAc)2,
themainfragmentresultingfromchitinsubstratesdigestionby
AMCase.Thisby-productwasobservedatpH5.0∼8.0.Tooptimize
thedigestionreaction,weestablishedanimprovedmethodfora
specificdetectionofchitinoligosaccharides.Usingthisprocedure,
wefoundthatAMCasegenerates(GlcNAc)2atbroadpHrangeof
2.0∼8.0
2 Materials and methods
2.1 RecombinantAMCaseexpressedinEscherichiacoliand
enzymaticactivityassays
We expressed and purified Protein A-AMCase-V5-His from
the periplasmic fraction of the E coli as described previously
(Kashimura et al., 2015; Kashimura et al., 2013).The
protein-containingfractionsweredesaltedusing PDMidiTrapG-25 (GE
Healthcare, Milwaukee, WI, USA) equilibrated with TS buffer
[20mMTris-HCl(pH7.6),150mMNaClandproteininhibitor
(Com-pleteMini;RocheDiagnostics,Basel,Switzerland)]
Chitinolyticactivitywasdetermined using a synthetic
chro-mogenicsubstrate, 4-nitrophenyl N,N-diacetyl--d-chitobioside
(Sigma-Aldrich, St Louis, MO, USA) as described previously
(Kashimuraetal.,2015;Kashimuraetal.,2013).AMCaseunit
defi-nitionwasalsoreportedpreviously(Kashimuraetal.,2013)
2.2 Degradationofcolloidalchitinand(GlcNAc)6byE
coli-expressedmouseAMCase Colloidalchitinwaspreparedfromshrimpshellchitin (Sigma-Aldrich),asdescribedpreviously(Kashimuraetal.,2013),andused
asasubstratetodeterminethechitinaseactivityofAMCase.All enzymaticreactionsusingcolloidalchitin(atafinalconcentration
of 1mg/mL) or N-acetyl-chitohexaose (GlcNAc)6(0.2mol/mL) (SeikagakuCorporation,Tokyo,Japan)werecarriedoutina vol-umeof50Lcontaining0.8mUor0.1mUE.coli-expressedmouse AMCaseinMcIlvaine’sbuffer(mixtureof0.1Mcitricacidand0.2M
Na2HPO4;pH2.0topH8.0).Thereactionmixtureswereincubated for1hat37◦C
2.3 FluorophorelabelingbythemethodofJackson Generatedchitinfragmentsorchitinmono-andoligomersof (GlcNAc)1 ∼6 (SeikagakuCorporation)asmolecularweight
mark-erswerelabeledcovalentlyattheirreducingendgroupswiththe fluorophore 8-aminonaphthalene-1,3,6-trisulphonic acid (ANTS, Invitrogen, Carlsbad, CA, USA), and separated by 40% poly-acrylamidegel electrophoresis (PAGE), as described by Jackson (Jackson, 1990) Briefly, the enzymatic reaction samples were lyophilized and 5Lof 0.2M ANTS in acetic acid/water (3:17, v/v) and 5Lof 1.0MNaCNBH3 indimethyl sulfoxide (DMSO) were added The mixture wasincubated at 37◦C for 16h The reaction was neutralized by 10L of 1M NaOH, followed by additionof10LLaemmlisamplebuffer(Laemmli,1970) with-outSDS,2-mercaptoethanolandbromophenolblue.Thesamples wereseparated byPAGE and quantifiedusing theLuminescent ImageAnalyzer(ImageQuantLAS4000,GEHealthcare),according
tothemanufacturer’sinstructions.Exposureconditionwasfixed
asfollows:exposuretype,precision;sensitivity,highresolution; exposuretime,1s
2.4 Pre-acidificationmethodforlabelingchitinoligomers Enzymaticreactionswerelyophilizedand5Lof0.2MANTS
inaceticacid/water(3:17,v/v),5Lof1.0MNaCNBH3 inDMSO and5Lof17.5Maceticacidwereaddedforreactionacidification followedbyincubationat37◦Cfor16h.Thereactionwas neutral-izedby15Lof1MNaOH,followedbyloadingbufferaddition.The sampleswereanalyzedbyPAGEasdescribedabove
2.5 Separationofdegradationproductsfrom(GlcNAc)6by AMCaseusingHPLC
Enzymaticreactionsusing(GlcNAc)6(0.6mol/mL)were per-formedinavolumeof300Lcontaining4.2mUofE.coli-expressed mouseAMCaseinMcIlvaine’sbuffer(pH2.0orpH7.0),30mM Gly-HCl(pH 2.0)or 30mMTris-HCl(pH7.0).Thereactionmixtures wereincubatedat37◦Cfor1h.GeneratedGlcNAcoligomerswere separatedbygelpermeationchromatography(GPC)essentiallyas describedpreviously(Kazamietal.,2015)
3 Results
3.1 DetectionofpHdependentfluorophore-labeledproductsat
pH5.0∼8.0 Previously,wehaveshownthattheE.coli-producedAMCase hasthe highest chitinolytic activityat around pH 2.0 which is decreasinginless acidicenvironment (pH3.0∼7.0)againstthe syntheticchromogenicsubstrate,4-nitrophenylN,N-diacetyl- -d-chitobioside[4NP-(GlcNAc)2](Kashimuraetal.,2015;Kashimura
etal.,2013).TodeterminewhetherAMCasecangeneratedistinct
Trang 3withcolloidal chitin or (GlcNAc)6 substratesat pH 2.0∼8.0 in
McIlvaine’sbuffer,followedbyfluorophore-assistedcarbohydrate
electrophoresis(FACE)asoriginallydescribedbyJackson(Jackson,
1990)
AMCasedegradedcolloidalchitinprimarilyto(GlcNAc)2
frag-mentsandtoalesserextentto(GlcNAc)3aswellasstrongdistinct
GlcNAcmonomerunderacidicconditions,whichwereconsistent
withourpreviousobservation(Fig.1A)(Kashimuraetal.,2013)
ThehydrolysiswasevidenttouptopH6.0withdecreasing
activ-ityuponincreasingpH(Fig.1A).Thus,therecombinantAMCase
candegradehighmolecularweightchitinsubstrateatbroadpH
range.However,therewasanatypicalproductgeneratedatpH
5.0∼8.0thatcouldrepresentamobilityshiftofthe(GlcNAc)2
frag-ment(Fig.1Aand B).AMCasealsodegradedalower molecular
weightsubstrate,(GlcNAc)6, andgenerated primarily(GlcNAc)2
andtoalesserextent(GlcNAc)3fragments(Fig.1B).Inaddition,we
detectedtheby-product,whosepresencewasevidentatpHvalues
above3(Fig.1B).TheseresultssuggestapH-dependent
genera-tionofanatypicalby-productfromchitinsubstratesdegradation
byrecombinantAMCaseorfromFACEreaction
3.2 By-productsgenerationinthefluoresceinationreactionand
pre-acidificationprocedurefordetectionoftheGlcNAcoligomers
Next,weexploredwhethertheFACEreactioncouldleadtothe
slowermobilityoftheGlcNAcoligomersintheabsenceofAMCase
at pH2.0 or 7.0 usingMcIlvaine’s buffer Bands withexpected
mobilitywereobtainedwhenincubatedatpH2.0(Fig.2A,leftand
right).Incontrast,incubationatpH7.0resultedintwobandsfrom
eachGlcNAcoligomerusingJacksonmethod(Fig.2A,centerand
right)(Jackson,1990).Slowermigratingby-productsofthe
Glc-NAcoligomersappearedwhenthefluorophorelabelingreaction
wasperformedatpH7.0(Fig.2A).Moreover,thefluoresceination
efficiencywasloweratpH7.0whencomparedtothatatpH2.0
(Fig.2A).Thus,cautionshouldbeexercisedwhenperforming
flu-orescencelabelingoftheGlcNAcoligomersdirectlyobtainedfrom
theenzymaticreactionatpH5.0∼8.0usingMcIlvaine’sbufferby
themethodofJackson(Jackson,1990)
Next, we attempted to optimize the reaction conditions to
suppress the by-product formation at neutral pH When we
acidifiedthereactionwithaceticacidbeforethelabelingwith
fluo-rophore(pre-acidification),weobtainedsinglebandsforalltested
oligomersatbothconditions(Fig.2B).Thus,theby-productswere
formedinapH-dependentmannerduringthefluorescentlabeling
Theseresultsindicatethatourpre-acidificationmethodby
con-centratedaceticacidjustbeforethelabelingreactioneffectively
preventstheformationofunwantedfragments
3.3 Effectofbuffersonthefluorescentlabeling
We next examined the effects of several buffer systems
commonly used in the biochemical evaluation of chitinolytic
activitiesonthefluorescent labelingof (GlcNAc)1∼6 We tested
McIlvaine’s (Fig 3A), phosphate or Tris-HCl (Fig 3B), as well
as 2-(N-morpholino) ethanesulfonic acid (MES),
piperazine-N,N-bis (2-ethanesulfonic acid) (PIPES),
4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and 3-(N-morpholino)
propanesulfonicacid(MOPS)(Fig.3C)bufferswithfinal
concentra-tionsadjustedto150mMatpH7.0.Ourpre-acidificationmethod
fortheFACEreactionappearedbeneficialirrespectiveoftheused
buffersystems(Fig.3)confirminguniversalenhancementofthe
reactionatpH7.0
3.4 Applicationofthepre-acidificationmethodfor determinationoftheGlcNAcoligomersusingstandardcurve
ToevaluatetheabilityforGlcNAcdimersquantification,we gen-eratedstandardcurvesatpH7.0andfounda linearitybetween (GlcNAc)2andfluorescenceintensitytoupto50nmol(Fig.4).The linearitywaspreservedwiththepre-acidificationstep(Fig.4) ThedetectionsensitivityatpH7.0wasnotinhibitedby increas-ing levelsof aceticacidwhen the (GlcNAc)2 waslabeledusing thepre-acidificationmethod.Thus,ourmethodenablesGlcNAc oligomersquantificationinchitinolyticreactionsperformedatpH 7.0.Toanalyzeasamplethatcontainslessthan1nmolof(GlcNAc)2
per50L,thevolumeofthesamplesolutioncouldbemodified from50Lto150L.Otherwise,additionofconcentratedacetic acidtothesampleorlongerexposureinaluminescentimage ana-lyzerisrecommended
3.5 Re-evaluationofchitinsubstratesdegradationbyAMCase usingpre-acidification
Usingourpre-acidificationmethod,were-evaluatedthe pH-dependentdegradationofchitinsubstratesbyAMCase.Incubation
oftheenzyme(0.8mU)withcolloidalchitinfor1hinMcIlvaine’s bufferatpH2.0∼8.0resultedinproductionofprimarily(GlcNAc)2 witha lowamountof (GlcNAc)3 aswellas strongdistinct Glc-NAcmonomer(Fig.5A).IncubationofAMCasewith(GlcNAc)6for
1hinMcIlvaine’sbufferatpH2.0∼8.0 alsoresultedin produc-tionofprimarily(GlcNAc)2(Fig.5B).ThepH-dependentincrease
of(GlcNAc)3levelswasmorepronouncedascomparedtocolloidal chitin(Fig.5B)
3.6 ChitinolyticpropertiesofAMCaseinweakacidicandneutral conditions
TheresultsdescribedaboveindicatethatAMCasecandegrade colloidalchitinand(GlcNAc)6withrelativelyhighactivityevenin weakacidicandneutralenvironment.Tofurtherclarifythisfinding,
weincubatedareducedAMCaseamount(0.1mU)with(GlcNAc)6
or 4NP-(GlcNAc)2, a chromogenicsubstrate used forevaluating chitinolyticpropertiesoftherecombinantenzyme,atpHranging from2.0to8.0at37◦Cfor1h
FACE analysis using pre-acidification step indicated that AMCase produced primarily (GlcNAc)2 and (GlcNAc)3 at pH 2.0∼5.0withasecondpeak(GlcNAc)2atpH6.0andseemedtobe activeuptopH8.0(Fig.6A).Thecolorimetricanalysisusing 4NP-(GlcNAc)2at405nmindicatedthatitscleavagereachedmaximum
atpH2.0anditdecreasedatmoreneutralpH(pH3.0∼7.0)(Fig.6B) Althoughbothanalysisshowedsimilarresults,FACEanalysiscould detectmorepronouncedsecondpeakatpH6.0(Fig.6C)
OurresultsindicatethatAMCasecandegradechitinsubstrates
to(GlcNAc)2atpH2.0∼8.0.ThesedatashowthattheFACE anal-ysiswithpre-acidificationismuchmoresensitivethantheassay usingchromogenicsubstrate,4NP-(GlcNAc)2.Ourresultssuggest thatAMCasecandegradechitinsubstratesnotonlyinstomachbut alsoinothertissuesincludinglungsandsubmaxillaryglands 3.7 DetectionofGlcNAcoligomersusingHPLCorFACE Next, using HPLC orFACE, we evaluated thedegradation of (GlcNAc)6byAMCaseatstrongacidicandneutralconditions.First,
wedegraded(GlcNAc)6 in McIlvaine’sbufferusingAMCaseand analyzedtheHPLC-separatedtheproductshavingabsorbanceat
210nm.We obtainedbuffer-derived peaks,whichare elutedat approximatepositionsof(GlcNAc)4∼6,whereasourimprovedFACE methoddetectedproper(GlcNAc) and(GlcNAc) signal
Trang 4(Supple-Fig 1.Detection of pH-dependent fluorophore-labeled bands at pH 5.0 ∼ 8.0 Chitinolytic activity of mouse AMCase was investigated by incubating the enzyme (0.8 mU) with colloidal chitin or (GlcNAc) 6 at pH 2.0 ∼ 8.0 in McIlvaine’s buffer, followed by FACE as described in Materials and methods Chitin oligomers are shown in the left margin
as standards Recombinant AMCase degraded colloidal chitin (A) or (GlcNAc) 6 (B) and generated primarily (GlcNAc) 2 fragments, and in lower amounts the GlcNAc monomer and (GlcNAc) 3 The quantification is shown right Fluorescence intensity estimated from the results in Fig 1 A and B Thin arrows, (GlcNAc) 2 fragments; thick arrows, slow mobile bands.
Fig 2.Comparison of the fluorescent labeling between Jackson’s and our pre-acidification methods A Efficiencies of the Jackson’s method at pH 2.0 (left) or 7.0 (center) using McIlvaine’s buffer The quantification is shown right B The efficiency of the fluorescent labeling chitin oligosaccharide with pre-acidification at pH 2.0 (left) or 7.0 (center) The quantification is shown right.
Trang 5Fig 3.Effect of different buffers on the labeling of the ANTS conjugate We tested for labeling of (GlcNAc)1∼6using McIlvaine’s buffer (A), phosphate or Tris-HCl buffer (B) and Good buffers (MES, PIPES, HEPES and MOPS) (C) The final concentration of each buffer was adjusted to 150 mM at pH 7.0 M, molecular weight markers of N-acetyl chitooligosaccharides; J, Jackson’s method; P, pre-acidification method.
Fig 4. Quantification of (GlcNAc) 2 using standard curve A To evaluate the
abil-ity for GlcNAc dimers quantification, we labeled (GlcNAc) 2 fragments at pH 7.0 B.
Quantification of GlcNAc oligomer was tested at up to 50 nmol of (GlcNAc) 2 There
was a linearity between (GlcNAc) 2 and fluorescence intensity in the whole range at
pH 7.0 The linearity was preserved when using pre-acidification.
mentaryFig.S1AandB).Thisisprobablycausedbythecitrateand
phosphateinMcIlvaine’sbufferhavingabsorbanceat210nm
Next,wechangedthebuffersystemusingGly-HCl(pH2.0)and Tris-HCl(pH7.0),respectively.Wefirstconfirmedthatthesebuffer systemsgavenosignificantbackgroundexceptforaminorpeak
atpH2.0ataroundexpected(GlcNAc)2signal(SupplementaryFig S2AandB)
Usingthesebuffersystems,weanalyzedthedegradedproducts
byHPLCandourimprovedFACEmethods.Theresultspresented
inFigs.5and6canbereplicatedbyHPLCatpH2.0andpH7.0, indicatingthat AMCaseproduces (GlcNAc)2 atstrongacidicand neutralconditions(Fig.7AandB).ForFACEanalysis,weuseda
10×dilutedsamplebecauseourimprovedmethodisvery sensi-tive(pmolamounts)whencomparedwiththeconventionalHPLC (Fig.7 andD).Basedontheseresults,weconcludethatAMCase generates(GlcNAc)2 underphysiologicalconditionsandthatour improvedFACEmethodisverysensitiveandeffectiveforthe detec-tionandquantificationofchitinoligomers
4 Discussion
AMCase has been shown to be predominantly produced in mousestomach(Bootetal.,2005;Ohnoetal.,2013;Ohnoetal.,
2012)and tohave maximal enzymatic activityatpH 2.0 (Boot
etal.,2001;Kashimuraetal.,2013).Previousstudieswerecarried outusingnaturalchitinsubstratesatacidicconditionsconcluding thatAMCaseproducesprimarily(GlcNAc)2atpH2.0(Bootetal., 2001;Kashimuraetal.,2015;Kashimuraetal.,2013).Ithasalso beenshownthatAMCasecanfunctionasadigestiveenzymeinthe mousegastrointestinaltract(Ohnoetal.,2016;Ohnoetal.,2013; Ohnoetal.,2012)
Trang 6Fig 5. Re-examination of the pH degradation of chitin substrates by AMCase using pre-acidification method We performed same experiments in Fig 1 A and B except for labeling by ANTS using our pre-acidification method.
Fig 6.Chitinolytic properties of AMCase under somatic tissue pH conditions A The enzymatic reactions using (GlcNAc) 6 were carried out in a volume of 50 L containing 0.1
mU E coli-expressed mouse AMCase in McIlvaine’s buffer B The pH dependence of chitinolytic activity of AMCase using 4NP-(GlcNAc) 2 as a substrate The values represent the percentage of the maximum activity at pH 2.0 C Comparison of the chitinolytic activity of recombinant AMCase analyzed by our improved FACE method ( Fig 6 A) and the colorimetric analysis using 4NP-(GlcNAc) 2 at 405 nm ( Fig 6 B) The values were represented as percentage of the maximum activity at pH 2.0.
OurpreviousgeneexpressionanalysisrevealedthatAMCase
mRNA is also expressed at high levels in salivary gland
and lung tissues (Ohno et al., 2012) Chitin oligomers
(N-acetyl-chitooligosaccharides)havevariousbiologicalactivitiesin
mammaliancells(Aametal.,2010;Khoushab&Yamabhai,2010)
Anti-cancerandanti-inflammatorypropertieshavebeenreported
forbothchitinandchitosanoligosaccharides(Azumaetal.,2015;
Masudaetal.,2014).MouseAMCasehasbeenshowntobeactive
atuptopH8.0,althoughitsactivitysubstantiallydecreaseswith higherpH(Bootetal.,2001;Kashimuraetal.,2013).We hypoth-esizedthatunderpathologicalconditions,AMCaseisupregulated andcangeneratespecificdegradationproductsdifferentfromthose
instomachconditionandthattheycanmodifythebioactivityofthe chitindegradationproducts.Therefore,wehavebeeninterestedin
Trang 7Fig 7.Detection of GlcNAc oligomers using HPLC and FACE methods (GlcNAc) 6 was degraded by AMCase at pH 2.0 or pH 7.0 as described in Materials and Methods The samples were analyzed by HPLC (A) or FACE (B) Numbers with arrows indicate the number of GlcNAc units in the corresponding peaks For FACE, we used a 10 x diluted sample C Analysis of HPLC-separated degradation products by HPLC D Quantification of data generated by HPLC and FACE.
theAMCase-mediateddegradationpatternofchitinsubstratesat
neutralconditions
Thewidely-usedJacksonmethodforoligosaccharidesdetection
(Jackson,1990)isusedforreducingendslabelingintheanalyzed
moleculesfollowedbyhighresolutionPAGE.Weusuallyconduct
chitindegradation reactionusing McIlvaine’sbuffer, which is a
citrate/phosphatebuffersystemallowingustosetthepHovera
broadrange.However,wefoundtwodrawbacksofthismethodfor
chitinoligosaccharideslabelingdirectlyusedinhighconcentration
ofnon-volatilebuffer.ByFACEanalysis,wenoticedthatAMCase
producednotonlythepredominantGlcNAcdimerbutalsocertain
numberoffragmentswithslowermobilityatpH>5.0.Wefound
thattheseadditionalfragments(herecalled“by-products”)were
generatedatpH5.0∼8.0notduringthedigestionbyAMCasebut
duringtheoligomerslabeling(Fig.1).Importantly,weobserved
reducedlabelingathigherpHvalueswhencompared topH2.0
(Fig.2A)
To overcome these problems, we developed an improved
methodforfluorescentlabelingenablingustoefficientlylabelthe
reducingendsoftheGlcNAcoligomersgeneratedduringthe
enzy-maticreactionsperformedat pH2.0∼8.0 Weachievedthis by
acidificationofthesamplebyconcentratedaceticacidjustbefore
thelabelingstepwiththefluorophore.Importantly,during
label-ing,pHhastobeadjustedtopH<4.0.TheoriginalJacksonmethod,
however,issuitableforpH<4.0,adjustedbyadditionof
concen-tratedaceticacidtothedriedsample(Jackson,1990).Althoughwe
donotknowthechemicalstructureoftheby-products,our
pre-acidificationprocedurewasabletosuppressthesidereactionand
formsinglebandscorrespondingtotheGlcNAcoligomermarkers
(Fig.2B).Thismethodissimpleandcanbeappliedtovariousbuffers
commonlyusedforbiochemicalanalyses(Fig.3).Inaddition,the
fluorescenceefficiencyincreasedallowingbetterquantificationof
theGlcNAcoligomers.Ourpre-acidificationmethodpresentedin
thisreport[diagrammaticschemeofoverallourimprovedmethod
and the formation of ANTS-(GlcNAc)2 are described in
Supple-mentaryFigs.S3andS4]isessentiallyidenticalwiththemethods
reportedbyJackson(Jackson,1990)exceptforadditionof concen-tratedaceticacidbeforefluorescentlabelingreaction
IntheoriginalJacksonmethod(Jackson,1990),thesaccharide samplestobelabeledwereinitiallydissolvedinwaterorelse dis-solvedin0.1Mammoniumacetate,thendriedundervacuumand re-dissolvedinwater.Becauseammoniumacetateisvolatile,the driedsamplewouldbebuffer-freebeforere-dissolvinginwater Then,forthelabelingreactionthedilutedaceticacidissufficient
tomaintaintheacidicenvironmentneededtocatalyzethe open-ingofthereducingendsugar.But,inourexperiments,allsamples weredissolvedinhighconcentrationofnon-volatilebufferbefore labeling.Thisiswhywefounditnecessarytoaddmoreaceticacid,
inordertoensureanacidicsolutionduringthelabelingreaction Ourimprovedmethodprovidesasimplesolutiontothe observa-tionofunknownsideproductsinthefluorescentlabelingofchitin oligosaccharidesatthereducingend,foruseinFACEanalysisof chitinoligosaccharides.Itcouldbecomewidelyadoptedbyother laboratories
Finally,were-examinedthepH-dependentdegradationofthe chitinsubstratesusingourpre-acidificationmethodforlabelingthe GlcNAcoligomers(Figs.5and6).Wenoticedthat,atpH5∼8,the productsgeneratedfromchitinsubstratesaremoreabundantthan thosefromthesyntheticchromogenicsubstrateof4NP-(GlcNAc)2 (Fig.6)(Kashimuraetal.,2013).Thesedataindicatethatthe degra-dationabilityofAMCaseagainstcolloidalchitinissuperiortothe syntheticsubstratesatpH5∼8andthatAMCasecanworkunder somatictissuepHconditions.Family18chitinasesareproposedto utilizethesubstrate-assistedcatalyticmechanismwhiletheir cat-alyticdomainshavingTIM-barrelfold(TerwisschavanScheltinga
et al., 1995).The DXXDXDXE motif included in this domainis thoughttohaveacentralroleinsubstratebindingandcatalysis
inacidiccondition(Chouetal.,2006)withHis187ofAMCasebeing responsiblefortheacidicoptimum(Bussink,Vreede,Aerts,&Boot,
2008).Thisfoldingmechanismcouldexplainthemouse AMCase-mediated(GlcNAc)2productionatpH2.0.Themechanisticdetails
oftheAMCaseactivityatpH7.0remainstobedetermined.Taken
Trang 8anddegradechitinsubstratestoproducepredominantly(GlcNAc)2
WedidnotobtainanyindicationoflongerGlcNAcoligomers
productionunderphysiologicalconditions.Onecanspeculatethat
AMCase-mediatedlongerGlcNAcoligomersproductionmayoccur
underpathologicalconditions.Ontheotherhand,longoligomers
produced byinefficient chitin degradation, mightbe stimuli or
enhancersofcertainpathologies
5 Conclusions
MouseAMCase hasoptimalpHat pH2.0 for themaximum
activityandisactiveatuptopH8.Weperformedanextensive
analysisofchitindegradationbyAMCasenotonlyinstrongacidic,
but alsoweak acidic toneutral conditions.When we analyzed
chitindegradationproductsinweakacidictoneutralconditionsby
FACEestablishedoriginallyforoligosaccharidesanalysis,wefound
thattheby-productsinthefluoresceinatedreactionwereformed
bylabelingatpH>5andestablisheda pre-acidificationmethod
forchitinoligosaccharideanalysistosuppresstheseproducts
for-mations.Usingthisprocedure,wefoundthatAMCasegenerates
(GlcNAc)2and(GlcNAc)3atconditionsmimickingsomatictissue
pHconditionsaswellasatpH2.0
Acknowledgements
WearegratefultoDaisukeYamanaka,NaohitoOhno,Tadatomo
Kawai,ShinjiNagumo,YasutadaImamuraandYoshiakiFurukawa
for their suggestions and encouragement, to Kazuaki Okawa,
DaisukeMizutani,EriTabataforvaluablesuggestions.Thiswork
wassupportedbytheProjectResearchGrantfromtheResearch
Institute of Science and Technology, Kogakuin University, and
Grants-in-Aidfor Scientific Research (15J10960 and 16K07699)
fromtheMinistryofEducation,Culture,Sports,Science,and
Tech-nologyofJapan,andGrantfromtheScienceResearchPromotion
Fundof thePromotion and Mutual Aid Corporationfor Private
SchoolsofJapanandinpartbyagrantoftheStrategicResearch
FoundationGrant-aidedProjectforPrivateUniversities(S1411005)
fromtheMinistryofEducation,Culture,Sport,Scienceand
Technol-ogy,Japan.P.O.B.receivedsupportfromALSAssociationandMayo
ClinicCenterforRegenerativeMedicine
Appendix A Supplementary data
Supplementarydataassociatedwiththisarticlecanbefound,in
theonlineversion,athttp://dx.doi.org/10.1016/j.carbpol.2017.01
095
References
Aam, B B., Heggset, E B., Norberg, A L., Sorlie, M., Varum, K M., & Eijsink, V G.
(2010) Production of chitooligosaccharides and their potential applications in
medicine Marine Drugs, 8(5), 1482–1517.
Azuma, K., Osaki, T., Minami, S., & Okamoto, Y (2015) Anticancer and
anti-inflammatory properties of chitin and chitosan oligosaccharides Journal
of Functional Biomaterials, 6(1), 33–49.
Bierbaum, S., Nickel, R., Koch, A., Lau, S., Deichmann, K A., Wahn, U., et al (2005).
Polymorphisms and haplotypes of acid mammalian chitinase are associated
with bronchial asthma American Journal of Respiratory and Critical Care
Medicine, 172(12), 1505–1509.
Boot, R G., Renkema, G H., Strijland, A., van Zonneveld, A J., & Aerts, J M (1995).
Cloning of a cDNA encoding chitotriosidase, a human chitinase produced by
macrophages Journal of Biological Chemistry, 270(44), 26252–26256.
Boot, R G., Blommaart, E F., Swart, E., Ghauharali-van der Vlugt, K., Bijl, N., Moe, C.,
et al (2001) Identification of a novel acidic mammalian chitinase distinct from
chitotriosidase Journal of Biological Chemistry, 276(9), 6770–6778.
Boot, R G., Bussink, A P., Verhoek, M., de Boer, P A., Moorman, A F., & Aerts, J M.
(2005) Marked differences in tissue-specific expression of chitinases in mouse
Bucolo, C., Musumeci, M., Maltese, A., Drago, F., & Musumeci, S (2008) Effect of chitinase inhibitors on endotoxin-induced uveitis (EIU) in rabbits.
Pharmacological Research, 57(3), 247–252.
Bucolo, C., Musumeci, M., Musumeci, S., & Drago, F (2011) Acidic mammalian chitinase and the eye: Implications for ocular inflammatory diseases Frontiers
in Pharmacology, 2, 43.
Bueter, C L., Specht, C A., & Levitz, S M (2013) Innate sensing of chitin and chitosan PLoS Pathogens, 9(1), e1003080.
Bussink, A P., van Eijk, M., Renkema, G H., Aerts, J M., & Boot, R G (2006) The biology of the Gaucher cell: The cradle of human chitinases International Review of Cytology, 252, 71–128.
Bussink, A P., Vreede, J., Aerts, J M., & Boot, R G (2008) A single histidine residue modulates enzymatic activity in acidic mammalian chitinase FEBS Letters, 582(6), 931–935.
Chou, Y T., Yao, S., Czerwinski, R., Fleming, M., Krykbaev, R., Xuan, D., et al (2006).
Kinetic characterization of recombinant human acidic mammalian chitinase Biochemistry, 45(14), 4444–4454.
Cozzarini, E., Bellin, M., Norberto, L., Polese, L., Musumeci, S., Lanfranchi, G., et al (2009) CHIT1 and AMCase expression in human gastric mucosa: Correlation with inflammation and Helicobacter pylori infection European Journal of Gastroenterology and Hepatology, 21(10), 1119–1126.
Hamid, R., Khan, M A., Ahmad, M., Ahmad, M M., Abdin, M Z., Musarrat, J., et al (2013) Chitinases: An update Journal of Pharmacy & Bioallied Sciences, 5(1), 21–29.
Jackson, P (1990) The use of polyacrylamide-gel electrophoresis for the high-resolution separation of reducing saccharides labelled with the fluorophore 8-aminonaphthalene-1,3,6-trisulphonic acid Detection of picomolar quantities by an imaging system based on a cooled charge-coupled device Biochemical Journal, 270(3), 705–713.
Kashimura, A., Okawa, K., Ishikawa, K., Kida, Y., Iwabuchi, K., Matsushima, Y., et al (2013) Protein A-mouse acidic mammalian chitinase-V5-His expressed in periplasmic space of Escherichia coli possesses chitinase functions comparable
to CHO-expressed protein PLoS One, 8(11), e78669.
Kashimura, A., Kimura, M., Okawa, K., Suzuki, H., Ukita, A., Wakita, S., et al (2015).
Functional properties of the catalytic domain of mouse acidic mammalian chitinase expressed in Escherichia coli International Journal of Molecular Sciences, 16(2), 4028–4042.
Kazami, N., Sakaguchi, M., Mizutani, D., Masuda, T., Wakita, S., Oyama, F., et al (2015) A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid Carbohydrate Polymers, 132, 304–310.
Khoushab, F., & Yamabhai, M (2010) Chitin research revisited Marine Drugs, 8(7), 1988–2012.
Koch, B E., Stougaard, J., & Spaink, H P (2015) Keeping track of the growing number of biological functions of chitin and its interaction partners in biomedical research Glycobiology, 25(5), 469–482.
Laemmli, U K (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4 Nature, 227(5259), 680–685.
Lee, C G., Da Silva, C A., Dela Cruz, C S., Ahangari, F., Ma, B., Kang, M J., et al (2011) Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling and injury Annual Review of Physiology, 73, 479–501.
Masuda, S., Azuma, K., Kurozumi, S., Kiyose, M., Osaki, T., Tsuka, T., et al (2014).
Anti-tumor properties of orally administered glucosamine and N-acetyl-D-glucosamine oligomers in a mouse model Carbohydrate Polymers,
111, 783–787.
Musumeci, M., Aragona, P., Bellin, M., Maugeri, F., Rania, L., Bucolo, C., et al (2009).
Acidic mammalian chitinase in dry eye conditions Cornea, 28(6), 667–672.
Nookaew, I., Thorell, K., Worah, K., Wang, S., Hibberd, M L., Sjovall, H., et al (2013).
Transcriptome signatures in Helicobacter pylori-infected mucosa identifies acidic mammalian chitinase loss as a corpus atrophy marker BMC Medical Genomics, 6, 41.
Ohno, M., Tsuda, K., Sakaguchi, M., Sugahara, Y., & Oyama, F (2012) Chitinase mRNA levels by quantitative PCR using the single standard DNA: Acidic mammalian chitinase is a major transcript in the mouse stomach PLoS One, 7(11), e50381.
Ohno, M., Togashi, Y., Tsuda, K., Okawa, K., Kamaya, M., Sakaguchi, M., et al (2013).
Quantification of chitinase mRNA levels in human and mouse tissues by real-time PCR: Species-specific expression of acidic mammalian chitinase in stomach tissues PLoS One, 8(6), e67399.
Ohno, M., Kimura, M., Miyazaki, H., Okawa, K., Onuki, R., Nemoto, C., et al (2016).
Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system Scientific Reports, 6, 37756.
Okawa, K., Ohno, M., Kashimura, A., Kimura, M., Kobayashi, Y., Sakaguchi, M., et al (2016) Loss and gain of human acidic mammalian chitinase activity by nonsynonymous SNPs Molecular Biology and Evolution, 33, 3183–3193.
Reese, T A., Liang, H E., Tager, A M., Luster, A D., Van Rooijen, N., Voehringer, D.,
et al (2007) Chitin induces accumulation in tissue of innate immune cells associated with allergy Nature, 447(7140), 92–96.
Renkema, G H., Boot, R G., Muijsers, A O., Donker-Koopman, W E., & Aerts, J M (1995) Purification and characterization of human chitotriosidase, a novel member of the chitinase family of proteins Journal of Biological Chemistry, 270(5), 2198–2202.
Seibold, M A., Reese, T A., Choudhry, S., Salam, M T., Beckman, K., Eng, C., et al (2009) Differential enzymatic activity of common haplotypic versions of the human acidic mammalian chitinase protein Journal of Biological Chemistry, 284(29), 19650–19658.
Trang 9Sutherland, T E., Andersen, O A., Betou, M., Eggleston, I M., Maizels, R M., van
Aalten, D., et al (2011) Analyzing airway inflammation with chemical biology:
Dissection of acidic mammalian chitinase function with a selective drug-like
inhibitor Chemistry and Biology, 18(5), 569–579.
Terwisscha van Scheltinga, A C., Armand, S., Kalk, K H., Isogai, A., Henrissat, B., &
Dijkstra, B W (1995) Stereochemistry of chitin hydrolysis by a plant
chitinase/lysozyme and X-ray structure of a complex with allosamidin:
Evidence for substrate assisted catalysis Biochemistry, 34(48), 15619–15623.
Yang, C J., Liu, Y K., Liu, C L., Shen, C N., Kuo, M L., Su, C C., et al (2009) Inhibition
of acidic mammalian chitinase by RNA interference suppresses ovalbumin-sensitized allergic asthma Human Gene Therapy, 20(12), 1597–1606.
Zhu, Z., Zheng, T., Homer, R J., Kim, Y K., Chen, N Y., Cohn, L., et al (2004) Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation Science, 304(5677), 1678–1682.