A hybrid catalyst was prepared using cellulose nanofibrils and magnetite to degrade organic compounds. Cellulose nanofibrils were isolated by mechanical defibrillation producing a suspension used as a matrix for magnetite particles.
Trang 1jo u r n al h om ep a g e :w w w e l s e v i e r c o m / l o c a t e / c a r b p o l
Ana Carolina Cunha Arantesa, Crislaine das Grac¸ as Almeidaa,
Ligiane Carolina Leite Dauzackera, Maria Lucia Bianchia, Delilah F Woodb,∗,
Tina G Williamsb, William J Ortsb, Gustavo Henrique Denzin Tonolic
a Department of Chemistry, Federal University of Lavras, CP 3037 Lavras-MG, Brazil
b Bioproducts Research Unit, WRRC, ARS-USDA, 800 Buchanan St., Albany, CA 94710, USA
c Department of Forest Sciences, Federal University of Lavras, CP 3037 Lavras-MG, Brazil
Article history:
Received 17 November 2016
Received in revised form
27 December 2016
Accepted 4 January 2017
Available online 7 January 2017
Keywords:
Magnetite
Catalyst
Cellulose
Nanofibrils
Crystallite
a b s t r a c t
Ahybridcatalystwaspreparedusingcellulosenanofibrilsandmagnetitetodegradeorganiccompounds Cellulosenanofibrilswereisolatedbymechanicaldefibrillationproducingasuspensionusedasamatrix formagnetiteparticles.Thesolutionofnanofibrilsandmagnetitewasdriedandmilledresultingina catalystwitha1:1ratioofcelluloseandmagnetitethatwaschemicallyandphysicallycharacterized usinglight,scanningelectronandtransmissionelectronmicroscopies,specificsurfaceareaanalysis, vibratingsamplemagnetometry,thermogravimetricanalysis,Fouriertransforminfraredspectroscopy, X-raydiffraction,catalyticpotentialanddegradationkinetics.Resultsshowedgooddispersionoftheactive phase,magnetite,inthematofcellulosicnanofibrils.Leachingandre-usetestsshowedthatcatalytic activitywasnotlostoverseveralcycles.Thehybridmaterialproducedwastestedfordegradationof methylenebluedyeinFenton-likereactionsresultinginapotentialcatalystforuseindegradationof organiccompounds
PublishedbyElsevierLtd
1 Introduction
Cellulosehasbeenstudiedandappliedasaprecursorofnew
bio-engineeredmaterials(Oksmanetal.,2016;Rezaetal.,2015;Zhu
etal.,2015)andisorganizedatamacromolecularlevelintofibrils
consistingofglucoseunitsinalinearandcrystallinearrangement,
along with hemicelluloseand lignin (Fengel &Wegener, 1984;
Zugenmaier,2008).Cellulosefibersaremadeupofbasiccrystalline
building-blocksornanofibrilsthatcanformsuspensionsinwater
whenisolated(Chenetal.,2014)
Theisolationprocess,typicallybychemicalorphysical
meth-ods,canaffectthepropertiesoftheresultingcellulosenanofibrils
(Wang,Li,Yano,&Abe,2014).Mechanicaldefibrillationisaphysical
processwherecellulosefiberspassthroughamillthatreducestheir
∗ Corresponding author.
E-mail addresses: anacarolinacarantes@gmail.com
(A.C.C Arantes), crisalmeida@quimica.ufla.br (C.d.G Almeida),
ligiane.dauzacker@gmail.com (L.C.L Dauzacker), bianchi@dqi.ufla.br (M.L Bianchi),
de.wood@ars.usda.gov (D.F Wood), tina.williams@ars.usda.gov (T.G Williams),
bill.orts@ars.usda.gov (W.J Orts), gustavotonoli@dcf.ufla.br (G.H.D Tonoli).
dimensionsbyfriction.Atacertainsizerange,thenanofibrilsform
agel-likesuspension(Bufalinoetal.,2015;Fonsecaetal.,2016) Defibrillationisaphysicalmethodthatrequiresnochemicalsin theisolationofcellulosenanofibrils,thus,reducesprocessingsteps andpollution
Cellulosenanofibrilscanbeusedtoprepareamultitudeof use-ful commercialmaterials,suchasaerogels, xerogels,hydrogels, beadsandspecialtybiomaterials(includingmedicalgrafts)(Abe
&Yano,2011;Baetensetal.,2011;Chin,BintiRomainor,&Pang,
2014;Eichhornetal.,2010;Gerickeetal.,2013;Wan&Li,2015) Aerogelshavelowdensity,highstrengthandalargesurfacearea (Innerlohinger,Weber,&Kraft,2006)andareproducedby super-critical drying of cellulose nanofiber suspensions which allows themtomaintainastructuredgel(Heath&Thielemans,2010).Air dryingofnanofibersuspensionscausesthegelstructuretocollapse resultinginaxerogel(Baetensetal.,2011).Dependingonthefinal application,axerogelmayhavethesamebenefitsofanaerogel withoutthehighcostsofsupercriticaldrying
Aerogelsandxerogelsmadefromcellulosecanserveasfixed supportsforFeionsintheproductionofchemicalcatalysts(Small
&Johnston,2009).TheseFe-hybridizedaerogelscanbeexpected
http://dx.doi.org/10.1016/j.carbpol.2017.01.007
Trang 2102 A.C.C Arantes et al / Carbohydrate Polymers 163 (2017) 101–107
tobeused ina number of industrial applicationsas theyhave
superparamagneticproperties, remarkablemechanical strength,
arelightweight,flexible,highlyporousand havealargesurface
areathatprovideahugenumberofreactivesites(Liu,Yan,Tao,Yu,
&Liu,2012).Inadditiontobeingproducedfromreadilyrenewable
resources,suchaswheatstraw,anagriculturalresidue,aerogels
maybe preparedusing green chemical methods which further
extendstheirusefulnessandacceptabilityasagreenproduct(Wan
&Li,2015).Olssonandcoworkersusedhighlyflexibleandporous
hybridaerogelsastemplatestoconstructsolidandstiff
nanocom-positesbycompaction(Olssonetal.,2010).Feionsmaybeused
tocatalyzeFenton-likereactionsforthegenerationof hydroxyl
radicals usingstrong oxidizing agents, suchas H2O2, as a
pre-cursor.Hydroxylradicalshave highoxidation potentialandcan
degradeorganicmolecules,suchasdyesgeneratedintextile
efflu-ents(Nogueira,Trovó,DaSilva,Villa,&DeOliveira,2007)
Theuseofiron-basedcatalystsystemsisadvantageousbecause
iron is a naturally-occurring,abundant compound that is
non-toxic,environmentallysafeandreadilyrenewableandsustainable
Someformsofironoxidehavemagneticpropertiesfacilitatingthe
removalof reactantssothattheycan bereadilyreused(Luo&
Zhang,2009).Magnetite,adarkcoloredironoxide,withthe
molec-ularformulaFe3O4,providesmagneticpropertiestomaterialsand
suppliesFeionstocatalyzeFenton-likereactions
Theaimofthisstudywastoevaluatethecatalyticefficiencyofa
magneticcatalystproducedbyimpregnatingcellulosenanofibrils
withmagnetiteandappliedtothedegradationofmethyleneblue
dyeinaFenton-likereactiveprocess
2 Materials and methods
2.1 Productionandcharacterizationofthecellulosesuspension
The fibers of commercial eucalyptus kraft pulp (Jacareí/SP,
Brazil)wereimmersedindistilledwaterfor48hat1%(w/w)
con-centrationbeforedefibrillation.Cellulosenanofibrilswereobtained
bymechanicaldefibrillationofthefibercellwallusinga
Super-MasscolloiderMKCA6-3,(MasukoSangyoCo.,LTD,Japan),operated
at1500rpm,witha0.01mmopeningbetweendisksand
apply-ing35 passages throughthedefibrillator (Bufalinoetal., 2015;
Tonoli et al., 2016) The resulting nanofibril suspensions were
characterizedmorphologicallyusingaNikonEclipseE200(Japan)
compoundmicroscopebyrandomlyselecting10areasonaslidefor
imageanalysis.Glassslideswerepreparedwith0.05mLofsample
mountedinglycerin
Scanningelectron microscopy(SEM) was performedusing a
Hitachi S4700 field emission SEM (Hitachi High-Technologies,
Japan).Thefreeze-driedsampleswereadheredtoaluminum
spec-imenstubsusingdouble-sidedadhesive-coatedcarbontabs(Ted
Pella,Inc., Redding,CA) Thesamples werethensputter-coated
with gold-palladium in a Denton Desk II sputter coating unit
(Moorestown,NJ).SEMimageswerecapturedata resolutionof
2650×1920pixels
Transmissionelectronmicroscopy(TEM)wasusedtovisualize
thecellulosenanofibrilsbymixingthesuspended sampleswith
uranylacetatetomakethecellulose particleselectrondensein
ordertoprovidecontrastintheTEM.Adropofthenanofibril
sus-pensionwasplaced onto a400-meshcarbon-formvar grid(Ted
Pella,Inc.,Redding,CA)heldattheedgewithdouble-adhesivetape
Thegridswereallowedtoair-dryandthenwereobservedand
pho-tographedina FEITecnai12 TEM(FEICompany,Hillsboro, OR)
operatedat120kV.Theaveragediameterofthemicro/nanofibrils
wasdeterminedbydigitalimageanalyses(ImageJ1.48v,National
InstitutesofHealth,USA)onTEMmicrographs.Aminimumof100
measurementswerecollectedforanalyses
2.2 Productionandcharacterizationofthemagnetichybrids Thesynthesisofmagneticmaterialwasperformedusingthe methodologyadaptedfromSchwertmann&Cornell(2000).Fe2+
andFe3+salts(6.314gFeCl3 and2.343gFeCl2)weredissolvedin
200mLof anaqueoussuspensionof cellulosenanofibrilsunder nitrogen flow NH4OH wasadded until pH11 wasattained to precipitatebothmagnetiteandcellulosefromsolution.The pre-cipitatewaswashedwithwateruntilpH∼7,oven-driedat60◦C, andmilledinaballmill.Themassratioofcellulose:magnetitewas 1:1(cel:mag) Toobtaintheratio,theexperimentalsamplewas comparedtoasampleofpuremagnetite(magnetite)preparedby
asimilarmethod
SurfaceareasweredeterminedviaN2 adsorptionat −196◦C
in anAutosorb-1Quantachrome system(Quantachrome Instru-ments,BoyntonBeach,FL).Thesampleswerepreviouslydegassed
at 110◦C for 10h, and the specific area was calculated using the Brunauer-Emmett-Teller (BET) model Magnetic properties
of the materials were measured by vibrating sample magne-tometry(VSM)usinganADE/DMSModel 880Vibrating Sample Magnetometer(MicroSense,LLC,Lowell,MA).Thermogravimetric analysis(TGA)wasperformedusingaShimadzuDTG-60AHTGA (Shimadzu Corporation, Kyoto, Japan) Samples (approximately
10mg)wereheatedundersyntheticairatmosphereintherange
of25–800◦Cwithaheatingrateof10◦Cmin−1andagasflowrate
of30mLmin−1.Fouriertransforminfraredspectroscopy(FTIR)was performedusingaShimadzuspectrophotometerIRAffinitysystem, withKBrpelletscontaining1% sample,in thespectralrange of 400–4000cm−1,4cm−1resolutionwith32scans.X-raydiffraction (XRD)wasperformedusingaShimadzuXRD-6000equippedwith
agraphitecrystalasmonochromatortocollimateCu-K␣1radiation
at=1.5406Åwithastepof0.02◦s−1andanangularrange(2)of
4◦–70◦ 2.3 Catalytictests AssaysofthecatalyticdecompositionofH2O2bycel:magwere performed,understirring,using30mgofthecel:magcatalyst,5mL
ofwaterand2mLofH2O2.Thevolumeofoxygenproducedwas monitoredbydisplacementofwaterinacolumnover30min.A comparativereactionwasalsorunusing30mgofcatalyst,5mL
ofmethyleneblue(50ppm)and2mLofH2O2.Forleachingtests,
60mgofthecel:magcatalystwerestirredwith10mLofwaterfor
180min;then,decompositionofH2O2wasmeasuredusing5mLof thesupernatant.Forthedyetests,catalyticpropertieswereassayed viakineticdegradationofmethylenebluedyeusing10mgofthe cel:magcatalyst,9.9mLof50ppmmethylenebluesolutionand 0.1mLofH2O2.Reactionsweremonitoredbyspectrophotometryin UV–visat665nmat0,15,30,60,90,120and180min.Alltestswere performedusingeitherthecel:magorthemagnetitecatalytic for-mulations.Moreover,thedegradationkineticswerealsoperformed forpurecellulose
3 Results and discussion
3.1 Morphologyofthecellulosenanofibrils Onefeaturethatdeterminesthepresenceofnanofibrilsisthe formationofanincreasinglygel-likesuspensionwithsuccessive passagesthroughthedefibrillator(Nakagaito&Yano,2004).When thesolutioncontainingcellulosefiberspassesthroughthe defib-rillator,disintegrationofthecellwallsoccur,thusmodifyingthe dimensionsand surface structure ofthefibers Structural mod-ification results in viscosity changes due to the breaking and reformationofchemicalbonds.Thecrystallinityindexanddegree
Trang 3Fig 1. Optical microscopy images of cellulose pulp fibers before defibrillation (a) and cellulose nanofibrils obtained by mechanical defibrillation of cellulose fibers (b); transmission electron microscopy (TEM) micrograph showing the nanofibrils after defibrillation (c); accumulated diameter distribution of the nanofibrils after measurements using TEM micrographs (d).
of polymerization are also changed with consecutive passages
(Uetani&Yano,2011).Lightmicroscopyimages(Fig.1a,b)present
thecellulosefibersbeforeandafterpassagesthroughthe
defibril-lator(35cycles),andthesizechangesinthenanofibrilsmaybe
clearlyobserved.Fig.1cshowsatransmissionelectronmicrograph
(TEM)ofthenanofibrilsobtainedbymechanicaldefibrillationof
thestartingcellulosepulpfibers.Defibrillationdecreasesthe
aver-agefiberlengthsignificantlyandincreasestheswellingcapacity
byfracturingthefibrils,resultinginaconsiderableincreasein
sur-facearea(Tonoli,Fuenteetal.,2009;Tonolietal.,2016;Tonoli,
RodriguesFilhoetal.,2009).Highshearappliedtofibersduring
defibrillationefficientlydisintegratedfibersintosmallfragments
and,tosomeextent,separatedindividualnanofibrils.The
accumu-latednanofibrildiameterdistributionispresentedinFig.1d.The
averagediameterofnanofibrilswas50±41nm,withroughly55%
ofthenanofibrilsatadiameteroflessthan40nm
Thepresenceoffiberslargerthanthenanoscalecanbeobserved
inthesuspension(contentlargerthan100nminFig.1d),although
thisdidnotprecludeformationofcatalystssincethesuspensions
remainedstableandwell-dispersedwithnoseparationofthe
cel-lulosenanofibrils(Fig.2a).Theminimizationofstepsinthemilling
protocolwillreducetheproductioncostsofcatalysts,an
impor-tantadvantageinlarge-scaleproduction.Theproductionofcatalyst
withcellulosewithoutpassingthroughthedefibrillatorwasalso
testedasacontrolexperiment,butthesecellulosefiberstendedto
clusteranddidnotformastablesuspension(Fig.2b).Therefore,the
synthesisofcatalystswithoutdefibrillationproducedan
inhomo-geneoussolutionwheretheactivephasewasnotwelldispersed,
formingmagnetiteclusterswithlongfibersofcellulose
3.2 Propertiesofthehybridsmagneticmaterials
Ahomogeneousmagneticmaterialwasproduced(cel:mag)that couldbeclassifiedasaxerogelsinceitsslowoven-dryingwould resultinalossofmicroporosity.Thecel:magmaterialwasmilledto reducetheparticlesizeandtoincreasethesurfacearea,an impor-tantcharacteristicofacatalyst.Thefinalmassyieldforthesynthesis was94%resultinginamaterialwithamphiphilic(Fig.2c)and mag-netic(Fig.2d)properties.Bothpropertiesincreasetheapplication possibilitiesindifferentreactionmediaandfacilitatethereuseof thematerial
Magnetiteonitsowngenerallyformsclustersinaqueous solu-tionsleadingtoalossofactivityinFenton-likeprocessesbecause thesurfaceareaisreducedtherebyreducingaccesstoreactiveFe ions.Toimprovetheefficiencyofthecatalyst,themagnetitewas synthesizedinassociationwithcellulose nanofibrils.Nanofibrils maintainalargesurfaceareaandsincecellulosedoesnotdissolve
inwaterororganicsolvents,itwashypothesizedthatmagnetite dispersedin cellulosewouldforma stablesolution.Sucha dis-persedmatrixwithalargesurfaceareawouldincreaseaccessto catalyticsites,thuspromotinglongercatalyticlife
Toverify thehypothesis of anincreasednumber of reactive sites,specificsurfaceareaanalysesofthematerials(cel:magand magnetite)andtheisothermsofN2(g)adsorption-desorptionwere performed(Fig.3a).TheisothermspresentahysteresistypeIV typi-calofmesoporousmaterialsshownasporesizedistribution(Fig.3a, insert)withstrong adsorbent-adsorbateinteractions (Thommes
etal.,2015).Thespecificsurfaceareascalculatedare30m2g−1and
112m2g−1formagnetiteandcel:mag,respectively.Theincrease
insurfaceareademonstratestheadvantageofusingmagnetiteon cellulosenanofibrils
Trang 4104 A.C.C Arantes et al / Carbohydrate Polymers 163 (2017) 101–107
Fig 2.Cellulose fibers after (a) and before (b) mechanical defibrillation Note the uneven dispersion of fibers in (b) and the stable and well-dispersed suspension in (a) The amphiphilic property of the hybrid catalyst demonstrated when the catalyst remains in the interface of organic phase and aqueous mixture (c) magnetic property demonstrated when the hybrid catalyst is attracted by a magnet (d).
Fig 3.(a) N 2(g) adsorption-desorption isotherms (the insert shows the pore size distribution) and (b) hysteresis cycles (the insert shows the initial magnetization curve as a function of applied magnetic field) of the hybrid catalyst synthetized with cellulose nanofibrils and magnetite (Cel:Mag) and pure magnetite (Magnetite).
Themagneticproperties werestudiedby performinga VSM
analysisandFig.3 exhibitsthehysteresisloopofthematerials.The
hysteresisandcoercivityofsamplesarecharacteristicof
superpara-magneticmaterials.Thesaturationmagnetization ofcel:mag at
29.74emu/giscomparabletothatofpuremagnetiteat31.58emu/g
indicatingthatthecellulosematrixdoesn’taffectthe
superparam-agneticpropertyofthemagnetite
Interactionsand dispersionsof magnetite and cel:mag were
observed via SEM and image analysis (Fig 4) Pure magnetite
formsclusters(Fig.4a)thatdonotdisperseinaqueousmedia.The
cel:magalsoformsclusters;however,themagnetiteclustersare
distributedinawebofcellulosenanofibrils(Fig.4b).Thecel:mag
clustershaveanincreasedsurfaceareaoverthemagnetiteclusters
whichincreasestheaccesstocatalyticsitesinthecel:mag
mate-rial.Sincecelluloseiswaterinsoluble,thesystemremainsstable,
withmaterialswell-dispersedinthereactionmedium.Recoveryof
themagneticmaterialfromthestablematrixismuchfasterthan
fromtheunstablematrix(magnetitealone)thus,makingitmuch
easiertore-usethenanofibrilcatalystthanitistorecoverthepure
magnetite
TEMimagesalsoshowthedispersionofmagnetitewithinthe
webofcellulosenanofibrils(Fig.4c,d).Cellulosedoesstainslightly
withuranylacetate,thuscelluloseregionsarelesselectrondense
thanthemagnetiteregions,whichareelectrondenseduetotheir
metallicnature.Thus,inFigs.4cand4d,celluloseisrelatively
light-coloredwhilemagnetiteisrevealedasdarkspotsdispersedinthe
matrix
Thermogravimetricanalysis(TGA)revealssomemasslossat
about100◦C related tolossof adsorbedwater(Fig.5).The
dif-ferentialthermogravimetric(DTG)curveshowsthetemperature
atwhichthemaximumdegradationweightlossoccurs.Athigher
temperatures,themasslossesarerelatedtophasechanges,
mate-rial degradation and loss of structural water Above ∼300◦C
cellulosenanofibrilsrapidlylosemassdue totheirrapid degra-dationtoCO2andH2O,withstabilization(neartotaldegradation withapproximately98%ofmass loss)seenat∼530◦C (Fig.5a).
Formagnetite,asmallmasslossoccursataround200◦Crelated
toadsorbedwater.Afterthis,nomasslossisseen;however,an exothermiceventisobservedintheDTGcurve(Fig.5b)relatedto conversionofmagnetitetomaghemite.Magnetitecanalsoconvert directlytohematitebutthisconversiondoesnotappearintheDTG curve(CornellandSchwertmann,2003).Themaghemite(␥-Fe2O3) andhematite(Fe2O3)areironoxidessuchasmagnetite,butwith differentcompositionsandmoleculararrangements.Asexpected, forthe1:1cel:maghybridsproducedhere(Fig.5c),a50%mass lossrelatedtodegradationofcellulosenanofibrilswasconfirmed withachangeinDTGcurveataround∼300◦Ccorrespondingto
energyrelease.Theother50%ofthemassismagnetite,whichis notexpectedtodegradewithinthistemperaturerange
Fig 6a shows the FTIR spectra of the samples For cellu-losenanofibrils,bandsareobservedcorrespondingtoOHgroups
at around 3600 and 3200cm−1; stretching of the CH bond at
2900cm−1;deformationofprimaryandsecondaryOHgroupsat
1640cm−1and1400cm−1region;stretchedCOgroupat1100cm−1 andbandsrelatedtoalcoholgroupsbelow1000cm−1(Silverstein& Webster,1997).Formagnetite,thecharacteristicbandsarebelow
600cm−1anditispossibletoidentifyabandat590cm−1related
toFeOinteractions(Cornell&Schwertmann,2003).Forcel:mag, characteristicbandsrelatedtocellulosewereseen,andthebandof FeOthatisinterestingtocatalysis,showingthatFeisavailablein thematerial
Fig.6 showstheX-raydiffractogramswithsomecharacteristic andwell-definedpeaks,ataround18◦and22◦(Zugenmaier,2008) correspondingtocellulosenanofibrilsindicativeofthepresenceof
Trang 5Fig 4.Typical electron micrographs of a cluster of synthetized pure magnetite (a) and the hybrid catalyst (cel:mag) synthetized with cellulose nanofibrils and magnetite showing the magnetite dispersed into the web of the cellulose nanofibrils (b) viewed by scanning electron microscopy (SEM) The hybrid catalyst (cel:mag) synthetized with cellulose nanofibrils and magnetite showing the magnetite dispersed into the web of the cellulose nanofibrils (c, d) viewed by transmission electron microscopy (TEM).
Fig 5.Typical thermograms of thermogravimetric analysis (TGA) and differential thermogravimetric (DTG) curves of cellulose nanofibrils obtained with mechanical defibrillation (a); synthetized pure magnetite (b); and the hybrid catalyst (cel:mag) obtained with cellulose nanofibrils and magnetite (c).
crystallinephasesandagreeingwiththefindingsof
Vivekanand-hanformicrocrystallinecellulose.Well-definedpeaksareobserved
formagnetitealsoindicatingitscrystallinecharacter(shownwith
anenlargedscalesincetheintensityismuch lowerthanthatof
purecellulose)(Vivekanandhan,Christensen,Misra,&Mohanty,
2012)andconfirming theefficiencyof thesynthesis The
mag-netite diffractogram, according to the JCPDS data library (card
number88–315formagnetite)referstoanironoxidewithacubic
crystallinephase(Sasaki,1997).Forcel:mag,thediffractogramis
practicallyidenticaltopuremagnetite,withnearperfectoverlap,
indicatingthatmagnetiteiswell-dispersedwithinthematrix
mate-rial
3.3 Catalyticproperties
Catalyticpotentialofmaterialscouldbeverifiedbyperforminga
decompositionofH O becausethisreaction,inconsecutivesteps,
generatesfree radicals,highlyreactivespecies thatattack most organicmolecules(Munoz,dePedro,Casas,&Rodriguez,2015) Thereactionismonitoredbymeasuringtheformationofoxygen thatisproportionaltothedecompositionofperoxideaccordingthe reactionH2O2→H2O+½O2.Theresultsforcel:magandpure mag-netite(Fig.7)showthatbothmaterialsdecomposeH2O2whichis evidencedbytheincreaseinoxygenevolutionovertime.Magnetite generatesalargervolumeofoxygenthancel:magundersimilar conditionsperhapsduetothepresenceoftwicetheamountofFe
inpuremagnetitecomparedtocel:mag.Cel:magcontainsa 1:1 ratioofcelluloseandmagnetite
AFenton-likeprocessisacomplexreactionandtheexact mech-anismisdifficulttopredictinheterogeneoussystems.Moredetails aboutthepossibleFentondegradationmechanismswerereported elsewhere(He,Yang, Men,&Wang,2016; Munozet al.,2015) ThereisevidencethatFe2+andFe3+catalyzethegenerationoffree hydroxylradicalsthatdegrademostorganiccompounds(Heetal.,
Trang 6106 A.C.C Arantes et al / Carbohydrate Polymers 163 (2017) 101–107
0
20
40
60
80
100
120
500 1500
2500 3500
Wavenumber (cm-1)
Fourier transform infrared (FTIR) spectroscopy
Cellulose Magnetite Cel:Mag (a)
0 400 800 1200 1600 2000
0 2000 4000 6000 8000
Cell ulose
Magn etite
Cel:Mag
2Θ
X-ray Diffraction (XRD) Patterns (Intensity)
Cell ulose Magnetite Cel:Mag (b)
Fig 6.(a) Typical Fourier transform infrared (FTIR) spectra of cellulose nanofibrils obtained with mechanical defibrillation ( Cellulose), synthetized pure magnetite ( Magnetite), and the hybrid catalyst obtained with cellulose nanofibrils and magnetite ( Cel:Mag) and (b) X-ray diffraction (XRD) patterns of cellulose nanofibrils obtained with mechanical defibrillation ( Cellulose) using the scale on the left; and synthetized pure magnetite ( Magnetite) and the hybrid catalyst obtained with cellulose nanofibrils and magnetite ( Cel:Mag) using the scale on the right.
0
2
4
6
8
10
Time (min)
Oxygen Evolution Over Time Cel:Mag
Cel:Mag Leached Magnetite Magnetite Leached
Fig 7.Oxygen evolution over time in reactions of H 2 O 2 decomposition using the
hybrid catalyst obtained with cellulose nanofibrils and magnetite ( Cel:Mag),
pure magnetite ( Magnetite), the leached hybrid catalyst ( Cel:Mag
Leached) and leached pure magnetite ( Magnetite Leached) as catalysts.
2016;Munozetal.,2015;Nidheesh,Gandhimathi,&Ramesh,2013;
Pouran,Raman,&Daud,2014).Therefore,inordertomaintain
cat-alyticactivityandre-usethematerialformultiplecycles,Feions
shouldbeavailableonthesurfaceofthecatalystandshouldnot
leachoutwithtime.Leachingtests,usingthesupernatantofwater
andcatalysts(cel:magleachedandmagnetiteleached),were
per-formedtodetermineifFewaslostfromthecatalysttothereaction
medium,resultinginalossofcatalyticactivity.IfFeleaches,H2O2is
decomposedbyahomogeneouscatalysisusingthesupernatantof
acatalystsolution.Fig.7showstheresultsofH2O2decomposition usingtheleachedmaterialsandshowsthatnosignificantevolution
ofoxygenwasobserved,indicatingthatmagnetiteandcel:magare notlosingcatalyticactivity
Themaintenanceof catalyticactivitywasconfirmedover 10 consecutivecyclesof methylene blue decomposition (9.9mLat
50ppm,for180min)usingthesamecatalystsamplewith>95% dis-colorationforall10cycles(Fig.8a).Catalyticpotentialofcel:mag andmagnetitewasevaluatedbydegradationkineticsusing methy-leneblueastheorganiccompound(Fig.8b).Thedegradationwas monitoredbymeasuringthediscolorationofthesolution spectro-scopicallyat665nm(Dhar,Kumar, &Katiyar,2015).Methylene blueisadyeusedasamodelforde-activatingapollutantandthe effectivenessofthisdegradationreactionindicatesthatthecel:mag catalystcouldbeusedintreatmentofeffluentsthatgeneratelarge quantitiesoforganicwaste
In 180min, complete and 90% discoloration of methylene bluesolution wasobserved following exposureto cel:mag and magnetite, respectively, indicating degradation of the organic compound.Degradationkineticsissimilarforboth cel:magand magnetite.However,cel:mag containshalftheamountof mag-netiteaspuremagnetitesincehalfofthemassiscellulose;i.e.,a1:1 cel:maghas5mgofmagnetitecomparedto10mgforpure mag-netite.ThepositiveresultsseeninFig.8 arelikelyduetothefact thatFeionsweremoreavailableinthecel:maghybridthaninthe magnetite,leadingtosimilarreactionrateswiththehalfamount
ofmagnetite.Thedegradationkineticsperformedwithpure
cellu-Fig 8.Catalytic potential in consecutive cycles reusing the same amount of hybrid catalyst (cel:mag) obtained with cellulose nanofibrils and magnetite (a) and degradation kinetics using the hybrid catalyst ( Cel:Mag), pure magnetite ( Magnetite) and pure cellulose ( Cellulose) as catalysts (b) demonstrated in measures of
Trang 7necessaryforcatalysisandthatdiscolorationofthesolutionisnot
duetheabsorptionofdyebythecellulose
4 Conclusions
Arenewablehybridcatalyst wassuccessfully producedfrom
magnetiteandcellulosenanofibrils.Thematerialhaspotentialtobe
usedinFenton-likereactionstodegradeorganiccompound
pollu-tants.Feionspresentinmagnetitecatalyzedthegeneration,from
H2O2,ofhydroxylradicalsthat degradedmethylene-bluedye,a
compoundpresentintextileeffluents.Cellulosenanofibrilswere
producedbymechanicaldefibrillation,resultinginasuspension
ofnanofibrilswithanaveragediameterof50±41nm;55%ofthe
nanofibrilshaddiameters<40nm.Thesynthesisofthehybrid
cat-alyst,cel:mag,wasverifiedbyperformingSEM,TEM,surfacearea
measurements,VSM,TGA,FTIRandXRDanalysesandtheresults
showedgood dispersionofthemagnetiteoncellulosic surfaces
Leachingandre-usetestsofthecatalyticmaterialsshowedthat
theydidnotlosecatalyticactivityandcanbeusedformultiple
cycles Degradationkineticsof H2O2 and methylene blueshow
complete(100%)and90%discolorationwithin180minwiththe
cel:maghybridandmagnetite,respectively.Resultsshowedthat
the magnetite (active phase), when dispersed in the cellulosic
matrix,degradesmethylenebluedye,amodelorganicpollutant,
atthesameratewithlesscatalyst
Acknowledgments
Theauthorsthank:theNationalCouncilforScientificand
Tech-nologicalDevelopment(CNPq),CoordinationfortheImprovement
of Higher LevelPersonnel (CAPES) and The MinasGerais State
Research Foundation (FAPEMIG) for financial support;
Depart-mentsofChemistry andForestry Sciencesat FederalUniversity
of Lavras for their outstanding infrastructure support; USDA,
BioproductsfromAgriculturalFeedstocks,ProjectNumber:
2030-41000-058-00-D; Ron Weiss (Arkival Technology Corporation,
Nashua,NH)forcollectingthemagnetometrymeasurementson
thesamplesandforprovidinginformationforinterpretationofthe
data;andLuizCarlosA.Oliveiraforsurfaceareasanalysis
References
Abe, K., & Yano, H (2011) Formation of hydrogels from cellulose nanofibers.
Carbohydrate Polymers, 85(4), 733–737.
Baetens, R., Jelle, B P., & Gustavsen, A (2011) Aerogel insulation for building
applications: A state-of-the-art review Energy and Buildings, 43(4), 761–769.
Bufalino, L., de Sena Neto, A R., Tonoli, G H D., de Souza Fonseca, A., Costa, T G.,
Marconcini, J M., & Mendes, L M (2015) How the chemical nature of Brazilian
hardwoods affects nanofibrillation of cellulose fibers and film optical quality.
Cellulose, 22(6), 3657–3672.
Chen, W., Abe, K., Uetani, K., Yu, H., Liu, Y., & Yano, H (2014) Individual cotton
cellulose nanofibers: Pretreatment and fibrillation technique Cellulose, 21(3),
1517–1528.
Chin, S F., Binti Romainor, A N., & Pang, S C (2014) Fabrication of hydrophobic
and magnetic cellulose aerogel with high oil absorption capacity Materials
Letters, 115, 241–243.
Cornell, R M., & Schwertmann, U (2003) Introduction to the iron oxides In R M.
Cornell, & U Schwertmann (Eds.), The iron oxides: Structure, properties,
reactions, occurences and uses (2nd ed., pp 1–7) Weinheim, FRG: Wiley-VCH
Verlag GmbH & Co KGaA.
Dhar, P., Kumar, A., & Katiyar, V (2015) Fabrication of cellulose nanocrystal
supported stable Fe(0) nanoparticles: A sustainable catalyst for dye reduction,
organic conversion and chemo-magnetic propulsion Cellulose, 22(6),
3755–3771.
Eichhorn, S J., Dufresne, A., Aranguren, M., Marcovich, N E., Capadona, J R., Rowan,
S J., & Peijs, T (2010) Review: Current international research into cellulose
nanofibres and nanocomposites Journal of Materials Science, 45(1), 1–33.
Fengel, D., & Wegener, G (1984) Wood: Chemistry, ultrastructure, reactions Berlin:
Walter de Gruyter.
Fonseca, C S., da Silva, T F., Silva, M F., Oliveira, I R C., Mendes, R F., Hein, P R G.,
& Tonoli, G H D (2016) Eucalyptus cellulose micro/nanofibrils in extruded
Gericke, M., Trygg, J., & Fardim, P (2013) Functional cellulose beads: Preparation, characterization, and applications Chemical Reviews, 113(7), 4812–4836.
He, J., Yang, X., Men, B., & Wang, D (2016) Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review Journal of Environmental Sciences (China), 39, 97–109.
Heath, L., & Thielemans, W (2010) Cellulose nanowhisker aerogels Green Chemistry, 12(8), 1448–1453.
Innerlohinger, J., Weber, H K., & Kraft, G (2006) Aerocellulose: Aerogels and aerogel-like materials made from cellulose Macromolecular Symposia, 244, 126–135.
Liu, S., Yan, Q., Tao, D., Yu, T., & Liu, X (2012) Highly flexible magnetic composite aerogels prepared by using cellulose nanofibril networks as templates Carbohydrate Polymers, 89(2), 551–557.
Luo, X., & Zhang, L (2009) High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon Journal of Hazardous Materials, 171(1–3), 340–347.
Munoz, M., de Pedro, Z M., Casas, J A., & Rodriguez, J J (2015) Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation – A review Applied Catalysis B: Environmental, 176–177, 249–265 Nakagaito, A N., & Yano, H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites Applied Physics A: Materials Science and Processing, 78(4), 547–552.
Nidheesh, P V., Gandhimathi, R., & Ramesh, S T (2013) Degradation of dyes from aqueous solution by Fenton processes: A review Environmental Science and Pollution Research, 20(4), 2099–2132.
Nogueira, R F., Trovó, A G., Da Silva, M R A., Villa, R D., & De Oliveira, M C (2007) Fundaments and environmental applications of Fenton and photo-Fenton processes Quimica Nova, 30(2), 400–408.
Oksman, K., Aitomäki, Y., Mathew, A P., Siqueira, G., Zhou, Q., Butylina, S., & Hooshmand, S (2016) Review of the recent developments in cellulose nanocomposite processing Composites Part A: Applied Science and Manufacturing, 83, 2–18.
Olsson, R T., Azizi Samir, M A S., Salazar Alvarez, G., Belova, L., Strom, V., Berglund,
L A., & Gedde, U W (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates Nature Nanotechnology, 5(8), 584–588.
Pouran, S R., Raman, A A A., & Daud, W (2014) Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions Journal of Cleaner Production, 64, 24–35.
Reza, M T., Rottler, E., Tölle, R., Werner, M., Ramm, P., & Mumme, J (2015) Production, characterization and biogas application of magnetic hydrochar from cellulose Bioresource Technology, 186, 34–43.
Sasaki, S (1997) Radial distribution of electron density in magnetite, Fe3O4 Acta Crystallographica Section B: Structural Science, 53(5), 762–766.
Schwertmann, U., & Cornell, R M (2000) Iron oxides in the laboratory: Preparation and characterization (2nd ed.) Weinheim: Wiley-VCH Verlag GmBH Silverstein, R M., & Webster, F X (1997) Spectrometric identification of organic compounds (6th ed.) London: John Wiley & Sons.
Small, A C., & Johnston, J H (2009) Novel hybrid materials of magnetic nanoparticles and cellulose fibers Journal of Colloid and Interface Science, 331(1), 122–126.
Thommes, M., Kaneko, K., Neimark, A V., Olivier, J P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K S W (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) Pure and Applied Chemistry, 87(9-10), 1051–1069 Tonoli, G H D., Fuente, E., Monte, C., Savastano Jr, H., Lahr, F A R., & Blanco, A (2009) Effect of fibre morphology on flocculation of fibre-cement suspensions Cement and Concrete Research, 39(11), 1017–1022.
Tonoli, G H D., Rodrigues Filho, U P., Savastano Jr, H., Bras, J., Belgacem, M N., & Rocco Lahr, F A (2009) Cellulose modified fibres in cement based composites Composites Part A: Applied Science and Manufacturing, 40(12), 2046–2053 Tonoli, G H D., Holtman, K M., Glenn, G., Fonseca, A S., Wood, D., Williams, T., & Orts, W J (2016) Properties of cellulose micro/nanofibers obtained from eucalyptus pulp fiber treated with anaerobic digestate and high shear mixing Cellulose, 23, 1239–1256.
Uetani, K., & Yano, H (2011) Nanofibrillation of wood pulp using a high-speed blender Biomacromolecules, 12(2), 348–353.
Vivekanandhan, S., Christensen, L., Misra, M., & Mohanty, A K (2012) Green process for impregnation of silver nanoparticles into microcrystalline cellulose and their antimicrobial bionanocomposite films Journal of Biomaterials and Nanobiotechnology, 3, 371–376.
Wan, C., & Li, J (2015) Synthesis of well-dispersed magnetic CoFe2O4 nanoparticles in cellulose aerogels via a facile oxidative co-precipitation method Carbohydrate Polymers, 134, 144–150.
Wang, H., Li, D., Yano, H., & Abe, K (2014) Preparation of tough cellulose II nanofibers with high thermal stability from wood Cellulose, 21(3), 1505–1515 Zhu, W., Ma, W., Li, C., Pan, J., & Dai, X (2015) Well-designed multihollow magnetic imprinted microspheres based on cellulose nanocrystals (CNCs) stabilized Pickering double emulsion polymerization for selective adsorption
of bifenthrin Chemical Engineering Journal, 276, 249–260.
Zugenmaier, P (2008) Crystalline cellulose and derivatives (1st ed.) Berlin: Springer.