Sugarcane bagasse and straw are generated in large volumes as by-products of agro-industrial production. They are anemerging valuable resource for the generationofhemicellulose-basedmaterials and products, since they contain significant quantities of xylans (often twice as much as in hardwoods).
Trang 1jo u r n al h om ep a g e :w w w e l s e v i e r c o m / l o c a t e / c a r b p o l
a Pulp and Paper Laboratory, Department of Forestry Engineering, Federal University of Vic¸ osa, Av P H Rolfs, S/N, Campus, 36570-900 Vic¸ osa, Minas
Gerais, Brazil
b Department of Fibre and Polymer Technology, KTH, Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
c Division of Glycoscience, School of Biotechnology, KTH, Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
d CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
e Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
a r t i c l e i n f o
Article history:
Received 26 April 2016
Received in revised form 6 September 2016
Accepted 7 September 2016
Available online 9 September 2016
Keywords:
Acetylated xylan
Arabinoxylan
Sugarcane bagasse
Sugarcane straw
Linkage analysis
1 H NMR spectroscopy
a b s t r a c t
Sugarcanebagasseandstrawaregeneratedinlargevolumesasby-productsofagro-industrialproduction Theyareanemergingvaluableresourceforthegenerationofhemicellulose-basedmaterialsandproducts, sincetheycontainsignificantquantitiesofxylans(oftentwiceasmuchasinhardwoods).Heteroxylans (yieldsofca20%basedonxylosecontentinsugarcanebagasseandstraw)weresuccessfullyisolatedand purifiedusingmilddelignificationfollowedbydimethylsulfoxide(DMSO)extraction.Delignification withperaceticacid(PAA)wasmoreefficientthantraditionalsodiumchlorite(NaClO2)delignificationfor xylanextractionfrombothbiomasses,resultinginhigherextractionyieldsandpurity.Wehaveshown thattheheteroxylansisolatedfromsugarcanebagasseandstrawareacetylatedglucuronoarabinoxylans (GAX),withdistinctmolecularstructures.BagasseGAXhadaslightlylowerglycosylsubstitutionmolar ratioofAraftoXylpto(0.5:10)and(4-O-Me)GlpAtoXylp(0.1:10)thanGAXfromstraw(0.8:10and 0.1:10respectively),butahigherdegreeofacetylation(0.33and0.10,respectively).Ahigherfrequency
ofacetylgroupssubstitutionatposition␣-(1→3)(Xyl-3Ac)thanatposition␣-(1→2)(Xyl-2Ac)was confirmedforbothbagasseandstrawGAX,withaminorratioofdiacetylation(Xyl-2,3Ac).Thesizeand molecularweightdistributionsfortheacetylatedGAXextractedfromthesugarcanebagasseandstraw wereanalyzedusingmultiple-detectionsize-exclusionchromatography(SEC-DRI-MALLS).Light scatter-ingdataprovidedabsolutemolarmassvaluesforacetylatedGAXwithhigheraveragevaluesthandid standardcalibration.Moreover,thedatahighlighteddifferencesinthemolarmassdistributionsbetween thetwoisolationmethodsforbothtypesofsugarcaneGAX,whichcanbecorrelatedwiththedifferent Arafandacetylsubstitutionpatterns.Wehavedevelopedanempiricalmodelforthemolecularstructure
ofacetylatedGAXextractedfromsugarcanebagasseandstrawwithPAA/DMSOthroughtheintegration
ofresultsobtainedfromglycosidiclinkageanalysis,1HNMRspectroscopyandacetylquantification.This knowledgeofthestructureofxylansinsugarcanebagasseandstrawwillprovideabetterunderstanding
oftheisolation-structure-propertiesrelationshipofthesebiopolymersand,ultimately,createnew pos-sibilitiesfortheuseofsugarcanexylaninhigh-valueapplications,suchasbiochemicalsandbio-based materials
©2016ElsevierLtd.Allrightsreserved
∗ Corresponding authors at: Wallenberg Wood Science Center, Department of
Fibre and Polymer Technology, KTH, Royal Institute of Technology, SE-100 44
Stock-holm, Sweden.
E-mail addresses: franvila@kth.se (F Vilaplana), olena@kth.se (O Sevastyanova).
1 Introduction
A growing demandfor themore effective utilization of lig-nocellulosic biomass has led to greater interest in the use of agro-industrialresidues,includingsugarcanebagasseand sugar-canestraw(Bian,Peng,Xu,Sun,&Kennedy,2010;Canilhaetal.,
2012;Carvalhoetal.,2015;Pandey,Soccol,Nigam,&Soccol,2000; http://dx.doi.org/10.1016/j.carbpol.2016.09.022
0144-8617/© 2016 Elsevier Ltd All rights reserved.
Trang 2Sug-arcane,whichisasourceofbothsugar(sucrose)andethanol,is
oneofthemostimportantindustrialcropsinBrazil.Accordingto
theBrazilianSugarcaneAssociation(UNICA,2016),the2015/2016
harvestestimateforSouth-CentralBrazilwillresultinthe
produc-tionof618milliontonsofsugarcanebiomass.Sugarcanebagasse
(stalks)andstraw(tipsandleaves)eachrepresentapproximately
14%oftheplantandaregeneratedinlargeamountsasthemain
agriculturalwastefromthesugarcaneindustry(Conab,2014)
Typ-ically,bagasseisburnttoproducesteam,whilestrawisdepositedat
theharvestingsites.However,beinglignocellulosicresidues,there
isgreatpotentialfortheuseofsugarcanebagasseandstrawfor
theproductionofpulpandsecond-generationethanol,aswellas
fortheirconversionintobio-chemicalsand bio-basedmaterials
(Canilhaetal.,2012;Cardona,Quintero,&Paz,2010;Oliveiraetal.,
2013;Pandeyetal.,2000)
Sugarcanebagasseandstraw,similartootherannualand
peren-nialplants,containlargequantitiesofhemicelluloses–sometimes
upto50%oftheirchemical composition(Carvalhoetal.,2015)
Thishighrelativecontentofhemicelluloses,especiallyxylan,
con-stitutesanexcellentbasisfortheextractionandvalorizationofsuch
hemicellulosicfractions(Ebringerová&Heinze,2000;Ebringerová,
Hromádková,&Heinze,2005).Therehasbeenanincreasing
inter-estintheexploitationofxylanbiopolymersaspotentialresources
forthedevelopmentofnewmaterialsandproducts(Bosmansetal.,
2014;Ebringerová&Heinze,2000;Höije,Sternemalm,Heikkinen,
Tenkanen,&Gatenholm,2008;Littunen etal.,2015;Peng,Ren,
Zhong,&Sun,2011),whichisespeciallytrueforxylansthatare
readilyavailableasby-productsoftheforestandagriculture
indus-tries(Egüésetal.,2014;Svärdetal.,2015).However,thestructural
heterogeneityofxylansisastronglimitingfactor,astheydifferin
termsoftheirchemicalcompositionandstructuralpatternsamong
differentbiomasssources,andevenbetweendifferenttissuesand
developmentalstagesof thesame plant(Ebringerová&Heinze,
2000;Stephen,1983).Inordertogainabetterunderstandingofits
potentialapplication,agreaterknowledgeofxylanstructureand
theisolation-structure-propertiesrelationshipisneeded(Littunen
etal.,2015;Köhnke,Östlund,&Brelid,2011;Mikkelsen,Flanagan,
Wilson,Bacic,&Gidley,2015)
Typically, the backbone in xylan is formed by -(1→
4)-d-xylopyranosyl(Xylp) units, withpossible glycosyl substitutions
inpositionsC-2and/orC-3,andwithacertainnumberofacetyl
groups The main side groups in the xylan backbone are
l-arabinofuranose(Araf), d-glucopyranosyluronicacidunits (GA)
and4-O-methyld-glucuronicacidunits(4-O-MeGlcA).Other
sub-stitutions in xylan can also occur, but they are less abundant
(Ebringerováetal.,2005;Evtuguin,Tomás,Silva,&Neto,2003)
Glucuronoarabinoxylan(GAX)andarabinoxylan(AX)aretypicalfor
grasses,inwhichbranchesofarabinose,GA,4-O-MeGlcAandacetyl
groups(Ac)inthebackboneofxylosecanbeobserved(Ebringerová
&Heinze,2000;Ebringerováetal.,2005)
Themolecularstructure ofxylans in sugarcanebagasse and
strawisexpectedtobesomewhatdifferent,bothfromeachother
andfromthatinotherbiomasses.Ourpreviousworkshowedthat
theamountofxylanfoundinsugarcanebagasseandstrawisat
leasttwicethatfoundin hardwoods cultivatein tropicalareas,
althoughithadalowercontentofuronicacidunitsandacetyl
sub-stitutions(Alvesetal.,2010;Carvalhoetal.,2015).Thexylansin
sugarcanebagasseareconsideredpartiallyacetylated
l-arabino-(4-O-methylglucurono)-d-xylans,whereglucuronicandarabinose
units are linked at O-2 and O-3, respectively, of internal
-d-xylopyranosylunitsinthebackbone(Peng,Ren,Xu,Bian,Peng,&
Sun,2009;Shietal.,2012).However,littleinformationonthe
sub-stitutionpatternsofacetylgroupsinsugarcanebagasseandstraw
xylansiscurrentlyavailable,whichlimitstheirpotentialuseinthe
developmentofxylan-basedmaterialsandproducts
Fig 1.Working plan for delignification, xylan isolation and chemical and structural characterization of xylan.
Ouraimwastoinvestigatethedifferencesinthechemical struc-tureofnativeacetylatedxylansfromsugarcanebagasseandstraw
Wehaveisolatedintactacetylatedheteroxylansfromsugarcane bagasseandstrawbyextractingtheperaceticacid(PAA)orsodium chlorite(NaClO2)holocellulosesusingdimethylsulfoxide(DMSO) TheuseofDMSOresultedinpartialxylan extraction,but deliv-eredxylanfractionswithmolecularstructuresthatresembledthe structureofthenativexylan.Theisolatedxylanswerethoroughly characterized using glycosidic linkage analysis, Fourier trans-forminfraredspectrometry(FTIR),1Hnuclearmagneticresonance spectroscopy (1H NMR) and multiple-detection size-exclusion chromatography(SEC)(usingbothstandardanduniversal calibra-tion).Basedonthisinformation,empiricalstructuralformulasfor bothtypesofxylanareproposed.Suchknowledgeisrequiredfor
abetterunderstandingofthechemicalreactivityofthesexylan speciesduringchemicalprocessingandmodificationandforthe creationofnewpossibilitiesfortheuseofsugarcanexylan biopoly-mersinmaterialsandproducts
2 Experimental
2.1 Materials Therawmaterials,5-montholdsugarcane(cultivarRB867515) bagasse(stalksafterfragmentationandpressing)andstraw(leaves andtips),weresuppliedbytheCenterforSugarcane Experimenta-tion(Oratórios,MinasGeraisState,Brazil).Thesugarcanebagasse andstrawwereconvertedtosawdust(<35mesh)byusingaWiley millbenchmodel
Thechemicalsusedwereethanol96%(VWR,France),toluene 99.8%(SigmaAldrich,USA),ethylenediaminetetraceticacid(EDTA) 99%(SigmaAldrich,USA),peraceticacid(PAA)39%(SigmaAldrich, USA),sodiumhydroxide(NaOH)pellets analyticalgrade(Merck Milipore,Germany),acetone99.5%(VWR,France),aceticacid100% (VWR,France),sodiumacetate99%(Merck,USA),sodiumchlorite (NaClO2)80%(AlfaAesar,Germany),dimethylsulfoxide(DMSO) 99% (VWR, France), formic acid 98/100% (VWR, England) and methanolHPLCgrade(FisherChemicals,UK)
2.2 Isolationofacetylatedheteroxylan Theisolationprocedureforacetylatedheteroxylanisdepictedin Fig.1.Inbrief,sugarcanebagasseandstrawwereconvertedto
Trang 3preparedfromtheextractives-freesawdustbydelignificationwith
NaClO2orPAA.Heteroxylanwasextractedfromtheholocelluloses
byDMSO,precipitatedinethanol,centrifuged,purifiedanddried
Thexylansyieldswereca19–22%and3–4%(basedonxylose
con-tent)fromthose presentedinrawmaterialsforPAA/DMSOand
NaClO2/DMSO isolation procedures correspondently Acetylated
heteroxylanwasanalyzedusing monosaccharideand glycosidic
linkageanalyses,size-exclusionchromatography(SEC),1Hnuclear
magneticresonancespectroscopy(1HNMR)andFouriertransform
infraredspectrometry(FTIR)
2.2.1 Extractivesremoval
Biomass sawdust (<35mesh) was extracted with
ethanol/toluene1:2(v/v)for12hinaSoxhlexextractor(Shatalov,
Evtuguin,&Neto,1999;Sunetal.,2004).Extractives-freesawdust
wasair-driedandstoredinairtightplasticbagsatroom
tempera-turepriortouse.Themoistureoftheextractives-freesawdustwas
determinedaccordingtoTAPPIT264cm-07
2.2.2 Delignification
2.2.2.1 PAAdelignification PriortodelignificationwithPAA,the
extractives-freebagasseandstrawsawdustwastreatedwith0.2%
(w/v) EDTA at90◦C for 1h, withconstant stirring,in order to
remove the metal ions and prevent decomposition of the PAA
(Brienzo, Siqueira,& Milagres, 2009) Thedelignification ofthe
biomasseswasperformedwith10gofextractives-freesawdust
treatedwith500mLof 10%(v/v)PAA at pH3.5(adjusted with
sodiumhydroxidesolution),at85◦Cfor30min,withconstant
stir-ring.Afterthetreatment,thesolutionwascooledinanicebath
anddilutedtwicewithwater.Theholocellulosewascollectedona
porousglassfilterP2(porosity100),washedwith5Lofwarm
dis-tilledwaterand,soonthereafter,with50mLofacetone/ethanol1:1
(v/v)(Evtuguinetal.,2003).Theholocellulosewasdriedatroom
temperature(24◦C)andstoredinairtightcontainers
2.2.2.2 Sodiumchloritedelignification.10gofextractives-free
saw-dustwastreatedwith388mLofwater,15mLofaceticacid100%,
72mLofsodiumacetate30%(w/v)and55mLofsodiumchlorite
30%(w/v), at75◦C for 30min,withconstant stirring.Afterthe
treatment,theholocellulosewascollectedonapolystyrene
mem-brane(porosity60m),washedwith5Lof distilledwater and,
soonthereafter,with100mLofacetone(Magaton,Piló-Veloso,&
Colodette,2008).Theholocellulosewasdriedatroomtemperature
(24◦C)andstoredinairtightcontainers
2.2.3 Isolationofxylans
Asampleof6gofholocellulose(PAA-holocelluloseorNaClO2
-holocellulose)wastreatedwith130mLofDMSO,at24◦Cfor24h,
undernitrogenatmosphereandwithconstantstirring(Hägglund,
Lindberg,&McPherson,1956).Afterthetreatment,thesuspension
wasfilteredthroughapolystyrenemembrane(porosity60m)and
washedwith∼20mLofdistilledwater.Thesupernatantliquidwas
addedto600mLofethanolatpH3.5(adjustedwithformicacid)and
leftfor12hat4◦C(Magatonetal.,2008).Theprecipitated
hemi-celluloseswereisolatedbycentrifugation(10minat4500rpm)and
washed5timeswithmethanol(Evtuguinetal.,2003).Thexylans
weredriedinavacuumovenfor72hat30◦C
The total yield was estimated gravimetrically based onthe
amountofstartingmaterial(extractives-freebiomasses).Thexylan
yieldsafterDMSOisolationwerecalculatedtakinginto
consider-ationtheamountofxyloseintheextractives-freebiomassesand
thexylansamples,aswellasthetotalyield
2.3 Compositionalandstructuralcharacterization 2.3.1 Monosaccharidecompositionanalysis The monosaccharides composition was determined by acid hydrolysisfollowed bychromatographicanalysis.Total polysac-charide depolymerization of the sugarcane fractions, including glucosefromcrystallinecellulose,wasachievedbysulfuric hydrol-ysis.Samples(4mg)werekeptinaglasstubewith0.25mLof72% sulfuricacidfor3hatroomtemperature.Then,deionizedwater wasaddedtodilute thesolutiontoapprox.1,2-1,3molL−1 sul-furicacid,andthetubeswereincubatedat100◦Cfor3h.Uronic acidsinhydrolysatesweredeterminedcolorimetricallywith m-phenylphenolusingaknownprocedurepublishedbySelvendran, Verne, and Faulks (1989) The monosaccharide composition of theisolatedheteroxylanfractionscontainingmorelabile uronic acids(glucuronicandgalacturonicacid)wasdeterminedbyacidic methanolysis(Appeldoorn,Kabel,VanEylen,Gruppen,&Schols,
2010;Bertaud,Sundber,&Holmbom,2002).Freeze-driedsamples (1mg)wereincubatedwith1mLof2molL−1HClindrymethanol for5hat100◦C.Subsequently,thesampleswereneutralizedwith pyridine,driedunderastreamofair,andfurtherhydrolyzedwith
2molL−1trifluoroaceticacid(TFA)at121◦Cfor1h.Thesamples wereagaindriedunderastreamofairanddissolvedinH2O Thehydrolysed monosaccharidesby both sulfurichydrolysis andacidicmethanolysis,wereanalyzedusinghighperformance anionexchangechromatographywithpulsedamperometric detec-tion(HPAEC-PAD) usinganICS-3000system(Dionex)equipped withaCarboPacPA1column(4×250mm,Dionex).Inositolwas addedtoallsamplesasaninternalstandardpriortohydrolysis Allexperimentswereperformedintriplicate.Twodifferent gra-dientswereusedfortheseparationandquantificationofneutral (Fuc,Ara,Rha,Gal,Glc,Man,andXyl)andacidic(GalA,GlcA,and 4-O-MeGlcA)monosaccharides,asreportedinourpreviousstudy (McKeeetal.,2016).Quantificationof4-O-MeGlcAwasperformed usingtheanalyticalresponsefactorforGlcAwiththeappropriate correctionasreportedinChongetal.(2013)
2.3.2 Klasonlignin The Klason lignin content in theholocellulose samples was determined gravimetrically to be insoluble residue after acid hydrolysiswith72%sulfuricacid,accordingtotheTAPPI222om-02 standardmethod(TAPPI,2011)
2.3.3 Acetylcontentanddegreeofacetylation The acetyl content of the xylan samples was determined after alkaline hydrolysis with NaOH at 70◦C overnight using highperformanceliquidchromatography(HPLC)withUV detec-tion (Voragen, Schols, & Pilnik, 1986) The HPLC instrument (Dionex–Thermofisher,CA,USA)wasequippedwithaUVdetector (Rezex,210nm)anda ROA-Organicacidcolumn(300×7.8mm; Phenomenex,Torrance,CA,USA).Separationswereperformedat
aflowrateof0.5mLmin−1,using2.5mmolL−1H2SO4asamobile phaseat50◦C.Thedegreeofacetylation(DA)wasdeterminedfrom theacetylcontentinthexylansamplesaccordingtoEq.(1)
DA= 132×%acetyl
Macetyl×100
−
Macetyl−1
where:DAisthedegreeofacetylation,%acetylistheacetyl con-tentdeterminedbyanalysis,Macetylistheacetylmolecularweight (43gmol−1)and132gmol−1isthemolecularweightof anhydrox-ylopyranose(Xuetal.,2010)
2.3.4 Glycosidiclinkageanalysis Freeze-driedxylanfractions(1mg,threetechnicalreplicates) wereswelledinanhydrousDMSOfor16hat60◦Candmethylated
Trang 4com-pletemethylation(CiucanuandKerek,1984).Thesampleswere
thenhydrolyzedwith2molL−1TFAat121◦Cfor2h,reducedwith
sodiumborohydride (NaBH4) and acetylated withacetic
anhy-dride in pyridine (Albersheim, Nevins, English, & Karr, 1967)
Theobtainedpermethylatedalditolacetates(PMAAs)were
sepa-ratedandanalyzedusingagaschromatographer(HP-6890,Agilent
Technologies)coupledtoanelectron-impactmassspectrometer
(HP-5973,AgilentTechnologies) ona SP-2380 capillary column
(30m×0.25mm i.d.; Sigma–Aldrich) with a temperature range
increasingfrom160◦Cto210◦Catarateof1◦C/minusingHeas
car-riergas.Theretentiontimesandfragmentationmassspectrafrom
thePMAAswerecomparedwiththoseofthereference
polysaccha-rides(wheatarabinoxylan,Megazyme,Ireland)andwithavailable
data(Carpita&Shea,1989).Thequantificationwasbasedonthe
carbohydratecompositionandtherelativemolar-responsefactor
ofeachcompound(Carpita&Shea,1989),asdetectedbyGC–MS
2.3.5 Size-exclusionchromatography
Themolarmassdistributionsofthexylanextractsfromthe
sug-arcanebagasse andstraw wereanalyzedusing asize-exclusion
chromatographer (SECcurity 1260, Polymer Standard Services,
Mainz,Germany)coupledinseriestoamultiple-anglelaserlight
scattering detector (MALLS; BIC-MwA7000, Brookhaven
Instru-mentCorp.,NewYork)andarefractiveindexdetector(SECcurity
1260,PolymerStandardServices,Mainz,Germany).SECanalyses
wereperformedataflowrateof0.5mLmin−1usingdimethyl
sul-foxide(DMSO,HPLCgrade,Sigma-Aldrich,Sweden)with0.5%w/w
LiBr(ReagentPlus)asamobilephase,usingacolumnsetconsisting
ofaGRAMPreColumn,100and10000analyticalcolumns
(Poly-merStandardsServices,Mainz,Germany)thermostattedat60◦C
Priortothe analyses, thexylanswere dissolveddirectlyin the
SECeluentfor16hat60◦C.Standardcalibrationwasperformed
by theinjection of pullulanstandards of known molar masses
providedbyPolymerStandardsServices(PSS,Mainz, Germany)
TheSECelutionvolumeswerethenconvertedintohydrodynamic
volumes(Vh)usingtheMark-Houwinkequation,asreportedby
VilaplanaandGilbert(2010).TheMark-Houwinkparametersfor
pullulanin DMSO/LiBr (0.5wt%) are K=2.427×10-4dLg−1 and
a=0.6804(KramerandKilz,PSS,Mainz,privatecommunication)
Thedifferential refractive index increment (dn/dc)for pullulan
inDMSO/LiBr0.5%wasconsideredas0.0853mLg−1(Kramerand
Kilz,PSS,Mainz,privatecommunication).Datacollectionandlight
scatteringcalibrationwasperformedusingtheWinGPCsoftware
(PolymerStandardsServices,Mainz,Germany),withadn/dcvalue
of 0.0881mLg−1 (calculated for sugarcane xylan in DMSO/LiBr
0.5%;SupplementarymaterialFig.S3).TheSECweight
distribu-tion,w(logVh), and thesize dependenceof theweight-average
molecularweight, ¯MW(Vh),werecalculatedusingadditional
math-ematical procedures presented elsewhere (Vilaplana & Gilbert,
2010) The macromolecular size distributions are presented in
termsofhydrodynamicradius(Rh),withVh=4··R3
h.Four
dif-ferentxylanconcentrationsbetween1.0–4.0gL−1wereinjectedfor
eachsample,whichresultedinfourreplicatesforthecalculation
ofthenumber-average( ¯Mn)andweigh-averagemolarmass( ¯MW)
Themolarmassdistributionsandtheaveragemolarmassvalues
forthexylanextractsfromsugarcanebagassehavebeenvalidated
andcomparedwiththeinjectionofareferencearabinoxylan(AX)
fromwheatendosperm(Megazyme,Ireland)
2.3.6 1HNMRspectroscopy
1HNMRspectrawereregisteredonaBrukerAVANCE300
spec-trometeroperatingat300.13MHzat298K.Thexylanwasdissolved
inD2O(ca2%w/w)andthesodium
3-(trimethylsilyl)propionate-d (TMSP,ı0.00)wasusedasinternalstandard.Theacquisition
parametersfortheprotonspectrawereasfollows:12.2spulse width(90◦),18srelaxationdelay,and300scanswerecollected These conditions guarantee that quantitative information was obtainedfromtheNMRmeasurements
2.3.7 Fouriertransforminfraredspectrometry The Fourier transform infrared (FTIR) spectra (wavelength 4000–600cm−1)were recorded usinga Perkin-Elmer Spectrum
2000FTIRspectrometer(Waltham,MA,USA) equippedwithan attenuatedtotal reflectance(ATR)system(Spectac MKIIGolden GateCreecstoneRidge,GA,USA).Thespectrawereobtainedfrom drysamplesusing16scansataresolutionof4cm−1andat inter-valsof1cm−1atroomtemperature.Origin9.1softwarewasused forthespectraevaluation
3 Results and discussions
3.1 Yieldandchemicalcompositionofisolatedxylan
Inourpreviouswork,sugarcanebagasseandstrawwere chemi-callycharacterized(Carvalhoetal.,2015).Theresultsthereof,based
onthecompletemassbalance,aresetoutintheSupplementary materialFig.S1.Bagasseandstrawwereshowntocontain signif-icantquantitiesofhemicellulosesandpectins,expressedasother sugars(thesumofxylose,galactose,mannose,arabinose,uronic acids andacetyl groups) Thehighrelative content of hemicel-lulosesintheserawmaterialsconstitutes asoundbasis forthe extractionandvalorizationofsuchfractionsfromsugarcane
In thepresent work,delignificationmethods using PAA and NaClO2wereusedpriortotheextractionofxylanwithDMSO.Using thePAAdelignificationprocess,thelossofdrymatter(including lignin,ashand,toalesserextent,polysaccharides)fromthe ini-tialamountofextractives-freebiomasseswas24.8%and25.7%for bagasseandstraw,respectively.Thelossofdrymatterusingthe NaClO2 delignificationprocess was15.4% and27.7%for bagasse and straw, respectively The heteroxylans yield (based on the xylosecontentinsugarcanebagasseandstraw)wasca19–22%for PAA/DMSOisolationprocedure,whileonlyca3–4%ofxylanwas extractedfromNaClO2hollocellulose(Table1)
Inapreviousstudy,almost5timeshigherxylanyieldswere alsoobservedforeucalyptuswhenusingthePAA/DMSOextraction process,incomparisonwiththeNaClO2/DMSOprocess(Evtuguin
etal.,2003).Such resultwasexplainedbythehigherdegreeof delignificationwithperaceticacidandthesimultaneousbreaking
oflignin-xylanetherbonds
TheFTIRspectraobtainedforxylanextractedfrombagasseand strawweretypicalforxylans,asshowninFig.2:asharpbandat
1039cm−1,whichisduetotheC O,C CstretchingorC OH bend-ingin thesugarunits(Chaikumpollert,Methacanon, &Suchiva,
2004)andtheexpectedbandsbetween1175and1000cm−1(Sun
etal.,2004).The-glycosidiclinkagesbetweenthexyloseunits wereevidencedbythepresenceofasharpbandat897cm−1(Gupta, Madan,&Bansal,1987).Thebandat3350–3330cm−1corresponds
tothehydroxylstretchingvibrationsofxylans,aswellasthewater involved in the hydrogenbonding, and the bandat 2920cm−1 representsC Hstretchingvibrations(Sunetal.,2004).Theband
at1160cm−1indicatesthepresenceofarabinoseresidues(Egüés
etal.,2014).Thepresenceofacetylgroupsinthexylanwas con-firmedbytheabsorptionat1734cm−1,whichisduetotheC O stretching(Bian et al.,2010).The bandat 1241cm−1, which is alsoduetotheC Ostretching,andthebandat1370cm−1,which
isdue totheC CH3 stretching,werealsoconfirmed(Xuetal.,
2010).Theabsorptionat1628cm−1isattributedprincipallytothe waterabsorbedbyxylans(Kaˇcuráková,Belton,Wilson,Hirsch,& Ebringerová,1998).Theweakbandat1510cm−1,whichisdueto
Trang 5Table 1
Isolation yields for the hollocellulose, DMSO extracts and xylan (based on the xylose content in the sugarcane bagasse and straw).
Fig 2.FTIR spectra for xylan samples extracted from bagasse by PAA/DMSO
pro-cess (spectrum a), from bagasse by NaClO 2 /DMSO process from (spectrum b), from
straw by PAA/DMSO process (spectrum c) andfrom straw by NaClO 2 /DMSO process
(spectrumd).
thearomaticskeletalvibration,indicatesthepresenceofasmall
amountoflignininthexylansamples(Sunetal.,2004)Duringthe
isolationprocedures,theglycosidiclinkagescanbedisruptedand
thehydroxylgroupscanbeoxidized,resultingintheformationof
ketonecarbonylgroups,seenasbandsataround1720cm−1inFTIR
spectra(Magatonetal.,2008;Sun&Tomkinson,2002).Theabsence
ofsuchsignalsinthespectraweobservedinthepresentworkfor
xylansextractedfrombagasseandstrawrulesoutanyoxidation
reactionsduringthedelignificationandisolationprocedures
Theevolutionofthexylanisolationprocesswasmonitoredby
notingthemonosaccharidecompositionoftheextractives-freeraw
material,thecontentofhollocelluloses(afterdelignificationwith
bothPAA andNaClO2)andthecomposition oftheDMSOxylan
extracts(Fig.3).Ascanbeobserved,xyloseisthemain
compo-nentintheDMSOextractsforbothinvestigatedmaterials,which
evidencesthesuccessfulisolationofthexylanusingtheproposed
procedures.Theratiobetweenglucoseandxyloseisquitesimilar
fortheextractives-freebiomassesandbothtypesofholocelluloses
(delignifiedbyPAAorNaClO2).However,thecompositionofthe
DMSOextractsisolatedfromvarioustypesofholocellulosesisquite
different.ThetotalamountofuronicmoietiesinthePAA/DMSO
samplesweredeterminedcalorimetricallyinsugarshydrolysates
afterSaemanhydrolysis(Saeman,1945)andprovedtobefairly
similar(1.4%inbagasseand1.8%instraw).Thesugaranalysisof
thePAA/DMSOsamplesconfirmedthepresenceof a significant
amountofarabinoseand 4-O-methylglucuronicacid(MeGlcA),
inaddition tothexylose, inthebagasse and straw, whichwas
alsoseen in theFTIRspectra (Fig.2).Thus heteroxylans inthe
sugarcanebagasseandstrawweretypicalglucuronoarabinoxylans
(GAX).Glucose,galactoseandgalacturonicacidwerealsopresent
inthePAA/DMSOsamples,althoughinmuchsmalleramounts.This
canbeattributedtotheminorpresenceofmixed-linkage-glucans
andpectinpolysaccharidecomponents,whichisconfirmedbythe
resultsoftheglycosidiclinkageanalysis
The NaClO2/DMSO-extracted sampleshad lower xylose con-tentthanthoseobtainedafterthePAA/DMSOisolationprocedure ThecompositionoftheNaClO2/DMSO-extractedsamples,together withthelowyieldsobtained,suggestthatthisisolationprocess wasless efficient and less selectivetowards xylan Arelatively highcontentofglucose,andaconsiderableincreaseintheamount
ofgalactose,werefoundintheNaClO2/DMSO-extractedsamples Thisfurtherindicatesthattheisolationofnon-xylan hemicellu-loses,suchasmixed-linkage-glucans,andotherpecticmaterial occurredduringtheNaClO2/DMSOprocess.Mostlikely,the acces-sibilityofDMSOinthecellwallswasverylow,duetoinsufficient delignification,andamixtureofsuchpolysaccharideswasremoved onlyfromthefibersurface
3.2 Glycosidiclinkageanalysisinisolatedxylans
Inordertoinvestigatethesubstitutionpatternsoftheisolated xylanfractions,linkage(methylation)analysiswasperformedon the PAA/DMSOand NaClO2/DMSO extracts (Table2).From the results of linkage analysis, it can be deducedthat the general structureofthexylansfrombothbagasseandstrawconsistsofa linearbackboneof(1→4)-linked-d-xylopyranosylunits(Xylp), partially O-3 substituted with l-arabinofuranosyl (Araf) units andO-2substitutedessentiallywith4-O-methyl-d-glucuronosyl units (MeGlcpA) 4-O-methyl-d-glucuronic acid residues were previously detected in sugarcane bagasse and straw by acidic methanolysis(Carvalhoetal.,2015).Itisworthmentioningthat glycosidiclinkageanalysisisunabletoidentifytheXylpunits mod-ifiedbyacetylation,duetotheextremealkalineconditionsapplied duringthemethylationofthesamples.Therelativeratioof 3,4-Xylpversus2,4-Xylpresiduesinthelinkageanalysisevidencedthat thesubstitutionatO-3was3–5foldhigherthansubstitutionsat O-2in thexylan backbone,which as wellmatches therelative amountsofterminalAraf(t-Araf)andMeGlcA,respectively.Only tracesofdoublesubstituted2,3,4-Xylpresidueswerefoundinthe PAA andNaClO2 treatedxylans,in contrasttoreports onother grassxylans,suchascereals,wherethesedoublesubstitutionsare relativelyabundant(Heikkinenetal.,2013).TheamountsofGAX presentin thedifferentextractscanbecalculated directlyfrom therelativeabundanceofthelinkagesinvolvedinthestructure, i.e., t-Araf, t-Xylp, 4-Xylp, 2-Xylp, 2,4-Xylp 3,4-Xylp, and 2,3,4-Xylp These resultsconfirm once again thepurity of the xylan extractsobtainedafterthePAA/DMSOtreatment,comparedwith thoseobtainedaftertheNaClO2/DMSOprocedure.Indeed,when thetwoisolationtreatmentswerecompared,itwasevidentthatthe chlorite-extractedxylanscontainedasignificantamountofother contaminatingpolysaccharides,consistentwiththesugar compo-sitionresults.TheGAXcontentwasapproximately85–95%inthe PAA/DMSOextractedsamples,whereas 75–85%GAX puritywas obtainedusingtheNaClO2/DMSOprocedure Thepresenceof 5-Araf,2-Araf,3-Arafand2,5-Arafunits,aswellas3-Galpandother branchedGalpunits,pointedtothepresenceofarabinanand ara-binogalactan,mainlyintheNaClO2/DMSOextracts.Theextraction
ofmixed-linkage(1→3),(1→4)--glucaninboththestrawand bagassesamplesisevidencedbythepresenceof3-Glcpand4-Glcp Thesedifferencesinpurityaremorepronouncedinthestrawxylans thaninthebagassesamples
Trang 6Fig 3.Sugar composition of bagasse (A) and straw (B) for extractives-free biomasses, PAA-holocellulose, NaClO 2 -holocellulose and xylan isolated by PAA/DMSO and NaClO 2 /DMSO.
Table 2
Monosaccharide composition and glycosidic linkage analysis of the xylan extracted from sugarcane bagasse and straw.
Notes: 1 Relative abundance (%mol) of the different linkages corrected by the results of monosaccharide composition by acid methanolysis; 2 Monosaccharide composition as calculated by acid methanolysis; 3 Total GAX content calculated from the specific linkages (t-Xylp + 4-Xylp + 2-Xylp + 2 × 2,4-Xylp +2 × 3,4-Xylp + 3 × 2,3,4-Xylp); 4 Araf/Xylp ratio calculated based on the monosaccharide composition; 5 (4-O-Me)GlcpA/Xylp ratio calculated based on the monosaccharide composition; 6 t:bp ratio for GAX calculated based on the amount of terminal sugars (t-Araf and 4-O-MeGlcA) versus the relative amount of branching points (2,4-Xylp and 3,4-Xylp); 7 u:m(Xylp) ratio for GAX based on the ratio of unsubstituted Xylp units (4-Xylp) and mono-substituted Xylp units (2,4-Xylp and 3,4-Xylp) Standard deviation ( .); n.d: not determined.
Thelinkagepatternsobservedinthestrawandbagassexylans
werequitesimilar,withthestrawxylanhavingaslightlyhigher
degreeofArafbranching(Araf/Xylp)thanthebagasse xylan.To
thebestofourknowledge,thisisthefirsttimethatlinkage
anal-ysishas been performedon PAA-extracted sugarcanestraw or
bagasse.Previouslyreportedlinkageanalysisonalkali-extracted
xylanfromsugarcanebagassealsoshowedtheabsenceofdouble
substitutionsinthistypeofxylan,butindicateda2–3timesgreater
degreeofarabinosylbranchingatO-3(Banerjee,Pranovich,Dax,& Willfor,2014;Mellinger-Silvaetal.,2011).Thesedifferencesmight
berelatedeithertodeacetylationinalkalineconditions,whichmay haveenhanced theextractionof largerGAX populationswitha higherAraf/Xylpratio,ortothehighersolubilityofacetylatedxylan fractionsinDMSO,whichmayhaveresultedinasmallerdegree
ofarabinosylbranching.TheamountofMeGlcAsubstitutionsas
Trang 7sugarcanebagasseandstrawxylans
UsingthePAA/DMSOprocess,theformallydeterminedmolar
ratiobetween terminalresidues (t-Araf) andbranch units
(2,4-Xylp, 3,4-Xylp and 2,3,4-Xylp), hereinafter referred to as t:bp,
was 1.14for bagasse and 1.05 for straw, which indicates that
nounder-methylationoccurredduringtheanalysis.Ontheother
hand,theNaClO2/DMSOprocessrevealedlessconformityinthe
t:bpratioforbagasse(1.05)andstraw(0.80).Thislowerratioin
theNaClO2/DMSOxylansamplesmightindicateinsufficient
delig-nificationduringthechloriteprocess,which willunderestimate
theamountofterminalunitsnotreflectedinthelinkageanalysis
(Jeffries,1991)
3.3 Characterizationofthestructureofacetylatedxylanby1H
NMR
1HNMRanalysiswasusedtoconfirmtheintramolecular
struc-ture of xylan obtained by linkageanalysis and toidentify and
quantify the position of acetyl groups in the xylan backbone
The PAA/DMSOextracted xylans from bagasse and straw were
selected for this more detailed structural investigation due to
theirhigheryieldand higherpurity Theextractedxylanswere
completely(bagasse)or almostcompletely (straw)solubleD2O
usedforNMRmeasurements.The1HNMRspectraofxylan
sam-plesareshowninFig.4.Theassignmentsforprotonresonances
weredoneusingexistingdatabasesforglucuronoxylans(Cavagna,
Deger,&Puls,1984;Evtuguinetal.,2003;Hoffmann,Kamerling,&
Vliegenthart,1992;IzydorczykandBiliaderis,1992Magatonetal.,
2008;Marques,Gutiérres,delRío,&Evtuguin,2010;Sun,Cui,Gu,
&Zhang,2011)andarepresentedinTable3.The(1→4)-linked
-d-xylopyranosyl internal units of the backbone were clearly
identified.Theintegralofprotonsfromacetylgroups(CH3 CO-)
(␦H2.00–2.25)showedgoodbalancetoamountsofacetylsin
acety-latedxylopyranoseunitsidentifiedusingcharacteristicprotonsin
correspondingstructures.TheseacetylatedstructureswereXylp
unitsacetylatedatO-3(anomericprotonintegralat␦H4.54–4.62),
atO-2(anomericprotonandH-2integralsat␦H4.54–4.62)or
2,3-di-O-acetylated(H-3integralat␦H5.11–5.15).TheXylpunitsO-3
acetylatedandO-2substitutedbyMeGlcAresidueshavebeenalso
detected(H-3integralat␦H5.05–5.08).MostpartofterminalAraf
unitswere␣-(1→3)-linkedtomono-substitutedXylpunitsas
fol-lowedfromthecharacteristic anomericprotonresonanceat␦H
5.39(Izydorczyk&Biliaderis,1992).Thisfact,however,notexclude
completely the possibility for mono-substituted ␣-(1→2)-Araf
anddi-substitutedXylpunitswith␣-(1→3)and␣-(1→2)-linked
Arafunitsfoundpreviouslyinwheatarabinoxylan(Izydorczyk&
Biliaderis, 1992).However,theresultsof theglycosidic linkage
analysis(Table2)showedthatthesedi-substitutedwithArafXylp
unitsbranchesoccurredinaverylowfrequencyinxylanfromboth
bagasseandstraw
Thepresenceof␣-(1→2)-linkedMeGlcpAtoXylpunitswas
confirmedbythepresenceofanomericprotonsincorresponding
structuresat␦H5.28–5.29andverynarrowsignalatca␦H 3.45
assignedtoprotonsinmethoxylgroupsofMeGlcpAinheteroxylans
(Shatalovetal.,1999;Shietal.,2012)
3.4 Quantificationofcontentandpositionofacetylgroupsin
sugarcaneacetylatedheteroxylans
Thequantificationofthetotalnumberofreleasedacetylgroups
bysaponificationandsubsequentHPLCanalysis,togetherwiththe
assignmentofthepositionsoftheacetylgroupsby1HNMR,allows
forthefullcharacterizationoftheacetylcontent(in%),degreeof
acetylation(DAc)andacetylationpatternintheisolatedacetylated
arabinoxylans fromsugarcanebagasseand straw (Table4).The
acetylcontent inthePAA/DMSO-extracted xylansfrombagasse and straw accountsfor8.7% and 2.4%,respectively, whichis in agreementwiththeacetylcontentsinextractives-freebiomasses reportedinourpreviouswork(Carvalhoetal.,2015).Theacetyl contentinstrawissignificantlylowerthaninbagasse,which evi-dencesthedivergentacetylationpatternindifferentplanttissues, depending on their developmental stage and function (Gille & Pauly,2012).TheacetylcontentandDAcaremarkedlylowerfor thesamplesextractedaftertheNaClO2/DMSOprocess,whichagain indicatesthelowerefficiency,andlowerselectivitytowards acety-latedGAX,ofthisprocess
3.5 Averagemolecularweightandmolecularweightdistribution The size and molecular weight distributions for the xylans extracted from the sugarcane bagasse and straw were ana-lyzed using multiple-detection size-exclusion chromatography Themolarmass averagevaluesand sizedistributions, obtained
bybothstandardcalibration(usingpullulanasalinearcalibrant) andabsolutecalibration(bylightscattering),werecomparedfor
4replicatesatdifferentconcentrationsbetween1.0–4.0gL−1.The number-andweight-averagemolarmassesoftheextractedxylan samplesareshowninTable5.Thereproducibilityofthefour repli-catesisverygoodasdemonstratedbythelowstandarddeviation showninTable5,whichreinforcestheaccuracyoftheprocedure TheSECweightdistribution,w(logVh),andthesizedependence
oftheweight-averagemolecularweight ¯MW(Vh), presentedasa functionofthehydrodynamicradius(Rh),isshowninFig.5.The procedureemployedforthecalibrationofthehydrodynamicsize fromtheSEC,usingtheMark-Houwinkequation,ispresentedinthe SupplementarymaterialFig.S2,whiletherawSECchromatograms obtainedwithadifferentialrefractiveindexandlight scattering (at90◦)arepresentedintheSupplementarymaterialFig.S4.The procedurewasvalidatedforareferencewheatendosperm arabi-noxylan(AX),whichexhibitedsimilarmolarmassdistributionsand averagemolarmassvaluesasthosereportedbyprevious publica-tionsinaDMSO/LiBrsolventsystem(Pitkänenetal.,2009;Shelat, Vilaplana,Nicholson,&Gibert,2010).Themolecularsolubilityof thexylansamplesintheSECeluent(DMSO/LiBr)canbeverifiedby theabsenceofaggregationspikesinthelightscatteringsignalat90◦ (SupplementarymaterialFig.S3).Aggregationofarabinoxylanhas beenreportedinaqueousconditions(Pitkänenetal.,2009,2011); however,theuseofapolarorganicsolventsuchasDMSOwith lithiumsaltsashydrogen-bonddisruptors(such asLiBr)should contributetoanenhancedsolubilityandtheabsenceofaggregation phenomenaduringSECseparations,whichwouldbiasthemolar massdeterminations(Shelatetal.,2010;Vilaplana&Gilbert,2010) TheSECweightdistributions,w(logVh),forthedifferentsugarcane samplesexhibitmonomodalsizeprofiles.Thisconfirmsthe homo-geneousmacromolecularpopulationsinsuchextracts,whichare relatedmostlytoacetylatedGAXmacromolecules.Theamountof otherpolysaccharideimpurities(mainlymixed-linkage-glucans and arabinogalactans,asreportedbyglycosidiclinkageanalysis
inTable2)shouldnotinfluencethemolarmassdistributionsand averagemolarmassvalues
Theaveragemolarmassvaluesfortheextractedxylansamples that wereobtained usingstandard and light scattering calibra-tionshowinterestingandmarkeddifferences.Theaveragemolar massvaluesforthesugarcanebagasseandstrawxylansthatwere obtainedusingastandardcalibrationareintherangeof26–40kDa, whicharequitesimilartothevaluespreviouslyobtainedfor sug-arcane bagasse xylans(Sunet al., 2004; Peng etal., 2009)and forstrawxylansfromothergrasses(e.g.,wheatstraw)(Persson, Ren,Joelsson,&Jönsson,2009).However,thelightscatteringdata providedmolarmassvaluesforthesugarcanebagasseandstraw thatarelargerthanthose obtainedfromastandard calibration,
Trang 8Fig 4.1 H NMR spectra of acetylated xylan from bagasse and straw extracted by PAA/DMSO process Designation for the structural fragments is presented in Table 3 *solvent impurities.
Table 3
1 H NMR chemical shifts for structural units of acetylated xylan from bagasse and straw obtained by PAA/DMSO process.
n.d Not detected or non-existent The designations used were as follows: Xyl (isol.) is non-acetylated Xylp in the backbone isolated from other acetylated Xylp units; Xyl (Xyl-Ac) denotes non-acetylated Xylp linked with neighboring acetylated Xylp; Xyl-3Ac corresponds with 3-O-acetylated Xylp; Xyl-2Ac is 2-O-acetylated Xylp; Xyl-2,3Ac denotes 2,3-di-O-acetylated Xylp; Xyl-3Ac-2GlcA, MeGlcA 2-O-linked and 3-O-acetylated Xylp; ␣Ara-3Xyl corresponds with terminal arabinose linked to O-3 of monosubstituted xylose; MeGlcA denotes terminal MeGlcA residue linked to O-2 in monosubstituted Xylp and also in 3-O-acetylated Xylp.
andalsoindicatedsomedifferencesbetweenthetwoextraction
methods.Standardcalibrationprovidesrelativemolarmasseswith
respecttoalinearmacromolecularstandard(inourcase,
pullu-lan).DuetothefactthatSECseparatesmacromoleculesbasedon
sizeorhydrodynamicvolume,Vh(Jonesetal.,2009)(which,for
SEC,is knowntobeproportional totheproductoftheintrinsic
viscosityandthenumber-averagemolarmass,inaccordancewith
theuniversalcalibrationtheoryestablishedbyHamielec,Ouano,
andNebenzahl(1978)andKostanski,Keller,andHamielec(2004),
andnotmolarmass,theaveragemolarmassvaluesand distribu-tionsobtainedbystandardcalibrationusingalinearpolymerwill underestimatetheabsolutevaluesforasubstituted/branched poly-mer.DuringSECelution,linearmacromoleculeswillhaveamore elongatedhydrodynamicconformationandwilleluteearlierthan macromoleculeswithasimilarmolarmassbutmoresubstituted andcompactstructure.Insuchcases,itisnecessarytouselight scat-teringdetectiontoobtainabsolutemolarmassdeterminations.The averagemolarmassvaluesobtainedbythelightscatteringmethod,
Trang 9Table 4
Acetyl content, degree of acetylation (D Ac ) and acetylation pattern in sugarcane xylans.
a The acetyl content was obtained by saponification and HPLC analysis of the released acetic acid.
b The degree of acetylation was calculated according to Xu et al (2010)
c The relative acetylation pattern (%) was calculated by the integration of the corresponding 1 H NMR peak areas for the Xyl-2Ac, Xyl-3Ac and Xyl-2,3Ac signals Standard deviation (); n.d: not determined.
Table 5
Number-average molar mass ( ¯ M n ), weight-average molar mass ( ¯ M W ) and dispersity (D) for the extracted xylan samples from sugarcane bagasse and straw using standard and light scattering calibration obtained from SEC-DRI-MALLS The average molar mass values are compared with a reference AX from wheat endosperm.
¯
Standard deviation ( .).
Fig 5. SEC weight distribution, w(log V h ), and the size dependence of the weight-average molecular weight, ¯ M W (V h ) as a function of the hydrodynamic radius (R h ) obtained after SEC-DRI-MALLS: (a) sugarcane bagasse GAX, (b) sugarcane straw GAX and (c) wheat endosperm AX.
therefore, providemore accurateinformation onthe molecular
propertiesofxylansisolatedfromsugarcanebagasseandstraw.The
SECweightdistributionsw(logVh)fortheGAXsamplesextracted
withPAA/DMSOfrom bagasse and strawshow similarprofiles,
beingthedistributionsforbagasseslightlyshiftedtowardslarger
macromolecularsizes.Thesizedependenceoftheabsolutemolar
massfromlightscattering ¯MW(Vh)shows similarlylargervalues
forbagassethanstraw,whichcorrespondswiththereportedSEC
distributions(Fig.5).Thisbehavioragreesaswellwiththelarger
averagemolarmassvaluesforthesugarcanebagassexylans
com-paredtostrawusingbothstandardandlightscatteringcalibration
(Table5).Thesesmalldifferencesinmolarmassbetweenbagasse
andstrawcanbeattributedtothelargerdegreeof
polymeriza-tioninthexylanbackbone,in agreementwiththeresultsfrom
linkageanalysis.Asimilartrendcanbeobservedusingboth
stan-dardcalibrationandlightscatteringdataforthesamplesisolated
byNaClO2/DMSOextraction,wherethesugarcanebagassexylans
exhibit higherabsolutemolar massvalues than xylansisolated
fromsugarcanestraw
However, largerdifferences in the averagemolar mass
val-ues and the size dependence of the weight-average molecular
weight ¯MW(Vh)canbeobservedforbothsugarcanebagasseand
strawwhencomparingthesamplesextractedbythePAA/DMSO methodwiththoseextractedbytheNaClO2/DMSOmethod.Both extraction procedures provide xylan samples with similar SEC weightdistributions,w(logVh),butslightlyshiftedtowardslarger macromolecularsizesforthecaseofPAA/DMSOextractedxylans However, the absolute molar masses are markedly higher for thexylansextractedbythePAA/DMSOmethodcomparedtothe NaClO2/DMSOmethod.Theselargermolarmassescanbeattributed
toa moreselectivedelignificationprocessbyPAA compared to NaClO2, which induces minimized xylan degradation The dif-ferent macromolecularconformations forxylansextracted from bothmethodscanbeattributedtothelargerGAXcontentinthe PAA/DMSO samples, the content of Araf substitutions and the larger degree of acetylation, which results in a more compact conformationincertainsizes(orhydrodynamicvolumes)ofsuch macromolecularpopulations.Fromtheseintegratedresults,itcan
beinferredthatacetylationandglycosyl(ArafandMeGlcA) sub-stitutionplayasignificantroleinfine-tuningthemacromolecular conformation ofthe acetylated GAXsextracted from sugarcane bagasseandstraw,which,inturn,affectstheelutionprofilesduring SECelutionandlightscatteringdetection
Trang 10Fig 6.Empirical structure of xylan isolated by the PAA/DMSO process from bagasse (A) and straw (B).
Table 6
Empirical structure of acetylated GAX from bagasse and straw isolated by PAA/DMSO process The relative abundance has been calculated integrating the results from glycosidic linkage analysis, acetylation content by HPLC and NMR.
3.6 Empiricalstructuresofacetylatedarabinoxylanfrombagasse
andstraw
Theresultsofthe glycosidiclinkageanalysis,1H NMR
spec-troscopyandacetylquantificationwereintegratedsoastodevelop,
forthefirsttime,anempiricalmodelforthemolecularstructureof
acetylatedglucuronoarabinoxylan(GAX)isolatedfromsugarcane
bagasseandstrawwithPAA/DMSO.Theseempiricalxylan
struc-tures,togetherwithnomenclatureoftheintramolecularmotifs,are
setoutinFig.6andTable6,respectively
The acetylated GAX from sugarcane bagasse and sugarcane
strawwere showntobestructurallydifferentfromeach other
AcetylatedGAXfromsugarcanebagassehasamolarratiobetween
thexyloseunits,O-2linkedglucuronicunitsandtheO-3linked
ter-minalarabinoseunitsof10:0.1:0.5.Bagassexylancontained0.33
acetylgroupsperxyloseunit,withca53%oftheacetylgroupsbeing
observedatpositionO-3ofthexylose,ca37%atpositionO-2and
10%atpositionsO-2andO-3ofthesamexyloseresidue
AcetylatedAGXfromsugarcanestraw,ontheotherhand,has
amolarratiobetweentheXylpunits,O-2linkedglucuronicunits
andtheO-3linkedterminalarabinoseunitsof10:0.1:0.8,which
indicatesthat strawxylanis slightlymore branchedthan xylan
frombagasse,withpreferenceforArafsubstitutioninposition
O-3.However,strawxylanhassignificantlyloweracetylation(0.10
acetylgroupsperxyloseunit),withca68%oftheacetylgroups
beingobservedatpositionO-3ofthexylose,21%atpositionO-2of thexyloseandca11%atpositionsO-2andO-3ofthesamexylose residue
4 Conclusions
Two different extraction procedures (PAA/DMSO and NaClO2/DMSO) were compared for the isolation of acetylated AGXfromsugarcanebagasseandstraw.Ingeneral,thePAA/DMSO methodresulted in greater efficiencyand selectivity.This mild isolationmethodology,togetherwithdetailedstructuralanalyses, providesevidenceoftheintramolecularAraandacetylsubstitution patterninsugarcanexylans
Wesuccessfullydevelopedanempiricalmodelforthemolecular structureofacetylatedglucuronorabinoxylan(GAX)extractedfrom sugarcanebagasseandstraw,integratingtheresultsfrom methy-lationglycosidiclinkageanalysis,H1NMRspectroscopyandacetyl quantification
WehavefoundthatGAXfromsugarcanebagassediffers struc-turallyfromthatofsugarcanestraw.BagasseGAXhadaslightly lowerglycosylsubstitutionmolarratioofAraftoXylp(0.5:10)than xylanfromstraw(0.8:10),butahigherdegreeofacetylation(0.33 and0.10forbagasseand straw,respectively).Theacetylgroups wereattachedpredominantlytopositionsO-3(53%),O-2(37%)and O-2,3(10%)oftheXylpunitsinbagasseGAX,andtopositionsO-3