The thermophile Rhodothermus marinus produces extracellular polysaccharides (EPSs) that forms a distinct cellular capsule. Here, the first data on EPS production in strains DSM4252T and MAT493 are reported and compared.
Trang 1jo u r n al h om ep a g e :w w w e l s e v i e r c o m / l o c a t e / c a r b p o l
Roya R.R Sardaria,∗, Evelina Kulcinskajab,1, Emanuel Y.C Rona, Snædís Björnsdóttirc,
Ólafur H Fri ð jónssonc, Gu ð mundur Óli Hreggvi ð ssonc,d, Eva Nordberg Karlssona
a r t i c l e i n f o
Keywords:
Exopolysaccharide
EPS
Heteropolymer
a b s t r a c t
ThethermophileRhodothermusmarinusproducesextracellularpolysaccharides(EPSs)thatformsa dis-tinctcellularcapsule.Here,thefirstdataonEPSproductioninstrainsDSM4252TandMAT493arereported andcompared.Culturesofbothstrains,supplementedwitheitherglucose,sucrose,lactoseormaltose showedthattheEPSwereproducedbothintheexponentialandstationarygrowthphaseandthat productionintheexponentialphasewasboostedbymaltosesupplementation,whilestationaryphase productionwasboostedbylactose.Thelatterwashigher,resultingin8.8(DSM4252T)and13.7mgEPS/g celldryweight(MAT493)inculturesinmarinebrothsupplementedwith10g/Llactose.TheEPSswere heteropolymericwithanaveragemolecularweightof8×104Daanddifferentmonosaccharides, includ-ingarabinoseandxylose.FT-IRspectroscopyrevealedpresenceofhydroxyl,carboxyl,N-acetyl,amine, andsulfateestergroups,showingthatR.marinusproducesunusualsulfatedEPSwithhigharabinoseand xylosecontent
©2016TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense
(http://creativecommons.org/licenses/by/4.0/)
Extracellular polysaccharides (exopolysaccharides, EPSs) are
themajorpartofextracellularpolymericsubstancesproducedby
microorganisms(Jindal,Singh,&Khattar,2011).Theyexistintwo
mainforms;asacapsuleassociatedwiththecellsurfaceorsecreted
outofthecell,eithertothesurroundingsorremainlooselyattached
tothecellsurface(Tallon,Bressollier,&Urdaci,2003)
Exopolysac-charideshaveimportantecologicalandphysiologicalfunctionsand
playspecialrolesinprotectingthemicroorganismsthatproduce
them.EPSsarebelievedtoprotectcellsagainstantimicrobial
sub-stances,desiccation,bacteriophages,osmoticstress,andantibodies
(Mataetal.,2006;Tallonetal.,2003)
EPSscanbefoundashomopolysaccharidesor
heteropolysac-charides and can be decorated with other residues such as
phosphates, sulfates, N-acetyl-aminosugars, and acetyl groups
(Laws, Gu, & Marshall, 2001) The properties of the EPSs are
influencedbytheircompositionwhichisaffectedbynutrient avail-abilityaswellasbyotherfactorssuchastheirmolecularmassand thelocationoffunctionalgroups
Theunique andcomplex chemical structuresof EPSs,which arenatural polymerswithdifferentfunctional properties,make theminterestingforvariousindustrialapplicationsinfood, phar-maceutical, petroleum and other industries (Castellane, Lemos,
& deMacedo Lemos, 2014), for example by affecting the fluid-ity of active compounds Both prokaryotes (Gram-positive and Gram-negativebacteria)and eukaryotes(fungi,somealgea,and phytoplankton)areknowntoproduceEPSsandnewspeciesare currentlybeingtargetedinthesearchforEPSswithnovel proper-ties.Asaresultofthesescreeningefforts,marinebacteriaarenow widelyacceptedasthesourceofEPSswithuniquepropertiesthat canbeexploitedfornovelbiotechnologicalprocesses(Chi&Fang, 2005)
Rhodothermusmarinusisathermophilic,reddishcolored aer-obic,and Gram-negativebacteriumthat wasfirstisolated from shallowmarinehot springsin Iceland(Alfredsson,Kristjansson, Hjörleifsdotter,&Stetter,1988).Thebacteriumgrows heterotroph-ically and is known to produce highly thermostable enzymes (Nordberg Karlsson, Bartonek-Roxå, & Holst, 1998; Blücher, Nordberg Karlsson, & Holst, 2000) It is of interest as repre-http://dx.doi.org/10.1016/j.carbpol.2016.08.062
Trang 2sentingthedeepestlineagein thephylumBacteroidetes (Nolan,
Tindall, Pomrenke, Lapidus, & Copeland, 2009) The complete
genomesequence isavailableforthetypestrainandtoolshave
been developed for genetic manipulation of a second strain,
MAT493 (Bjornsdottir, Fridjonsson,Hreggvidsson,& Eggertsson,
2011; Bjornsdottir, Thorbjarnardottir, & Eggertsson, 2005) The
cellsofR.marinushavebeenshowntoformadistinctcapsulewhen
grownoncarbohydrate-richmedium(Alfredssonetal.,1988).To
ourknowledge,however,noinformationisavailableonthe
produc-tionofEPSsbyR.marinus,orontheirphysico-chemicalproperties
TheaimofthisstudywastheevaluationofEPSproductionbythe
R.marinustypestrain(DSM4252T)aswellasbyastrainthatis
amenabletoengineering(MAT493).Theworkinvolvedthe
exam-inationofthekineticsofEPSproductioninbatchculturesusing
shakeflasksundervariednutritionalconditions.Also,theisolation
andcharacterizationofnovelEPSfromthetwoR.marinusstrains
hasopenedpossibilitiesforapplyingEPSsfromR.marinusfor
indus-trialpurposes
2.1 Materials
AllmaterialsandreagentswerepurchasedfromSigma-Aldrich
unlessotherwisespecified
2.2 Bacterialstrains
TheR.marinusstrainsDSM4252TandMAT493obtainedfrom
theMatisculturecollection,wereusedinthepresentstudy
2.3 Cultureconditions
R.marinusDSM4252Twastakenfromthestockcultureand
inoc-ulatedinATCCmedium1599:ThermusEnhancedMedium(ATCC
medium1598)containingagarand1%NaCl.Theplatewas
incu-batedat65◦Cfor24h,afterwhichthecellsweretransferredfrom
theplateintoMarinebroth(Difco2216,USA)(10ml)ina50ml
falcontubeandincubatedinarotaryshakerincubatorat65◦Cand
200rpmfor24h
R.marinusMAT493wasinoculateddirectlyfromastockculture
intoMarinebroth(10ml)ina50mlfalcontubeandincubatedina
rotaryshakerincubatorat65◦Cand200rpmfor24h
Afterthefirstincubation,0.25ml(10%)oftheproducedcell
cul-turesofbothstrainswereseparatelyinoculatedintoMarinebroth
(2.5ml)in50mlfalcontubes,andweregrownfor8h.The
result-ingculturesweresubsequentlyusedasinoculumfortheshakeflask
cultivationswhereEPSproductionwasstudied
ThecellculturesusedforanalysisofEPSproductionweregrown
inmarinebroth(25mlin250mlbaffledshakeflasks)containingthe
sugarsglucose,maltose,lactose,andsucrose,respectively,as
addi-tionalcarbonsourceattheconcentrations1and10g/l.Thecells
wereinoculatedwith2.5ml(10%)oftheinoculumandgrownat
65◦Cand200rpmfor48hinashakingincubator(IKA,KS4000i
control).Samplesweretakenafter0,6,15,24,and48handwere
analysedfor residualcarbon sourceand total producedEPSs A
parallelcontrolexperiment wascarried outusingMarinebroth
withoutcarbonsourcesupplementation
2.4 Determinationofcellbiomass
Bacterialgrowthwasquantitativelydeterminedbymeasuring
celldryweight.Aftercentrifugation,cellswerewashed oncein
waterandthenresuspendedin2mlof0.05MEDTAsodiumsalt
solution(Horn etal.,2013).Themixturewasshakengentlyon
arockingtableat4◦Cfor4htoremove anycapsularEPS.After
this,cellswereharvested bycentrifugation,washedwithwater, transferredtoaluminumweighingpansanddriedinanovenset
at100◦C.Thecelldryweightwasmeasuredperiodicallyuntila constantweightwasreached
2.5 Isolationofexopolysaccharides StrainsDSM4252TandMAT493weregrownasdescribedin sec-tion2.3,andthecapsularEPS(in0.5mlsamples)wereseparatedas describedinsection2.4.Subsequently,thesamplestakenat differ-enttimesfromthecultivationswerecentrifugedat4000rpmfor
30minat4◦C (SigmaPK).TheEPSswereprecipitatedbyadding thethreefold volumeof ethanol (99.5%) tothecell free super-natants.Aftermixingand storingovernightat4◦C,precipitates wereharvested bycentrifugationat4000rpmfor30minat4◦C (Sigma3–16PK)andputinafumehoodtoevaporatethe remain-ingethanol.TheprecipitatesthenweredissolvedinmilliQwater andlyophilized(Labconcofreezedrysystem)toobtainthecrude EPSs
2.6 Purificationandexopolysaccharidefractionation ThepurityandsizefractionsofthecrudeEPSwasexaminedby sizeexclusionchromatographyusingacolumnofHiPrepSephacryl S-200HR(16mm×600mm)(HiPrep,GEhealthcarelifesciences) Eachcrude EPSwasdissolvedin milliQwater (10g/l) andafter filtration(13mm syringe filterw/0.2m PTFE membrane) was loadedonthe SephacrylS-200 column and eluted withmilliQ waterattheflowrateof0.3ml/min.Theflowratewascontrolled
byaFPLCpumpingsystem(PharmaciaLKB,Pump-500)and frac-tionsweredetectedusingrefractive-indexmonitoring(ERC-7510, ERMAINC)andcollectedevery10minusingafractioncollector (LKBBromma,2212HELIRAC)
2.7 Determinationofmolecularweight FordeterminationofmolecularweightoftheEPSfractions, stan-darddextrans(1.27,5,12, 50,and80kDa)(Sigma)werepassed through a Sephacryl S-200 column (16mm×600mm) and the retentiontimeofeachdextranwasobtainedfromthe chromato-graphicdata Theretention times ofthe dextranswere plotted againstthelogarithmsoftheirrespectivemolecularweights.The molecularweightsof theproducedEPSs werethendetermined usingtheirretentiontime
2.8 Monosaccharideanalysis TheanalysisofEPSsmonosaccharidecomposition,producedat differenttimesduringcultivation,andafterfractionationbysize exclusionchromatography(Section2.6)wasdoneaccordingthe hydrolysismethoddescribedbySluiter,Hames,Ruiz,andScarlata (2008)withmodifications
Briefly, sulfuric acid (72%) was added to the isolated EPSs and water was added after 30min The samples were heated
at 100◦C for 3h and neutralized after hydrolysis with 0.1M Ba(OH)2·H2O.Aftercentrifugation,themonosaccharidecontentof theEPSsinthesupernatantswasanalysedbyHighPerformance Anion-ExchangeChromatography(HPAEC)(ThermoFisher Scien-tific, Waltham, USA) using a Dionex CarboPacPA-20 analytical columnwhichwascoupledtoaDionexCarboPacPA-20guard col-umn.ThesugarswereseparatedusingNaOH(0.75mM)asamobile phasewiththeflowrateof0.5ml/minandthecolumnwas regen-eratedwith200mMNaOHfor4minwiththesameflowrateatthe endofeachcycle.DetectionwasperformedwithanED40 electro-chemicaldetector
Trang 32.9 Analysisoffunctionalgroups
Fourier transformed infrared (FT-IR) spectroscopy was used
todeterminethefunctionalgroupsofthepurifiedEPSs.Infrared
spectra of the purified EPSs fractions were recorded in the
4000–400cm−1 regionusing a FT-IR system (Nicolet is5,
Ther-moFisherScientific)
Thedeterminationswereperformedintwoindependent
repli-catesandarereportedasthemeanwithstandarddeviations
3.1 GrowthandEPSproductionbythetwoR.marinusstrains
Thetwo R marinus strainsexhibiteda distinct differencein
growthbehaviour,withthestrainDSM4252Tformingaggregates
whilestrainMAT493didnot.Aggregationhasbeenobservedfor
manyR.marinusstrains(Bjornsdottiretal.,2005),anditisnow
knownthatbacteriapredominantlylivewithinsurface-attached
biofilmstructuresintheirnaturalhabitats(Davey&O’Toole,2000)
Biofilmsofferseveraladvantages,includingprotectionfrom
dif-ferent stress factors (Jagmann, Henke, &Philipp, 2015; Monier
&Lindow,2003).Bacteriawithinthesestructuresareencasedin
anextracellularmatrix composedofsecretedproteins,
polysac-charides,DNAandothersubstances.Thereasonfortheobserved
differenceinstrainsDSM4252TandMAT493isunknown,asisthe
mechanismofaggregationinR.marinus.Infact,thelackof
aggre-gationwasoneofthereasonsforchoosingstrainMAT493forthe
developmentofmethodsforgeneticmanipulation,whichrequire
theuseofsinglecolonies.Thedifferenceinaggregation,could
how-evernotbeshowntobeimmediatelyrelatedtotheEPSproduction
level(Tables1and2 whichforbothstrainswasinitiatedinthe
exponentialgrowthphase,butwithsomedifferences
Asinitialtrialswiththetypestrain(DSM4252T)showedthat
useofdisaccharidesascarbonsourcesupplementationgenerally
resultedinhigherEPSproductionthantheuseofmonosaccharides
(datanotshown),lactose,maltoseandsucrosewereselectedas
thesupplementationoftheMarinebrothandwasusedforboth
strains In addition,glucose waschosenas a respresentativeof
monosaccharides,andaparallelgrowthexperimentwithout
addi-tionaladdedsugarswasruntomonitorthebackgroundproduction
ofEPS(Figs.1–4).The addedcarbon sourcesweresupplied at
twoconcentrations,1g/L(Figs.1and3)and10g/L(Figs.2and4
respectively
Consumptionofthemonosaccharideglucose,andthe
disaccha-rideslactoseandmaltosewasverifiedforthetypestrain(Fig.1).In
allcases,productionofEPSwasinitiatedintheexponentialgrowth
phaseandwasshowntocontinueinthestationaryphase
Atthe1g/Lsupplementationlevel(Fig.1 theconsumptionrate
ofglucosewasdeterminedto0.13g/l,hduringthefirst6handafter
15hallglucosewasconsumedandthecellmasswas1.2±0.14g/l
After glucose depletion, the change in cell concentration was
marginalduring9h(reaching1.25±0.35g/lafter24h)butthen
increasedto1.68±0.16g/lat48h.Thelateincreaseincell
concen-trationmightbeduetoconsumptionofproducedEPS,asitwas
accompaniedbyadecreaseintheratioofproducedEPSpercelldry
weightinthesameperiodoftime(from7.4×10−5to6.2×10−5),
reachingafinalEPSconcentrationof1.04±0.15g/ml(at48h)
Theexperimentsusingmarinebrothwithoutaddedsugar,showed
aslightlylowermaximumcellmass(0.87±0.03g/l,after24h,in
principlemaintainedattheendofthecultivation,0.85±0.07g/l
after48h)andthefinalEPSconcentrationwas0.75±0.24g/ml
(withaproductionrateof0.014g/ml,hafter48h).Thisindicates
thatthe1g/Lglucose-additionhadasmallboostingeffectonboth
cellmassandEPSproduction
Additionoflactosedidnotstimulatecellgrowth,butresultedin increasedEPSproduction.Theconsumptionrateoflactoseduring thefirst6hwas0.03g/l,hbutincreasedto0.095g/l,h(6–15h)until alllactosewasconsumed(reachingacellmassof0.85±0.21g/lat
24h).After48hthecellmassfinallyreached0.95±0.35g/l,while productionofEPScontinued(0.057g/ml,hduringthewhole48h
ofcultivation),reachingafinalconcentrationof2.75±0.13g/ml Thecellmassobtainedinmaltosesupplementedcultivations resembledthatoftheglucosesupplementation(1.3±0.28g/lafter
15h,maintainedat24has1.4±0.14g/l,withanoverallmaltose consumptionrateof0.036g/l,hduring24h)(Fig.1).TheEPS con-centrationinthiscasereached3.3±0.73g/ml(after48h)which wasthehighestobservedat1g/Lsupplementationlevel,reachinga productionrateof0.22g/ml,hbetween6–15h,whichdecreased
to0.031g/ml,hinthestationaryphase(24–48h)
Sucrosesupplementedcultivationsweremoredifficultto inter-pret,asthissubstratewasnotconsumedbyR.marinusDSM4252T (sucroseconcentrationwas0.87±0.03g/lafter48hofcultivation) Themaximumcellconcentrationwas1.15±0.21g/landthe con-centrationofproducedEPSwas1.98±0.85g/mlafter48h.The aboveresultsshowedthatalthoughtheeffectsoncellmasswere rathersmall,productionofEPSincreaseduponadditionofthe dis-accharideslactose(stationaryphase)andmaltose(primarilyinthe exponentialbutalsointhestationaryphase)
Afurtherincreaseintheconcentrationofaddedsugarsto10g/l resultedinasignificantincreaseintheproductionofEPS(except forsucroseaddedcultures),whichwasmostpronouncedfor cul-tureswithaddedlactose(Fig.2,Table1).Nosignificantincrease
incellmassorgrowthratewasobserved,andcellgrowthceased after15hatallconditionstested,whichmightbetheconsequence
ofeitheroxygenlimitation(whichisdifficulttocontrolinshake flasks) ormore likely thedecrease in pHobserved (decreasing from7.2to5.03, 5.18,and4.84inglucose,lactose,andmaltose medium,respectively).At10g/Lsupplementationlevelitwasalso observedthatmaltosewasgraduallydegradedextracellularlyto glucose(from6hofcultivation)
StrainMAT493grewwithoutvisibleaggregationandconsumed glucose,lactose and maltose withsimilarrates (0.14,0.14, and 0.135g/l.h,respectively)inmediawith1g/lsupplementationof therespectivecarbonsource.In addition,strainMAT493could consumesucrose(whichwasnotthecaseforthetypestrain)with
aconsumptionrateof0.065g/l.h.Allsugarswereconsumedwithin
15hofcultivation
Inaccordancewiththetypestrain,productionofEPSstarted
at the beginning of the cultivation and the concentration
of EPS increased during the exponential growth phase After
24h, the concentration of EPSs was 0.282±0.03, 0.29±0.08, and 0.3±0.18g/ml with corresponding cell concentrations of 0.95±0.07,1±0.28,and0.8±0.00g/linthepresenceofglucose, maltoseandsucrose,respectively.Thisshowsthatinthisstrain, theproductionofEPSintheexponentialgrowthphaseinprinciple wasindependentofthecarbonsourcesupplementation
In the stationary phase, the levels of EPS were, however, affecteddifferentlyand dependedoncarbonsource supplemen-tation.Inthemediasupplementedwith1g/Lsucroseandlactose, respectively, the EPS concentrationincreased with time in the stationary phase, in line with the pattern observed in lactose supplemented cultivations of thetype strain.For example, the concentrationofproducedEPSinthemediumcontaininglactose was0.2±0.15g/mlafter24h(atacellmassof0.5±0.14g/l)and thenincreased0.46±0.05g/mlafter48h.Incultivations supple-mentedwithmaltose,theamountofEPSwasalmostconstantafter
24h,alsoinlinewiththegeneralproductionpatternobservedfor thetypestrain
In both glucose supplemented and unsupplemented cultiva-tions,therewasanapparentdecreaseincellmassinthestationary
Trang 4Table 1
Type of sugar Sugar concentration (g/l)
Table 2
Type of sugar Sugar concentration (g/l)
0 1 2 3 4
0 0.5 1 1.5 2
Time (h)
0 1 2 3 4
0
0.5
1
1.5
2
Time ( h)
0 1 2 3 4
0 0.5 1 1.5 2
Time (h)
0 1 2 3 4
0
0.5
1
1.5
2
Time (h)
0 1 2 3 4
0 0.5 1 1.5 2
Time (h)
phase.Intheglucosesupplementedmediumthiscoincidedwith
adecreaseinEPSconcentration,indicatingthattheremightbea
degradationoftheEPSbyactiveenzymesproducedbythecells,
whichmaybereleaseduponcelllysis(Mataetal.,2006).No
corre-spondingdecreasewashoweverobservedinthenonsupplemented
cultures(inthatcasethemonitoredEPSwas0.36±0.029g/mlat
24hand0.6±0.12g/mlat48h)
Anincreaseintheamountofaddedsugarto10g/lresultedin
ahigherrelativeproductionofEPSbystrainMAT493,forallthe
testedcarbonsourcesexceptsucrose(Fig.4;Table2 whichisin
accordancewiththepatternobtainedforDSM 4252T (Table1)
Degradationofthedisaccharidetoitsmonosaccharidecomponents
(after6hofcultivation)wasobservedformaltose(inaccordance
withthedataforthetypestrain)butalsoforsucrose(resultingin detectionofbothglucoseandfructose).TheincreaseinEPS produc-tioninlactoseandmaltosesupplementedcultureswasalsomore pronouncedforMAT493(Table2)thanforDSM4252T,whilecell massproductionwasapproximatelyinthesamerange.ThepH valueintheculturescontainingglucose,lactose,sucroseand mal-tosewasalsoshowntodecreasesignificantly(to4.65,4.39,4.47, and4.54,respectivelyafter48h)andmaybeareasonforstopped growthinshakeflasks
Inconclusion,therelativeefficiencyofEPSproductionwhichis theratioofthetotalEPStocelldryweightafter48h,wasevaluated andshowedthatmarinebrothsupplementedwith10g/llactose resultedinthehighestEPSproductionefficiencyinbothR.marinus
Trang 50 2 4 6 8 10 12
0 2 4 6 8 10 12 14
Time (h)
0 2 4 6 8 10 12
0 2 4 6 8 10 12 14
Time (h)
0 2 4 6 8 10 12
0 2 4 6 8 10 12 14
Time (h)
0 2 4 6 8 10 12
0 2 4 6 8 10 12 14
Time (h)
0 1 2 3 4
0
0.5
1
1.5
2
Time (h)
0 1 2 3 4
0 0.5 1 1.5 2
Time (h)
0 1 2 3 4
0 0.5 1 1.5 2
Time (h) 0
1 2 3 4
0
0.5
1
1.5
2
Time (h)
0 1 2 3 4
0 0.5 1 1.5 2
Time (h)
DSM4252T and MAT493followed bymarinebrothcontaining
10g/lmaltose(Tables1and2)UsingthesetwocarbonsourcesDSM
4252TwasshowntoproduceahigheramountofEPS/CDWatlower
concentrationofthecarbonsource,whilestrainMAT493appeared
tobemoredependentontheamountofcarbonsourcesuppliedfor
itsEPSproduction
3.2 Purificationandfractionationoftheexopolysaccharide
Thecrudeexopolysaccharidesobtainedfromthedifferent
sup-plementedculturesofR.marinusDSM4252T andMAT493were
fractionatedusingsizeexclusionchromatographyasdescribedin section2.6.Resultsshowedonemajorpeakforeachsample,which correspondedtoahighmolecularweightfraction.Theretention timeofthemajorpeakinthecrudeEPSsfromR.marinusDSM4252T
inthemediacontainingglucose,lactose,maltose,sucrose,andthe mediumwithoutadditionalsugarswas138.35,138.56,134.14,138, and135.41min,whichcorrespondedtomolecularweightsof73.8, 73.5,80.8,74.4,and78.6kDa,respectively.Also,theretentiontimes
ofthemajorpeakinthecrudeEPSsfromR.marinusMAT493in themediacontainingglucose,lactose,maltose, sucrose,and the medium without additionalsugars was130.07, 133.33, 131.49,
Trang 60 2 4 6 8 10 12
0 2 4 6 8 10 12 14
Time (h)
0 2 4 6 8 10 12
0 2 4 6 8 10 12 14
Time (h)
0 2 4 6 8 10 12
0 2 4 6 8 10 12 14
0 2 4 6 8 10 12
0 2 4 6 8 10 12 14
Time (h)
130.01,and128.81mincorrespondingtoamolecularweightof
88.1,82.2,85.5,88.2,and90.5kDa,respectively(Supplementary
data).Generally,theEPSsproducedbymarinebacteriaareoften
linearwithanaveragemolecularweightrangingfrom1×105to
3×105Da(Poli,Anzelmo,&Nicolaus,2010)whichiscompatible
withthemolecularweightofourproducedEPSs
3.3 CharacterizationofEPSmonosaccharidecontent
Afterhydrolysis,themonosaccharidecompositionofthe
puri-fiedEPSswasanalysedbyHPAEC-PADandtheanalysisshowedthat
alltheEPSswereheteropolysaccharides(Table3).Themain
com-ponentsofthepureEPSsfromR.marinusDSM4252Twerexylose,
arabinose,andglucose.Also,therewasamixtureofgalactosewith
glucosamine,andamixtureofmannosewithanaminosugarwhich
mightbeN-acetyl-glucosamineorN-acetyl-galactosamine(data
notshown).Quantificationofthosecomponentswashowevernot
possibleduetooverlappingpeaks
AnalysisofthepureEPSsfromMAT493allowedquantification
ofglucose,arabinose,xylose,andmannose(Table3).Alsointhis
strain,therewasasmallquantityofgalactoseandgalactosamine
InallEPSschromatogramstherewerethreeunidentifiedpeaks
whichneedstobefurtherinvestigatedsincetheidentificationof
themwiththeknownmonosaccharidestandardswasnot
success-ful(Supplementarydata)
ArabinoseandxylosearenotcommonsugarsinbacterialEPSs
(Ahmedetal.,2013;Nicholsetal.,2005).Thus,itcanbeclaimed
thattheEPSsproducedbytheR.marinusstrainsareunique
bac-terialEPSs.Interestingly,theratioofmonosaccharidesalsodiffers
betweenthetwostrains,indicatingthatEPSfromtherespective
strainsmaybeusefulfordifferentpurposes
3.4 Functionalgroupanalysis
InordertoinvestigatethefunctionalgroupsofthepurifiedEPSs
ofR.marinusDSM4252TandR.marinusMAT493FT-IRspectroscopy
wasused(Fig.5 andbandassignmentsweremadeaccordingto
literaturedata
TheIRspectraofthepurifiedEPSsofR.marinusDSM4252Tfrom allmediashowedthesamefunctionalgroups(Fig.5A)and exhib-itedabroadpeakataround3335cm−1 (range3600–3200cm−1) forO Hstretchingvibrationofthepolysaccharide(Kavita,Singh, Mishra, & Jha, 2014) and two weak C H stretching bands at
2924and 2855cm−1.The peakat 2359cm−1 wasattributedto
NH stretchingabsorptionbandandthepeak at1652cm−1 cor-respondedtoa C O stretchingvibration of theN-acetyl group
or protonated carboxylic acid (Ahluwalia & Goyal, 2005; Lillo, Cabello,Cespedes,Caro,&Perez,2014).Also,at1540cm−1apeak wasobservedwhichwasassignedtotheN Hdeformation vibra-tion of an amine group (Lillo et al., 2014) The peak at 1521 wasassignedtothesecondary amidgroup(Ahluwalia&Goyal, 2005).Anotherpeakat1418cm−1couldbeattributedtothe sym-metric stretching of the COO− group (Zhao, Yang, Yang, Jiang,
&Zhang,2007).Thepeakat1217cm−1correspondedtoan
O-S-O group that is an evidence of sulfate esters (Na et al., 2010) andthepeak at1103cm−1 mightbeassigned toO-acetylester linkeduronicacid(Kavitaetal.,2014).Thestrongabsorptionat
1039cm−1 in the range of 1200–1000cm−1 which is anomeric region, was attributed to C O C and C O groups in polysac-charidesandsuggested thatthemonosaccharideintheEPShas pyranosering(Vijayabaskar,Babinastarlin,Shankar,Sivakumar,& Anandapandian,2011).Theweakabsorptionat910and890cm−1 wasassignedtothecoexistanceof␣andßglycosidicbond(Lim
etal.,2005).Thepeakat818cm−1candeterminedtheexact posi-tionof6-sulfateofD-galactoseunit(C6-O-S)(Macieletal.,2008; Prado-Fernández,Rodrı´ıguez-Vázquez,Tojo,&Andrade,2003).The weakabsorption at845cm−1 demonstrated thepresence of 4-sulfateofD-galactose(C4-O-S)(Prado-Fernándezetal.,2003).The peakat770cm−1mightbeattributedtothe(S-F)stretching absorp-tionband(Pretsch,Fernández,Alvarez,2000)andtheabsorption peak at600cm−1 wasattributed tostretchingof alkyl-halides (Kavitaetal.,2014)
According to FT-IR band assignments of the purified EPSs
of R.marinus DSM 4252T from marine brothwith and without addedsugars,theEPScontainssulfatedpolysaccharidesof com-plexstructurecontaininguronicacids.Sulfatedexopolysaccharide derivativesareknowntohaveadvantageousproperties,in
Trang 7partic-Table 3
ularastherapeuticsubstances.Bestknownareheparin(extracted
fromporcineintestinalmucosaasanticoagulantand
antithrom-boticagentinthepreventionandtreatmentofvenousthrombosis)
andfucoidanfromBrownseaweed,whichhasbeenreportedhaving
arangeofbioactiveproperties.SulfatedEPSfrombacterialorigin are lesswellknown,but mauran, a highlypolyanionic sulfated
Trang 8beenreportedtohaveantioxidant,antihemolyticand
antithrom-bogenicactivities(Raveendranetal.,2013).Novelpolysaccharides
frombacterialoriginofferanalternativetothewell-knownanimal
varietiesandwillalsoexpandthepotentialrangeofactivitiesand
potencyofEPSderivedhealthpromotingagents
TheFT-IRspectraofthepurifiedEPSsofR.marinus493(Fig.5B)
wasinprinciplesimilartoFT-IRspectraofR.marinusDSM4252T
However,thepeakat910cm−1hadstrongabsorptionwhich
cor-respondedtoaß-glycosidicbondandthepeakat818cm−1was
absent
Inconclusion,bothR.marinusDSM4252TandR.marinusMAT
493producedexopolysaccharides.Differentnutritionalconditions
influencedtheproductionoftheEPSs.ThehighestEPSproduction
efficiencywashoweverforbothstrainsfoundinmarinebroth
sup-plementedbylactosefollowedbyamaltosesupplementedmarine
broth.MonosaccharideanalysisshowedthattheproducedEPSsare
heteropolysaccharidesmainlyconsistingofxyloseandarabinose
TheFT-IRspectrumof theEPSsshowedthepresenceofsulfate
andcarboxylgroupswhichdemonstratedthattheycontainuronic
acids.Italsorevealedthepresenceofaminosugarstogetherwith
acetylgroup.Theunusualfunctionalgroupsandmonosaccharide
compositionmakestheEPSofR.marinusinterestingforfurther
studies,motivatingmoredetailedanalysisofitschemicalstructure
andsuchstudiesareinprogress
Acknowledgment
The authors gratefully acknowledge the EU FP7 program
SEABIOTECHforfinancialsupport
Supplementarydataassociatedwiththisarticlecanbefound,in
theonlineversion,athttp://dx.doi.org/10.1016/j.carbpol.2016.08
062
References
from aqueous solution Engineering in Life Sciences, 5, 158–162.
Characterization of new exopolysaccharides produced by coculturing of L.
kefiranofaciens with yoghurt strains International Journal of Biological
Macromolecules, 59, 377–383.
Rhodothermus marinus, gen nov., sp nov., a thermophilic, halophilic bacterium
from submarine hot springs in Iceland Microbiology, 134, 299–306.
of a gene transfer system for Rhodothermus marinus Applied Microbiology and
Biotechnology, 66, 675–682.
Generation of targeted deletions in the genome of Rhodothermus marinus.
Applied and Environmental Microbiology, 77, 5505–5512.
production and some properties of a thermostable, ␣-galactosidase from
Rhodothermus marinus Biotechnology Letters, 22, 663–669.
the biotechnological potential of Rhizobium tropici strains for
exopolysaccharide production Carbohydrate Polymers, 111, 191–197.
Ocean University of China, 4, 67–74.
genetics Microbiology and Molecular Biology Reviews, 64, 847–867.
Spontaneous mutation reveals influence of exopolysaccharide on Lactobacillus johnsonii surface characteristics PUBLIC LIBRARY OF SCIENCE, 8, e59957.
against severe chemical stress by co-habiting cell aggregates formed by Pseudomonas aeruginosa Applied Microbiology and Biotechnology, 99, 8285–8294.
characterization of exopolysaccharides produced by the cyanobacterium Oscillatoria formosa World Journal of Microbiology and Biotechnology, 27, 2139–2146.
activity of extracellular polymeric substances from Oceanobacillus iheyensis Carbohydrate Polymers, 101, 29–35.
bacterial exopolysaccharides from lactic acid bacteria Biotechnology Advances,
19, 597–625.
of the exopolysaccharide produced by a submerged culture of entomopathogenic fungus Metarhizium anisopliae Boletín Latinoamericano Y Del Caribe De Plantas Medicinales Y Aromáticas, 13, 359–365.
Structural analysis and molecular characterization of exopolysaccharides produced by submerged mycelial culture of Collybia maculata TG-1.
Carbohydrate Polymers, 61, 296–303.
soluble sulfated polysaccharide from red seaweed Gracilaria birdiae.
Carbohydrate Polymers, 71, 559–565.
Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis Research in Microbiology, 157, 827–835.
bacterial cells promotes aggregate formation on leaf surfaces Proceedings of the National Academy of Sciences, 100, 15977–15982.
Purification, characterization and immunostimulating activity of water-soluble polysaccharide isolated from Capsosiphon fulvescens International
Immunopharmacology, 10, 364–370.
characterization of exopolysaccharides from antarctic marine bacteria Microbial Ecology, 49, 578–589.
genome sequence of Rhodothermus marinus type strain (R-10 T ) Standards in Genomic Sciences, 1, 283–290.
binding of a recombinant thermostable xylanase originating from Rhodothermus marinus FEMS Microbiology Letters, 168, 1–7.
extreme marine habitats: Production, characterization and biological activities Marine Drugs, 8, 1779–1802.
Quantitation of -, l- and -carrageenans by mid-infrared spectroscopy and PLS regression Analytica Chimica Acta, 480, 23–37.
estructural por métodos espectroscópicos Springer-Verlag Ibérica.
hemocompatibility of mauran Carbohydrate Polymers, 98, 108–115.
carbohydrates and lignin in Biomass Technical report NREL/TP-510-42618.
two exopolysaccharides produced by Lactobacillus plantarum EP56 Research in Microbiology, 154, 705–712.
Bacillus subtilis (MTCC 121) Advances in Biological Research, 5, 71–76.
of water-soluble polysaccharides from Opuntia monacantha cladodes in relation to their anti-glycated activities Food Chemistry, 105, 1480–1486.