1. Trang chủ
  2. » Giáo án - Bài giảng

Evaluation of the production of exopolysaccharides by two strains of the thermophilic bacterium Rhodothermus marinus

8 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Evaluation Of The Production Of Exopolysaccharides By Two Strains Of The Thermophilic Bacterium Rhodothermus marinus
Tác giả Roya R.R. Sardari, Evelina Kulcinskaja, Emanuel Y.C. Ron, Snổdớs Bjửrnsdúttir, ểlafur H. Friðjúnsson, Guðmundur ểli Hreggviðsson, Eva Nordberg Karlsson
Trường học Lund University
Chuyên ngành Biotechnology
Thể loại scientific article
Năm xuất bản 2016
Thành phố Lund
Định dạng
Số trang 8
Dung lượng 0,92 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

The thermophile Rhodothermus marinus produces extracellular polysaccharides (EPSs) that forms a distinct cellular capsule. Here, the first data on EPS production in strains DSM4252T and MAT493 are reported and compared.

Trang 1

jo u r n al h om ep a g e :w w w e l s e v i e r c o m / l o c a t e / c a r b p o l

Roya R.R Sardaria,∗, Evelina Kulcinskajab,1, Emanuel Y.C Rona, Snædís Björnsdóttirc,

Ólafur H Fri ð jónssonc, Gu ð mundur Óli Hreggvi ð ssonc,d, Eva Nordberg Karlssona

a r t i c l e i n f o

Keywords:

Exopolysaccharide

EPS

Heteropolymer

a b s t r a c t

ThethermophileRhodothermusmarinusproducesextracellularpolysaccharides(EPSs)thatformsa dis-tinctcellularcapsule.Here,thefirstdataonEPSproductioninstrainsDSM4252TandMAT493arereported andcompared.Culturesofbothstrains,supplementedwitheitherglucose,sucrose,lactoseormaltose showedthattheEPSwereproducedbothintheexponentialandstationarygrowthphaseandthat productionintheexponentialphasewasboostedbymaltosesupplementation,whilestationaryphase productionwasboostedbylactose.Thelatterwashigher,resultingin8.8(DSM4252T)and13.7mgEPS/g celldryweight(MAT493)inculturesinmarinebrothsupplementedwith10g/Llactose.TheEPSswere heteropolymericwithanaveragemolecularweightof8×104Daanddifferentmonosaccharides, includ-ingarabinoseandxylose.FT-IRspectroscopyrevealedpresenceofhydroxyl,carboxyl,N-acetyl,amine, andsulfateestergroups,showingthatR.marinusproducesunusualsulfatedEPSwithhigharabinoseand xylosecontent

©2016TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/)

Extracellular polysaccharides (exopolysaccharides, EPSs) are

themajorpartofextracellularpolymericsubstancesproducedby

microorganisms(Jindal,Singh,&Khattar,2011).Theyexistintwo

mainforms;asacapsuleassociatedwiththecellsurfaceorsecreted

outofthecell,eithertothesurroundingsorremainlooselyattached

tothecellsurface(Tallon,Bressollier,&Urdaci,2003)

Exopolysac-charideshaveimportantecologicalandphysiologicalfunctionsand

playspecialrolesinprotectingthemicroorganismsthatproduce

them.EPSsarebelievedtoprotectcellsagainstantimicrobial

sub-stances,desiccation,bacteriophages,osmoticstress,andantibodies

(Mataetal.,2006;Tallonetal.,2003)

EPSscanbefoundashomopolysaccharidesor

heteropolysac-charides and can be decorated with other residues such as

phosphates, sulfates, N-acetyl-aminosugars, and acetyl groups

(Laws, Gu, & Marshall, 2001) The properties of the EPSs are

influencedbytheircompositionwhichisaffectedbynutrient avail-abilityaswellasbyotherfactorssuchastheirmolecularmassand thelocationoffunctionalgroups

Theunique andcomplex chemical structuresof EPSs,which arenatural polymerswithdifferentfunctional properties,make theminterestingforvariousindustrialapplicationsinfood, phar-maceutical, petroleum and other industries (Castellane, Lemos,

& deMacedo Lemos, 2014), for example by affecting the fluid-ity of active compounds Both prokaryotes (Gram-positive and Gram-negativebacteria)and eukaryotes(fungi,somealgea,and phytoplankton)areknowntoproduceEPSsandnewspeciesare currentlybeingtargetedinthesearchforEPSswithnovel proper-ties.Asaresultofthesescreeningefforts,marinebacteriaarenow widelyacceptedasthesourceofEPSswithuniquepropertiesthat canbeexploitedfornovelbiotechnologicalprocesses(Chi&Fang, 2005)

Rhodothermusmarinusisathermophilic,reddishcolored aer-obic,and Gram-negativebacteriumthat wasfirstisolated from shallowmarinehot springsin Iceland(Alfredsson,Kristjansson, Hjörleifsdotter,&Stetter,1988).Thebacteriumgrows heterotroph-ically and is known to produce highly thermostable enzymes (Nordberg Karlsson, Bartonek-Roxå, & Holst, 1998; Blücher, Nordberg Karlsson, & Holst, 2000) It is of interest as repre-http://dx.doi.org/10.1016/j.carbpol.2016.08.062

Trang 2

sentingthedeepestlineagein thephylumBacteroidetes (Nolan,

Tindall, Pomrenke, Lapidus, & Copeland, 2009) The complete

genomesequence isavailableforthetypestrainandtoolshave

been developed for genetic manipulation of a second strain,

MAT493 (Bjornsdottir, Fridjonsson,Hreggvidsson,& Eggertsson,

2011; Bjornsdottir, Thorbjarnardottir, & Eggertsson, 2005) The

cellsofR.marinushavebeenshowntoformadistinctcapsulewhen

grownoncarbohydrate-richmedium(Alfredssonetal.,1988).To

ourknowledge,however,noinformationisavailableonthe

produc-tionofEPSsbyR.marinus,orontheirphysico-chemicalproperties

TheaimofthisstudywastheevaluationofEPSproductionbythe

R.marinustypestrain(DSM4252T)aswellasbyastrainthatis

amenabletoengineering(MAT493).Theworkinvolvedthe

exam-inationofthekineticsofEPSproductioninbatchculturesusing

shakeflasksundervariednutritionalconditions.Also,theisolation

andcharacterizationofnovelEPSfromthetwoR.marinusstrains

hasopenedpossibilitiesforapplyingEPSsfromR.marinusfor

indus-trialpurposes

2.1 Materials

AllmaterialsandreagentswerepurchasedfromSigma-Aldrich

unlessotherwisespecified

2.2 Bacterialstrains

TheR.marinusstrainsDSM4252TandMAT493obtainedfrom

theMatisculturecollection,wereusedinthepresentstudy

2.3 Cultureconditions

R.marinusDSM4252Twastakenfromthestockcultureand

inoc-ulatedinATCCmedium1599:ThermusEnhancedMedium(ATCC

medium1598)containingagarand1%NaCl.Theplatewas

incu-batedat65◦Cfor24h,afterwhichthecellsweretransferredfrom

theplateintoMarinebroth(Difco2216,USA)(10ml)ina50ml

falcontubeandincubatedinarotaryshakerincubatorat65◦Cand

200rpmfor24h

R.marinusMAT493wasinoculateddirectlyfromastockculture

intoMarinebroth(10ml)ina50mlfalcontubeandincubatedina

rotaryshakerincubatorat65◦Cand200rpmfor24h

Afterthefirstincubation,0.25ml(10%)oftheproducedcell

cul-turesofbothstrainswereseparatelyinoculatedintoMarinebroth

(2.5ml)in50mlfalcontubes,andweregrownfor8h.The

result-ingculturesweresubsequentlyusedasinoculumfortheshakeflask

cultivationswhereEPSproductionwasstudied

ThecellculturesusedforanalysisofEPSproductionweregrown

inmarinebroth(25mlin250mlbaffledshakeflasks)containingthe

sugarsglucose,maltose,lactose,andsucrose,respectively,as

addi-tionalcarbonsourceattheconcentrations1and10g/l.Thecells

wereinoculatedwith2.5ml(10%)oftheinoculumandgrownat

65◦Cand200rpmfor48hinashakingincubator(IKA,KS4000i

control).Samplesweretakenafter0,6,15,24,and48handwere

analysedfor residualcarbon sourceand total producedEPSs A

parallelcontrolexperiment wascarried outusingMarinebroth

withoutcarbonsourcesupplementation

2.4 Determinationofcellbiomass

Bacterialgrowthwasquantitativelydeterminedbymeasuring

celldryweight.Aftercentrifugation,cellswerewashed oncein

waterandthenresuspendedin2mlof0.05MEDTAsodiumsalt

solution(Horn etal.,2013).Themixturewasshakengentlyon

arockingtableat4◦Cfor4htoremove anycapsularEPS.After

this,cellswereharvested bycentrifugation,washedwithwater, transferredtoaluminumweighingpansanddriedinanovenset

at100◦C.Thecelldryweightwasmeasuredperiodicallyuntila constantweightwasreached

2.5 Isolationofexopolysaccharides StrainsDSM4252TandMAT493weregrownasdescribedin sec-tion2.3,andthecapsularEPS(in0.5mlsamples)wereseparatedas describedinsection2.4.Subsequently,thesamplestakenat differ-enttimesfromthecultivationswerecentrifugedat4000rpmfor

30minat4◦C (SigmaPK).TheEPSswereprecipitatedbyadding thethreefold volumeof ethanol (99.5%) tothecell free super-natants.Aftermixingand storingovernightat4◦C,precipitates wereharvested bycentrifugationat4000rpmfor30minat4◦C (Sigma3–16PK)andputinafumehoodtoevaporatethe remain-ingethanol.TheprecipitatesthenweredissolvedinmilliQwater andlyophilized(Labconcofreezedrysystem)toobtainthecrude EPSs

2.6 Purificationandexopolysaccharidefractionation ThepurityandsizefractionsofthecrudeEPSwasexaminedby sizeexclusionchromatographyusingacolumnofHiPrepSephacryl S-200HR(16mm×600mm)(HiPrep,GEhealthcarelifesciences) Eachcrude EPSwasdissolvedin milliQwater (10g/l) andafter filtration(13mm syringe filterw/0.2␮m PTFE membrane) was loadedonthe SephacrylS-200 column and eluted withmilliQ waterattheflowrateof0.3ml/min.Theflowratewascontrolled

byaFPLCpumpingsystem(PharmaciaLKB,Pump-500)and frac-tionsweredetectedusingrefractive-indexmonitoring(ERC-7510, ERMAINC)andcollectedevery10minusingafractioncollector (LKBBromma,2212HELIRAC)

2.7 Determinationofmolecularweight FordeterminationofmolecularweightoftheEPSfractions, stan-darddextrans(1.27,5,12, 50,and80kDa)(Sigma)werepassed through a Sephacryl S-200 column (16mm×600mm) and the retentiontimeofeachdextranwasobtainedfromthe chromato-graphicdata Theretention times ofthe dextranswere plotted againstthelogarithmsoftheirrespectivemolecularweights.The molecularweightsof theproducedEPSs werethendetermined usingtheirretentiontime

2.8 Monosaccharideanalysis TheanalysisofEPSsmonosaccharidecomposition,producedat differenttimesduringcultivation,andafterfractionationbysize exclusionchromatography(Section2.6)wasdoneaccordingthe hydrolysismethoddescribedbySluiter,Hames,Ruiz,andScarlata (2008)withmodifications

Briefly, sulfuric acid (72%) was added to the isolated EPSs and water was added after 30min The samples were heated

at 100◦C for 3h and neutralized after hydrolysis with 0.1M Ba(OH)2·H2O.Aftercentrifugation,themonosaccharidecontentof theEPSsinthesupernatantswasanalysedbyHighPerformance Anion-ExchangeChromatography(HPAEC)(ThermoFisher Scien-tific, Waltham, USA) using a Dionex CarboPacPA-20 analytical columnwhichwascoupledtoaDionexCarboPacPA-20guard col-umn.ThesugarswereseparatedusingNaOH(0.75mM)asamobile phasewiththeflowrateof0.5ml/minandthecolumnwas regen-eratedwith200mMNaOHfor4minwiththesameflowrateatthe endofeachcycle.DetectionwasperformedwithanED40 electro-chemicaldetector

Trang 3

2.9 Analysisoffunctionalgroups

Fourier transformed infrared (FT-IR) spectroscopy was used

todeterminethefunctionalgroupsofthepurifiedEPSs.Infrared

spectra of the purified EPSs fractions were recorded in the

4000–400cm−1 regionusing a FT-IR system (Nicolet is5,

Ther-moFisherScientific)

Thedeterminationswereperformedintwoindependent

repli-catesandarereportedasthemeanwithstandarddeviations

3.1 GrowthandEPSproductionbythetwoR.marinusstrains

Thetwo R marinus strainsexhibiteda distinct differencein

growthbehaviour,withthestrainDSM4252Tformingaggregates

whilestrainMAT493didnot.Aggregationhasbeenobservedfor

manyR.marinusstrains(Bjornsdottiretal.,2005),anditisnow

knownthatbacteriapredominantlylivewithinsurface-attached

biofilmstructuresintheirnaturalhabitats(Davey&O’Toole,2000)

Biofilmsofferseveraladvantages,includingprotectionfrom

dif-ferent stress factors (Jagmann, Henke, &Philipp, 2015; Monier

&Lindow,2003).Bacteriawithinthesestructuresareencasedin

anextracellularmatrix composedofsecretedproteins,

polysac-charides,DNAandothersubstances.Thereasonfortheobserved

differenceinstrainsDSM4252TandMAT493isunknown,asisthe

mechanismofaggregationinR.marinus.Infact,thelackof

aggre-gationwasoneofthereasonsforchoosingstrainMAT493forthe

developmentofmethodsforgeneticmanipulation,whichrequire

theuseofsinglecolonies.Thedifferenceinaggregation,could

how-evernotbeshowntobeimmediatelyrelatedtotheEPSproduction

level(Tables1and2 whichforbothstrainswasinitiatedinthe

exponentialgrowthphase,butwithsomedifferences

Asinitialtrialswiththetypestrain(DSM4252T)showedthat

useofdisaccharidesascarbonsourcesupplementationgenerally

resultedinhigherEPSproductionthantheuseofmonosaccharides

(datanotshown),lactose,maltoseandsucrosewereselectedas

thesupplementationoftheMarinebrothandwasusedforboth

strains In addition,glucose waschosenas a respresentativeof

monosaccharides,andaparallelgrowthexperimentwithout

addi-tionaladdedsugarswasruntomonitorthebackgroundproduction

ofEPS(Figs.1–4).The addedcarbon sourcesweresupplied at

twoconcentrations,1g/L(Figs.1and3)and10g/L(Figs.2and4

respectively

Consumptionofthemonosaccharideglucose,andthe

disaccha-rideslactoseandmaltosewasverifiedforthetypestrain(Fig.1).In

allcases,productionofEPSwasinitiatedintheexponentialgrowth

phaseandwasshowntocontinueinthestationaryphase

Atthe1g/Lsupplementationlevel(Fig.1 theconsumptionrate

ofglucosewasdeterminedto0.13g/l,hduringthefirst6handafter

15hallglucosewasconsumedandthecellmasswas1.2±0.14g/l

After glucose depletion, the change in cell concentration was

marginalduring9h(reaching1.25±0.35g/lafter24h)butthen

increasedto1.68±0.16g/lat48h.Thelateincreaseincell

concen-trationmightbeduetoconsumptionofproducedEPS,asitwas

accompaniedbyadecreaseintheratioofproducedEPSpercelldry

weightinthesameperiodoftime(from7.4×10−5to6.2×10−5),

reachingafinalEPSconcentrationof1.04±0.15␮g/ml(at48h)

Theexperimentsusingmarinebrothwithoutaddedsugar,showed

aslightlylowermaximumcellmass(0.87±0.03g/l,after24h,in

principlemaintainedattheendofthecultivation,0.85±0.07g/l

after48h)andthefinalEPSconcentrationwas0.75±0.24␮g/ml

(withaproductionrateof0.014␮g/ml,hafter48h).Thisindicates

thatthe1g/Lglucose-additionhadasmallboostingeffectonboth

cellmassandEPSproduction

Additionoflactosedidnotstimulatecellgrowth,butresultedin increasedEPSproduction.Theconsumptionrateoflactoseduring thefirst6hwas0.03g/l,hbutincreasedto0.095g/l,h(6–15h)until alllactosewasconsumed(reachingacellmassof0.85±0.21g/lat

24h).After48hthecellmassfinallyreached0.95±0.35g/l,while productionofEPScontinued(0.057␮g/ml,hduringthewhole48h

ofcultivation),reachingafinalconcentrationof2.75±0.13␮g/ml Thecellmassobtainedinmaltosesupplementedcultivations resembledthatoftheglucosesupplementation(1.3±0.28g/lafter

15h,maintainedat24has1.4±0.14g/l,withanoverallmaltose consumptionrateof0.036g/l,hduring24h)(Fig.1).TheEPS con-centrationinthiscasereached3.3±0.73␮g/ml(after48h)which wasthehighestobservedat1g/Lsupplementationlevel,reachinga productionrateof0.22␮g/ml,hbetween6–15h,whichdecreased

to0.031␮g/ml,hinthestationaryphase(24–48h)

Sucrosesupplementedcultivationsweremoredifficultto inter-pret,asthissubstratewasnotconsumedbyR.marinusDSM4252T (sucroseconcentrationwas0.87±0.03g/lafter48hofcultivation) Themaximumcellconcentrationwas1.15±0.21g/landthe con-centrationofproducedEPSwas1.98±0.85␮g/mlafter48h.The aboveresultsshowedthatalthoughtheeffectsoncellmasswere rathersmall,productionofEPSincreaseduponadditionofthe dis-accharideslactose(stationaryphase)andmaltose(primarilyinthe exponentialbutalsointhestationaryphase)

Afurtherincreaseintheconcentrationofaddedsugarsto10g/l resultedinasignificantincreaseintheproductionofEPS(except forsucroseaddedcultures),whichwasmostpronouncedfor cul-tureswithaddedlactose(Fig.2,Table1).Nosignificantincrease

incellmassorgrowthratewasobserved,andcellgrowthceased after15hatallconditionstested,whichmightbetheconsequence

ofeitheroxygenlimitation(whichisdifficulttocontrolinshake flasks) ormore likely thedecrease in pHobserved (decreasing from7.2to5.03, 5.18,and4.84inglucose,lactose,andmaltose medium,respectively).At10g/Lsupplementationlevelitwasalso observedthatmaltosewasgraduallydegradedextracellularlyto glucose(from6hofcultivation)

StrainMAT493grewwithoutvisibleaggregationandconsumed glucose,lactose and maltose withsimilarrates (0.14,0.14, and 0.135g/l.h,respectively)inmediawith1g/lsupplementationof therespectivecarbonsource.In addition,strainMAT493could consumesucrose(whichwasnotthecaseforthetypestrain)with

aconsumptionrateof0.065g/l.h.Allsugarswereconsumedwithin

15hofcultivation

Inaccordancewiththetypestrain,productionofEPSstarted

at the beginning of the cultivation and the concentration

of EPS increased during the exponential growth phase After

24h, the concentration of EPSs was 0.282±0.03, 0.29±0.08, and 0.3±0.18␮g/ml with corresponding cell concentrations of 0.95±0.07,1±0.28,and0.8±0.00g/linthepresenceofglucose, maltoseandsucrose,respectively.Thisshowsthatinthisstrain, theproductionofEPSintheexponentialgrowthphaseinprinciple wasindependentofthecarbonsourcesupplementation

In the stationary phase, the levels of EPS were, however, affecteddifferentlyand dependedoncarbonsource supplemen-tation.Inthemediasupplementedwith1g/Lsucroseandlactose, respectively, the EPS concentrationincreased with time in the stationary phase, in line with the pattern observed in lactose supplemented cultivations of thetype strain.For example, the concentrationofproducedEPSinthemediumcontaininglactose was0.2±0.15␮g/mlafter24h(atacellmassof0.5±0.14g/l)and thenincreased0.46±0.05␮g/mlafter48h.Incultivations supple-mentedwithmaltose,theamountofEPSwasalmostconstantafter

24h,alsoinlinewiththegeneralproductionpatternobservedfor thetypestrain

In both glucose supplemented and unsupplemented cultiva-tions,therewasanapparentdecreaseincellmassinthestationary

Trang 4

Table 1

Type of sugar Sugar concentration (g/l)

Table 2

Type of sugar Sugar concentration (g/l)

0 1 2 3 4

0 0.5 1 1.5 2

Time (h)

0 1 2 3 4

0

0.5

1

1.5

2

Time ( h)

0 1 2 3 4

0 0.5 1 1.5 2

Time (h)

0 1 2 3 4

0

0.5

1

1.5

2

Time (h)

0 1 2 3 4

0 0.5 1 1.5 2

Time (h)

phase.Intheglucosesupplementedmediumthiscoincidedwith

adecreaseinEPSconcentration,indicatingthattheremightbea

degradationoftheEPSbyactiveenzymesproducedbythecells,

whichmaybereleaseduponcelllysis(Mataetal.,2006).No

corre-spondingdecreasewashoweverobservedinthenonsupplemented

cultures(inthatcasethemonitoredEPSwas0.36±0.029␮g/mlat

24hand0.6±0.12␮g/mlat48h)

Anincreaseintheamountofaddedsugarto10g/lresultedin

ahigherrelativeproductionofEPSbystrainMAT493,forallthe

testedcarbonsourcesexceptsucrose(Fig.4;Table2 whichisin

accordancewiththepatternobtainedforDSM 4252T (Table1)

Degradationofthedisaccharidetoitsmonosaccharidecomponents

(after6hofcultivation)wasobservedformaltose(inaccordance

withthedataforthetypestrain)butalsoforsucrose(resultingin detectionofbothglucoseandfructose).TheincreaseinEPS produc-tioninlactoseandmaltosesupplementedcultureswasalsomore pronouncedforMAT493(Table2)thanforDSM4252T,whilecell massproductionwasapproximatelyinthesamerange.ThepH valueintheculturescontainingglucose,lactose,sucroseand mal-tosewasalsoshowntodecreasesignificantly(to4.65,4.39,4.47, and4.54,respectivelyafter48h)andmaybeareasonforstopped growthinshakeflasks

Inconclusion,therelativeefficiencyofEPSproductionwhichis theratioofthetotalEPStocelldryweightafter48h,wasevaluated andshowedthatmarinebrothsupplementedwith10g/llactose resultedinthehighestEPSproductionefficiencyinbothR.marinus

Trang 5

0 2 4 6 8 10 12

0 2 4 6 8 10 12 14

Time (h)

0 2 4 6 8 10 12

0 2 4 6 8 10 12 14

Time (h)

0 2 4 6 8 10 12

0 2 4 6 8 10 12 14

Time (h)

0 2 4 6 8 10 12

0 2 4 6 8 10 12 14

Time (h)

0 1 2 3 4

0

0.5

1

1.5

2

Time (h)

0 1 2 3 4

0 0.5 1 1.5 2

Time (h)

0 1 2 3 4

0 0.5 1 1.5 2

Time (h) 0

1 2 3 4

0

0.5

1

1.5

2

Time (h)

0 1 2 3 4

0 0.5 1 1.5 2

Time (h)

DSM4252T and MAT493followed bymarinebrothcontaining

10g/lmaltose(Tables1and2)UsingthesetwocarbonsourcesDSM

4252TwasshowntoproduceahigheramountofEPS/CDWatlower

concentrationofthecarbonsource,whilestrainMAT493appeared

tobemoredependentontheamountofcarbonsourcesuppliedfor

itsEPSproduction

3.2 Purificationandfractionationoftheexopolysaccharide

Thecrudeexopolysaccharidesobtainedfromthedifferent

sup-plementedculturesofR.marinusDSM4252T andMAT493were

fractionatedusingsizeexclusionchromatographyasdescribedin section2.6.Resultsshowedonemajorpeakforeachsample,which correspondedtoahighmolecularweightfraction.Theretention timeofthemajorpeakinthecrudeEPSsfromR.marinusDSM4252T

inthemediacontainingglucose,lactose,maltose,sucrose,andthe mediumwithoutadditionalsugarswas138.35,138.56,134.14,138, and135.41min,whichcorrespondedtomolecularweightsof73.8, 73.5,80.8,74.4,and78.6kDa,respectively.Also,theretentiontimes

ofthemajorpeakinthecrudeEPSsfromR.marinusMAT493in themediacontainingglucose,lactose,maltose, sucrose,and the medium without additionalsugars was130.07, 133.33, 131.49,

Trang 6

0 2 4 6 8 10 12

0 2 4 6 8 10 12 14

Time (h)

0 2 4 6 8 10 12

0 2 4 6 8 10 12 14

Time (h)

0 2 4 6 8 10 12

0 2 4 6 8 10 12 14

0 2 4 6 8 10 12

0 2 4 6 8 10 12 14

Time (h)

130.01,and128.81mincorrespondingtoamolecularweightof

88.1,82.2,85.5,88.2,and90.5kDa,respectively(Supplementary

data).Generally,theEPSsproducedbymarinebacteriaareoften

linearwithanaveragemolecularweightrangingfrom1×105to

3×105Da(Poli,Anzelmo,&Nicolaus,2010)whichiscompatible

withthemolecularweightofourproducedEPSs

3.3 CharacterizationofEPSmonosaccharidecontent

Afterhydrolysis,themonosaccharidecompositionofthe

puri-fiedEPSswasanalysedbyHPAEC-PADandtheanalysisshowedthat

alltheEPSswereheteropolysaccharides(Table3).Themain

com-ponentsofthepureEPSsfromR.marinusDSM4252Twerexylose,

arabinose,andglucose.Also,therewasamixtureofgalactosewith

glucosamine,andamixtureofmannosewithanaminosugarwhich

mightbeN-acetyl-glucosamineorN-acetyl-galactosamine(data

notshown).Quantificationofthosecomponentswashowevernot

possibleduetooverlappingpeaks

AnalysisofthepureEPSsfromMAT493allowedquantification

ofglucose,arabinose,xylose,andmannose(Table3).Alsointhis

strain,therewasasmallquantityofgalactoseandgalactosamine

InallEPSschromatogramstherewerethreeunidentifiedpeaks

whichneedstobefurtherinvestigatedsincetheidentificationof

themwiththeknownmonosaccharidestandardswasnot

success-ful(Supplementarydata)

ArabinoseandxylosearenotcommonsugarsinbacterialEPSs

(Ahmedetal.,2013;Nicholsetal.,2005).Thus,itcanbeclaimed

thattheEPSsproducedbytheR.marinusstrainsareunique

bac-terialEPSs.Interestingly,theratioofmonosaccharidesalsodiffers

betweenthetwostrains,indicatingthatEPSfromtherespective

strainsmaybeusefulfordifferentpurposes

3.4 Functionalgroupanalysis

InordertoinvestigatethefunctionalgroupsofthepurifiedEPSs

ofR.marinusDSM4252TandR.marinusMAT493FT-IRspectroscopy

wasused(Fig.5 andbandassignmentsweremadeaccordingto

literaturedata

TheIRspectraofthepurifiedEPSsofR.marinusDSM4252Tfrom allmediashowedthesamefunctionalgroups(Fig.5A)and exhib-itedabroadpeakataround3335cm−1 (range3600–3200cm−1) forO Hstretchingvibrationofthepolysaccharide(Kavita,Singh, Mishra, & Jha, 2014) and two weak C H stretching bands at

2924and 2855cm−1.The peakat 2359cm−1 wasattributedto

NH stretchingabsorptionbandandthepeak at1652cm−1 cor-respondedtoa C O stretchingvibration of theN-acetyl group

or protonated carboxylic acid (Ahluwalia & Goyal, 2005; Lillo, Cabello,Cespedes,Caro,&Perez,2014).Also,at1540cm−1apeak wasobservedwhichwasassignedtotheN Hdeformation vibra-tion of an amine group (Lillo et al., 2014) The peak at 1521 wasassignedtothesecondary amidgroup(Ahluwalia&Goyal, 2005).Anotherpeakat1418cm−1couldbeattributedtothe sym-metric stretching of the COO− group (Zhao, Yang, Yang, Jiang,

&Zhang,2007).Thepeakat1217cm−1correspondedtoan

O-S-O group that is an evidence of sulfate esters (Na et al., 2010) andthepeak at1103cm−1 mightbeassigned toO-acetylester linkeduronicacid(Kavitaetal.,2014).Thestrongabsorptionat

1039cm−1 in the range of 1200–1000cm−1 which is anomeric region, was attributed to C O C and C O groups in polysac-charidesandsuggested thatthemonosaccharideintheEPShas pyranosering(Vijayabaskar,Babinastarlin,Shankar,Sivakumar,& Anandapandian,2011).Theweakabsorptionat910and890cm−1 wasassignedtothecoexistanceof␣andßglycosidicbond(Lim

etal.,2005).Thepeakat818cm−1candeterminedtheexact posi-tionof6-sulfateofD-galactoseunit(C6-O-S)(Macieletal.,2008; Prado-Fernández,Rodrı´ıguez-Vázquez,Tojo,&Andrade,2003).The weakabsorption at845cm−1 demonstrated thepresence of 4-sulfateofD-galactose(C4-O-S)(Prado-Fernándezetal.,2003).The peakat770cm−1mightbeattributedtothe(S-F)stretching absorp-tionband(Pretsch,Fernández,Alvarez,2000)andtheabsorption peak at600cm−1 wasattributed tostretchingof alkyl-halides (Kavitaetal.,2014)

According to FT-IR band assignments of the purified EPSs

of R.marinus DSM 4252T from marine brothwith and without addedsugars,theEPScontainssulfatedpolysaccharidesof com-plexstructurecontaininguronicacids.Sulfatedexopolysaccharide derivativesareknowntohaveadvantageousproperties,in

Trang 7

partic-Table 3

ularastherapeuticsubstances.Bestknownareheparin(extracted

fromporcineintestinalmucosaasanticoagulantand

antithrom-boticagentinthepreventionandtreatmentofvenousthrombosis)

andfucoidanfromBrownseaweed,whichhasbeenreportedhaving

arangeofbioactiveproperties.SulfatedEPSfrombacterialorigin are lesswellknown,but mauran, a highlypolyanionic sulfated

Trang 8

beenreportedtohaveantioxidant,antihemolyticand

antithrom-bogenicactivities(Raveendranetal.,2013).Novelpolysaccharides

frombacterialoriginofferanalternativetothewell-knownanimal

varietiesandwillalsoexpandthepotentialrangeofactivitiesand

potencyofEPSderivedhealthpromotingagents

TheFT-IRspectraofthepurifiedEPSsofR.marinus493(Fig.5B)

wasinprinciplesimilartoFT-IRspectraofR.marinusDSM4252T

However,thepeakat910cm−1hadstrongabsorptionwhich

cor-respondedtoaß-glycosidicbondandthepeakat818cm−1was

absent

Inconclusion,bothR.marinusDSM4252TandR.marinusMAT

493producedexopolysaccharides.Differentnutritionalconditions

influencedtheproductionoftheEPSs.ThehighestEPSproduction

efficiencywashoweverforbothstrainsfoundinmarinebroth

sup-plementedbylactosefollowedbyamaltosesupplementedmarine

broth.MonosaccharideanalysisshowedthattheproducedEPSsare

heteropolysaccharidesmainlyconsistingofxyloseandarabinose

TheFT-IRspectrumof theEPSsshowedthepresenceofsulfate

andcarboxylgroupswhichdemonstratedthattheycontainuronic

acids.Italsorevealedthepresenceofaminosugarstogetherwith

acetylgroup.Theunusualfunctionalgroupsandmonosaccharide

compositionmakestheEPSofR.marinusinterestingforfurther

studies,motivatingmoredetailedanalysisofitschemicalstructure

andsuchstudiesareinprogress

Acknowledgment

The authors gratefully acknowledge the EU FP7 program

SEABIOTECHforfinancialsupport

Supplementarydataassociatedwiththisarticlecanbefound,in

theonlineversion,athttp://dx.doi.org/10.1016/j.carbpol.2016.08

062

References

from aqueous solution Engineering in Life Sciences, 5, 158–162.

Characterization of new exopolysaccharides produced by coculturing of L.

kefiranofaciens with yoghurt strains International Journal of Biological

Macromolecules, 59, 377–383.

Rhodothermus marinus, gen nov., sp nov., a thermophilic, halophilic bacterium

from submarine hot springs in Iceland Microbiology, 134, 299–306.

of a gene transfer system for Rhodothermus marinus Applied Microbiology and

Biotechnology, 66, 675–682.

Generation of targeted deletions in the genome of Rhodothermus marinus.

Applied and Environmental Microbiology, 77, 5505–5512.

production and some properties of a thermostable, ␣-galactosidase from

Rhodothermus marinus Biotechnology Letters, 22, 663–669.

the biotechnological potential of Rhizobium tropici strains for

exopolysaccharide production Carbohydrate Polymers, 111, 191–197.

Ocean University of China, 4, 67–74.

genetics Microbiology and Molecular Biology Reviews, 64, 847–867.

Spontaneous mutation reveals influence of exopolysaccharide on Lactobacillus johnsonii surface characteristics PUBLIC LIBRARY OF SCIENCE, 8, e59957.

against severe chemical stress by co-habiting cell aggregates formed by Pseudomonas aeruginosa Applied Microbiology and Biotechnology, 99, 8285–8294.

characterization of exopolysaccharides produced by the cyanobacterium Oscillatoria formosa World Journal of Microbiology and Biotechnology, 27, 2139–2146.

activity of extracellular polymeric substances from Oceanobacillus iheyensis Carbohydrate Polymers, 101, 29–35.

bacterial exopolysaccharides from lactic acid bacteria Biotechnology Advances,

19, 597–625.

of the exopolysaccharide produced by a submerged culture of entomopathogenic fungus Metarhizium anisopliae Boletín Latinoamericano Y Del Caribe De Plantas Medicinales Y Aromáticas, 13, 359–365.

Structural analysis and molecular characterization of exopolysaccharides produced by submerged mycelial culture of Collybia maculata TG-1.

Carbohydrate Polymers, 61, 296–303.

soluble sulfated polysaccharide from red seaweed Gracilaria birdiae.

Carbohydrate Polymers, 71, 559–565.

Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis Research in Microbiology, 157, 827–835.

bacterial cells promotes aggregate formation on leaf surfaces Proceedings of the National Academy of Sciences, 100, 15977–15982.

Purification, characterization and immunostimulating activity of water-soluble polysaccharide isolated from Capsosiphon fulvescens International

Immunopharmacology, 10, 364–370.

characterization of exopolysaccharides from antarctic marine bacteria Microbial Ecology, 49, 578–589.

genome sequence of Rhodothermus marinus type strain (R-10 T ) Standards in Genomic Sciences, 1, 283–290.

binding of a recombinant thermostable xylanase originating from Rhodothermus marinus FEMS Microbiology Letters, 168, 1–7.

extreme marine habitats: Production, characterization and biological activities Marine Drugs, 8, 1779–1802.

Quantitation of ␬-, l- and ␭-carrageenans by mid-infrared spectroscopy and PLS regression Analytica Chimica Acta, 480, 23–37.

estructural por métodos espectroscópicos Springer-Verlag Ibérica.

hemocompatibility of mauran Carbohydrate Polymers, 98, 108–115.

carbohydrates and lignin in Biomass Technical report NREL/TP-510-42618.

two exopolysaccharides produced by Lactobacillus plantarum EP56 Research in Microbiology, 154, 705–712.

Bacillus subtilis (MTCC 121) Advances in Biological Research, 5, 71–76.

of water-soluble polysaccharides from Opuntia monacantha cladodes in relation to their anti-glycated activities Food Chemistry, 105, 1480–1486.

Ngày đăng: 07/01/2023, 20:47

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm