This paper presents novel outcomes about the effect of degree of inulin polymerization (DP) on the technological properties of annatto seed oil powder obtained by freeze-drying. Inulins with two DP’s were evaluated: GR-inulin (DP ≥ 10) and HP-inulin (DP ≥ 23).
Trang 1jo u r n al h om ep a g e :w w w e l s e v i e r c o m / l o c a t e / c a r b p o l
Eric Keven Silvaa,∗, Giovani L Zabotb, Matheus A Bargasa, M Angela A Meirelesa
a LASEFI/DEA/FEA (School of Food Engineering)/UNICAMP (University of Campinas), Rua Monteiro Lobato, 80, Campinas, SP, CEP: 13083-862, Brazil
b Federal University of Santa Maria, UFSM, Rua Ernesto Barros, 1345, Cachoeira do Sul, RS, 96506-322, Brazil
Article history:
Received 18 May 2016
Received in revised form 5 July 2016
Accepted 17 July 2016
Available online 18 July 2016
Keywords:
Fructooligosaccharide
Functional carbohydrate
Glass transition temperature
Wall material
Water adsorption isotherms
Thispaperpresentsnoveloutcomesabouttheeffectofdegreeofinulinpolymerization(DP)onthe tech-nologicalpropertiesofannattoseedoilpowderobtainedbyfreeze-drying.InulinswithtwoDP’swere evaluated:GR-inulin(DP≥10)andHP-inulin(DP≥23).Micrographsobtainedbyconfocalmicroscopy wereanalyzedtoconfirmtheencapsulationofbioactivecompoundsusingbothinulins,especiallythe encapsulationofthenaturalfluorescentsubstance␦-tocotrienol.Microparticlesformedwithbothinulins presentedthesamecapacityforgeranylgeraniolretention(77%).Glasstransitionsofmicroparticles formedwithGR-inulinandHP-inulinsucceededat144◦Cand169◦C,respectively.Regardingwater adsorptionisotherms,microparticlesformedwithHP-inulinandGR-inulinpresentedbehaviorsofTypes
II(sigmoidal)andIII(non-sigmoidal),respectively.Reductionofwateradsorptioncapacityinthematrix
athighrelativemoistures(>70%)waspresentedwhenHP-inulinwasused.Atlowrelativemoistures (<30%),theoppositebehaviorwasobserved
©2016ElsevierLtd.Allrightsreserved
1 Introduction
The crescent interest of developing prebiotic substances is
aimedatnon-digestibleoligosaccharides.Oneoftheprebioticsis
inulin,a fructooligosaccharide generally extracted fromchicory
(Pandey et al., 1999), but alsofrom other sources asartichoke
(Ruiz-Aceituno, García-Sarrió,Alonso-Rodriguez,Ramos, &Sanz,
2016),andusedforstabilizingproteins(Mensink,Frijlink,vander
VoortMaarschalk,&Hinrichs,2015)orconvertedintoother
func-tionalingredientsbyinulinases(Mazuttietal.,2010).Longerchain
lengthsmakeinulinasdietaryfiberusefulforfoodand
pharmaceu-ticalapplications.Examplesofapplicationsincludeaslowcaloric
sweetener,assubstancethatprovidessoliddispersionfor
increas-ingdissolutionrate,asanagenttoformgelsandtoincreasethe
viscosityofsolutions,andasanon-digestiblefiber(Mensinketal.,
2015).Inulinalsopresentstheabilitytochangethegutflora
com-positionafterashortfeedingperiodbasedonresultsfrominvitro
studiesandhumansubjects(Kolida&Gibson,2007)
Theuseofinulindependsonitsdegreeofpolymerization(DP)
The molecularchain length can range someextent, commonly
between4and80(Mensinketal.,2015).Thedegreeofinulin
poly-∗ Corresponding author.
E-mail address: engerickeven@gmail.com (E.K Silva).
merizationdependsontheharvesttime,storagetime/temperature andgrowingconditions(Saengthongpinit&Sajjaanantakul,2005) Consequently,thedegreeofinulinpolymerizationdeterminesthe physicochemical characteristicstoa substantialextent,as mor-phology(i.e.,crystalmorphology,crystalstructureandstructurein solution),solubility,rheology(i.e.,viscosity,hydrodynamicshape and gelling),thermal characteristicsand physical stability(i e., glasstransitiontemperature,vaporsorptionandmelting temper-ature)andchemicalstability(Mensinketal.,2015)
Followingthescenarioofusinginulinasprebiotic substance (Zabot, Silva,Azevedo, &Meireles, 2016), bioactivecompounds extractedfromvegetalsourcesarealsoofrecentinterestbecauseof theirfunctionalproperties.Annattoseedoilisoneofthesourcesof value-addedbioactivecompounds,as␦-tocotrienol(Albuquerque
&Meireles,2012;Moraes,Zabot,&Meireles,2015)and geranyl-geraniol(Silva,Zabot,&Meireles,2015).Tocotrienol-richfractions obtainedfromannattoseedsactasnaturalantioxidantsby inhibit-inglipidoxidationoffishoiland lipid-basedformulaemulsions (Zou&Akoh,2015).In addition,geranylgeraniolmodulates the apoptosisofcarcinogencells(Marcuzzietal.,2012)
In this context, the objective of this study was to evaluate theinfluenceofthedegreeofinulinpolymerization(DP≥10and
DP≥23)onthephysicalpropertiesofannattoseedoil micropar-ticlesobtainedbyfreeze-drying.Inulinwasusedasencapsulating matrixandtheeffectofitsdegreeofpolymerizationonthe
recon-http://dx.doi.org/10.1016/j.carbpol.2016.07.066
0144-8617/© 2016 Elsevier Ltd All rights reserved.
Trang 2the morphology and ␦-tocotrienol distribution in the particles
microstructures,geranylgeraniol retentionby theencapsulating
matrices,glasstransitionofmicroparticlesandphysicalstability
throughwateradsorptionisothermswerealsotheresponsestaken
intoaccountwhen evaluatingtheeffectof thedegreeofinulin
polymerization
2 Material and methods
2.1 Annattoseedoilextraction
Annattoseedoilused asactivematerial wasextractedwith
supercriticalCO2usingapilotscaleequipment(TharTechnologies,
Pittsburgh,USA)containinganextractionvesselof5Lwithinternal
diameterof10.2cm.Solventflowratewasequalto200gCO2/min
andthe bedwasmaintainedat 40◦Cand 20MPa,as described
indetailbya previousstudy(Silva,Gomes,Hubinger, Cunha,&
Meireles,2015)
2.2 Inulinsandmaterialsforchromatographicanalyses
Inulins used as active materials for encapsulating annatto
seedoilwerebothfromchicory:Orafti®GR(GR-inulin,DP≥10)
and Orafti®HP (HP-inulin, DP≥23) (BENEO-Orafti, São Paulo,
Brazil).Materialsforchromatographic analyseswere:methanol,
ethanolandhexane(Chemco,Hortolândia,Brazil);geranylgeraniol
(purity>85%,Sigma–Aldrich,Steinhein,Germany)andammonium
acetate(P.A.,Dinâmica,Campinas,Brazil)
2.3 Microencapsulationofannattoseedoil
Annattoseed oilwasencapsulatedwithGR-and HP-inulins
throughemulsificationassistedbyultrasoundwithnominalpower
of160Wduring3minusinga13mmdiameter,19kHzultrasonic
probe(Unique,Disruptor,800W,Indaiatuba,Brazil)foreach30mL
ofemulsion.Totalconcentrationofsolidsintheemulsion
(emulsi-fying+oil)wasequalto20g/100gofemulsion.Annattoseedoilwas
addedtothesuspensionscontainingGR-andHP-inulinsandthe
concentrationofoilwasmaintainedat20%relativetotheamount
ofsolids,thatis,4gofoilper100gofemulsion.Immediatelyafter
homogenization,theemulsionswerefrozeninaluminum plates
at−40◦C for 3handthen subjected tofreeze-drying(FD)
pro-cess.Dryingwasperformedina freeze-dryersystem(Liobras,L
101,SaoCarlos,Brazil).Thedriedemulsionswereconvertedinto
finepowdersthroughmaceration.Detaileddescriptionof
obtain-ingannattoseedoilmicroparticlesisreportedbyapreviousstudy
(Silva&Meireles,2015)
2.4 Reconstitutionpropertiesofemulsions
Thewettabilityofthepowderswasdeterminedasthemethod
reportedbyFuchsetal.(2006),withafewmodifications.The
sam-plesof powders (0.1g) weredispersed over water surface of a
Beckercontaining100mLofultrapurewaterunderstirringat25◦C
Thetimespentforimmersingorwettingthelastparticleofpowder
wasusedaswettabilityresponse
Theannattoseedoilmicroparticlesobtainedbyfreeze-drying
werereconstitutedinultrapurewater.Anamountof2gofpowder
wasmixedwith8gofultrapurewaterandthesolutionwasstirred
during30sinavortextypehomogenizer(PHOENIX,AP-56model,
Araraquara,SãoPaulo,Brazil)at25◦C
Dropletsizedistributionandmeandiameteroftheemulsion
droplets,afterreconstitutionandbeforedrying,weredetermined
bylightscatteringtechniqueusinglaserdiffraction(Mastersizer
2000MalvernInstrumentsLtd,Malvern,UK).Themeasurements
wereperformedat25◦C.Themeandiameterwascalculatedbased
onthemeandiameterofasphereofsimilararea,superficialmean diameter(D32),asEq.(1).Polydispersityindex(PDI)wascalculated
asEq.(2).Allsampleswereanalyzedthroughthewetmethod,with dispersioninwaterandrefractiveindexof1.52
D32=
nidi3
nidi2
(1)
PDI=(d90−d10)
d50
(2) Where:diisthemeandiameterofthedroplets;niisthenumber
ofdroplets;andd10,d50andd90arethediametersat10%,50%and 90%ofcumulativevolume,respectively
2.5 Scanningelectronmicroscopy(SEM) Micrographs were taken in a scanning electron microscope withEnergyDispersiveX-rayDetector(SEM)(Leo440i,EDS6070, SEM/EDS:LEOElectronMicroscopy/Oxford,Cambridge,England) Analyseswereperformedwith5kVacceleratingvoltageand50pA beamcurrentforobtainingthemicrographs
2.6 Confocalscanninglasermicroscopy(CSLM) CSLManalysiswasperformedusingaZeissLSM780-NLO con-focalonanAxioObserverZ.1microscope(CarlZeissAG,Germany) witha40×objective.Imagesweretakenbyexciting␦-tocotrienol moleculeswithlasersat488nmwavelength,withoutany previ-ouspreparationofthesamplesasaconsequenceofthefluorescent propertiesof␦-tocotrienol,similarlytotheproceduredescribedby
apreviousstudy(Silva,Zabot,Cazarin,MarósticaJr.,&Meireles, 2016)
2.7 Geranylgeraniolretention Geranylgeraniolcontentinannattoseedoil(beforeandafter encapsulation)wasdeterminedbyhigh-performanceliquid chro-matography(HPLC).Chromatographicanalyseswereaccomplished usingan HPLC-PDA(Waters,AllianceE2695, Milford,USA) sys-tem,consistingofaseparationmodulewithanintegratedcolumn heater,anautosamplerandaphotodiodearray(PDA)detector Sep-arationof geranylgeraniolwas fulfilled usinga fused-core type column (Kinetex, C18,100mm×4.6mm×2.6m; Phenomenex, Torrance, USA) An aliquot of 10L of each sample diluted to
500ppm (w/w)inhexane(Chemco,Hortolandia,Brazil)and fil-teredusingnylonmembrane(0.45m)wasinjected.Asolutionof methanol:ammoniumacetate50mM(90:10,v/v)wasthemobile phase.The columnwasmaintainedat40◦C Mobilephase flow ratewas1mL/minandtheanalyticalruntimewas7min.Detector wavelengthrangewas200–400nm.Geranylgeraniolwasdetected
at210nmand at2.4min,and itsquantificationwasperformed usingexternalstandardcalibrationcurve
Intending to quantify geranylgeraniol entrapped in the microparticlesafterusinginulinswithtwodegrees of polymer-ization,fourprocedureswerecarriedouttobreakthestructurefor releasingsuchcompound:
ICentrifugation: Approximately 0.1g of particles from each treatmentwasmixedwith4mLofultra-purewater.The sam-plesweremaintainedstaticduring24h;thereafter,theywere manuallyagitatedforreconstitutingtheemulsions.Aliquotsof 0.5mLweretransferredtoanEppendorftubeof2mL contain-ing1.3mLofhexane Themixtureswerethencentrifugedat
5000rpmfor20minandat10,000rpmfor5min.This proce-durewasperformedtobreaktheemulsionandtocapturethe
Trang 3ger-anylgeraniolcontentwasanalyzedasfollowingtheanalytical
proceduresusedforpureannattoseedoil(oilbefore
encapsu-lation)
IIDiffusion in hexane and extraction assisted by ultrasound:
Approximately0.1gofparticlesfromeachtreatmentwasmixed
with20mLofhexane.Thesamplesweremaintainedstatic
dur-ing24hfor attaining thediffusionof geranylgeraniol.Inthe
sequence,thesamplesweresonicatedat600Wduring2min
usinga13mmdiameter,19kHzultrasonicprobe(Unique,
Dis-ruptor,800W,Indaiatuba,Brazil).Afterwards,analiquotwas
takenandsubjectedtochromatographicanalysesfollowingthe
sameproceduresdevelopedwithpureoil
IIIDiffusion in ethanol and extraction assisted by ultrasound:
ThisprocedurewasaccomplishedsimilarlytoprocedureII.The
onlyonedifferencewasthesubstitutionofhexanebyethanol
IVDiffusion in ethanol:water solution and extraction assisted by
ultrasound:Thisprocedurewasaccomplishedsimilarlyto
pro-ceduresIIandIII.Theonlyonedifferencewasthesubstitution
ofhexaneorethanolbyethanol:water(1:1,w/w)solution
2.8 Differentialscanningcalorimetry(DSC)
DSCanalysiswasperformedusingcalorimeterequipment(TA
60,ShimadzuCorporation,Kyoto,Japan)fordeterminingtheglass
transitiontemperature(Tg)ofmicroparticlesandinulinsusedas
wallmaterial.Approximately2mgofsample,underanatmosphere
with10mL/minofnitrogen,wassubmittedtotwo heating
gra-dientsforconstructingDSCcurves:25◦Cto110◦Cwithscanning
rateof10◦C/minandisothermalperiodof5min(firstrun);25◦C
to250◦C(secondrun).Tgwasobservedinthesecondrunatthe
midpointoftheglasstransitionrange(Botrel,deBarrosFernandes,
Borges,&Yoshida,2014)
2.9 Wateradsorptionisotherms
Water adsorption isotherms of microparticles containing
annatto seed oil, formed with both degrees of
polymeriza-tion, weredetermined by thegravimetric static method(Silva,
Borges, da Costa, & Queiroz, 2015; Silva, Fernandes, Borges,
Botrel,&Queiroz,2014).Thesampleswereconditionedin
phos-phorous pentoxide previously of performing the assays, until
constant weight Such procedure was fulfilled to assure that
onlytheadsorptionphenomenon couldbeobservedfor all
rel-ative moistures evaluated in the experiment Afterwards, the
microparticles were stored at 30◦C under some relative
mois-tureconditions(11.28%to90.20%)provided bysevensaturated
salinesolutions(lithiumchloride,magnesiumchloride,potassium
carbonate,sodiumbromide,sodiumchloride,potassiumchloride
andbarium chloride)(Greenspan, 1977).The parametersofthe
Guggenheim–Anderson–deBoer(GAB)model(Eq.(3))(Vanden
Berg,1984)werefittedusingtheexperimentaldataofequilibrium
moisture.TheQuasi-Newtonnonlinearregressionwasusedwitha
convergencecriterionof10−4ontheStatisticasoftware(Statsoft,
8.0,2007)
Xeq= XmCKaw
(1−Kaw) (1−Kaw+CKaw) (3)
Where:Xeqistheequilibriummoisture(gwater/100gdrysolids);
Xmisthemonolayermoisturecontent(gwater/100gdrysolids);aw
isthewateractivity(dimensionless);Cisaconstantrepresenting
theadsorptiononthefirstmonolayer;Kisaconstantrepresenting
theadsorptionofmoleculesofwateronmultilayers
Table 1
Reconstitution properties of annatto seed oil powders.
FE: fresh emulsion; RE: reconstituted emulsion.
The fit of themodel parameters wasassessed basedon the coefficientofdetermination(R2)andthemeanrelativepercentage deviationmodulus(E)(Eq.(4)):
E=100 n
n
i=1
|Y− ˆY|
Y
(4)
Where:Yistheobservedvalue; ˆY isthemodelestimatedvalue;n
isthenumberofobserveddata
2.10 Statisticalanalysis Minitab16®softwarewasusedtoperformtheanalysisof vari-anceforverifyingtheeffectsofthedegreesofinulinpolymerization
onthemicroparticlescharacteristics.Differencesbetweenaverage valueswerecomparedusingTukey’stestwith5%ofsignificance (p-value<0.05).DSCresultswereanalyzedbydescriptiveapproach
3 Results and discussion
3.1 Reconstitutionpropertiesofannattoseedoilemulsions Theevaluationofreconstitutionpropertiesofparticulate sys-tems allows predicting the best conditions for applying and distributingencapsulatedactivecompounds.Inthissense,the wet-tabilityisoneofthemoreimportantphysicalpropertiestakeninto accountwhenthecharacteristicsof reconstitutedpowder prod-uctsareevaluated,becausethewettabilityexpressesthecapacity
oftheproducttoadsorbwater.Then,theresponsesof wettabil-ityofannattoseedoilmicroparticlesformedwithinulinsoftwo degreesofpolymerization(GR-inulin,DP≥10;HP-inulin,DP≥23)
asencapsulatingmatricesarepresented(Table1)
The use of GR-inulin (lower DP) enabled the formation of microparticleswithhigherinstantisationvelocity.Thisresultcould
beassociatedwiththedifferencesonthemolecularchain,because larger molecular chains could act as physical barrier against water penetration, thus reducing the velocityof water absorp-tion.Fernandes,Borges,andBotrel(2014)evaluatedthewettability
ofrosemaryessentialoilmicroparticlesobtainedbyspray-drying Theauthorsusedblendsofinulin/Arabicgumandinulin/modified starch, both with the same mass proportion of wall materials (1:1).Thefindingsindicatedtheinulin/Arabicgumblendpresented instantisationat93±9s,whileinulin/modifiedstarchblend pre-sentedinstantisationat131±8s
Dropletsizedistributionsofannattoseedoilemulsions stabi-lizedbyGR-andHP-inulinsinfreshstate(beforefreeze-drying) andreconstitutedstatearepresented(Fig.1).Forbothtreatments, thepatternsweredifferentwhenthefreshandreconstituted emul-sionsarecompared.Inaddition,bimodaldistributionsareseen.The responsesofD32andPDI(Table1)corroboratetheperformanceof GR-FDandHP-FDmicroparticles,whichtheresponseswerenot satisfactory,mainlywithrespecttothereconstitutionproperties Suchresponsesareassociatedwiththelackofsuperficialactivityof inulinmolecule,regardlessofitsdegreeofpolymerization.Inulin aloneaswallmaterialcannotforminterfacialfilmsovertheannatto seedoildroplets.Themainmechanismforemulsionsstabilization
Trang 4Fig 1.Droplet size distributions of fresh and reconstituted emulsions and visual aspect of emulsions stored during 24 h after reconstitution.
islinkedtotheinulinactionasthickenerofcontinuousphase,
creat-ingaphysicalbarrieragainstthecoalescenceofoildroplets(Silva,
Gomes,etal.,2015).Thevisualaspectofemulsionsstored
dur-ing24hafterreconstitutionisalsopresented(Fig.1).Theemulsion
stabilizedwithHP-inulinshowedstabilityagainstphaseseparation
afterthereconstitution.However,theemulsionstabilizedwith
GR-inulinwasunstableduringthestorageperiod.Thefindingscould
beassociatedwiththedegreeofinulinpolymerization,because
thehighestdegreeledtotheformationofathickenercontinuous
phase,moreefficientforreducingthecoalescenceofoildroplets
(Silva&Meireles,2015)
3.2 Microstructuralanalysis
Themorphologyofannattoseedoilmicroparticlesformedwith
twodegreesofpolymerization(GR:DP≥10;HP:DP≥23)is
pre-sentedafterperformingSEMandCSLManalyses(Fig.2).SEMis
animportantanalysisusedforcharacterizingthemicrostructure
ofparticulateproducts.Withthemicrographs,theeffectsofthe
processonmicroparticlesformationandtheeffects of
composi-tionofwallmaterialsonthemorphologicalcharacteristicsofthe
powderproductscanbeassessed.Likewise,CSLManalysisisan
importanttoolforcharacterizingmicrostructuresbasedonthe
nat-uralfluorescentpropertiesofcompoundspresentinthestructure
orbasedontheadditionofsubstanceswithsuchproperties.The
mainadvantageofthetechniquereliesonthepossibilityof observ-ingtheinternalstructureofmicroparticleswithoutfragmenting thematerial.Theresultsobtainedafterperformingbothanalyses (SEMand CSLM)arecomplementary,whereas theycharacterize themorphologyanddistributionofthebioactivecompoundsonthe microstructureoftheparticles.Somescientificstudiesreportthese analysesasacombinedformofcharacterizationofpowder prod-uctscontainingencapsulatedbioactivecompounds(Carvalho,da CostaMachado,daSilva,Sartoratto,Rodrigues,&Hubinger,2016; Silva,Azevedo,Cunha,Hubinger,&Meireles,2016)
Theregionsinfluorescentgreen(Fig.2)indicatethe distribu-tionof␦-tocotrienolinthemicroparticlesstructure,whichmeans annattoseedoilwasdistributedthroughtheencapsulatingmatrix AlbuquerqueandMeireles(2012)reportedannattoseedoilisthe richestsourceof␦-tocotrienol,containingapproximately15g ␦-tocotrienol/100goil.Therefore,weinferbothinulinswereableto entrap␦-tocotrienolinsidethematrix(qualitativeanalysis) Regardlessthedegreeofinulinpolymerization,all micropar-ticles presented irregular morphology, typical of freeze-dried materials(Chranioti,Chanioti,&Tzia,2016).Themorphologyisa resultofbreakingthespongystructureformedafterremovingice crystalsintheencapsulatingsystemthroughsublimation Regard-ingthemicrostructure,nodifferenceswereobservedafterusing inulinswithdifferentmolecularchainlengths
Trang 5Fig 2.SEM and CSLM micrographs of annatto seed oil microparticles.
3.3 Geranylgeraniolretention
Oneofthemainresponseswhenevaluatingtheefficiencyof
anencapsulatingmatrixistheabilityofretainingthetarget
bioac-tivecompoundintotheencapsulatingsystem.Thisabilityassures
theefficiencyofanexpectedactionafterapplyingthe
micropar-ticlesinadeterminedproduct.Inthissense,theinfluenceofthe
degreeofinulinpolymerizationongeranylgeraniolretentionwas evaluated,becausegeranylgeraniolpresentstherapeuticproperties associatedwithitsbiologicalactivitiesasanti-inflammatoryand anticanceragent.Annattoseedoil,beforeencapsulation,presented 25.0±0.6ggeranilgeraniol/100goil
Recoveringgeranilgeraniolfromannattoseedoilmicroparticles aimingtoperformitsquantificationwasfulfilledthroughtwo
Trang 6dis-Fig 3.Effect of the degree of inulin polymerization on geranylgeraniol retention.
US: ultrasonication.
tinctmechanisms:i)emulsionswerereconstitutedbysuspending
themicroparticlesinwaterfollowedbycentrifugationtobreakthe
colloidalsystemandtocapturethecompound;ii)suspensionof
microparticleswasdoneindifferentorganicsolventsfordiffusing
thecompoundfollowedbybreakingtheparticlesmicrostructures
usingultrasonication.Theinfluenceofthedegreeofinulin
poly-merization ongeranylgeraniol retention could beseen (Fig.3
whereitrangedfrom40%to74%forGR-FDandfrom2%to77%
forHP-FD
Breaking the reconstituted emulsions by centrifugation for
extractingannattoseedoilwasnotanefficientmethodto
quan-tifygeranylgeraniol,becausehighviscositiesofemulsionsactedas
aneffectivephysicalbarriertoentraptheoil.Thelowestextraction
foundforHP-FDcorroboratesthisobservation,becausethe
viscos-ityoftheemulsionincreaseswithincreasingthedegreeofinulin
polymerization(Silva&Meireles,2015;Silva,Gomesetal.,2015)
Diffusingtheoilin organicsolventfollowedbysonicationof
thematrixforreleasingtheoilwasthemostefficientmethodfor
quantifyinggeranylgeraniolretainedinthemicroparticles
Diffu-sionin ethanol orethanol:water solutiondidnot influencethe
geranylgeraniolretention (p-value=0.725).Thelowest retention
foundafterusinghexaneasdiffusionmediumcanbeassociated
withthelowestpolarityofthissolventwhencomparingitwith
theotherdiffusionmedia.Furthermore,theinteractionofhexane
withtheencapsulatingmatrixislowandnotenoughtobreakthe
structureduringultrasonication
Microparticlespresentedthesamecapacityofgeranylgeraniol
retention(p-value=0.616).Ourresultscorroboratetheentrapment
efficienciesreported by Silva and Meireles (2015).The authors
reportedthat thedegreeofinulinpolymerizationdidnot
influ-encetheoilretentioninthemicroparticles,since GR-inulinand
HP-inulinresultedinthesameentrapmentefficiencyofannatto
seedoil
3.4 Glasstransitiontemperature(Tg)
DeterminingTgofdehydratedproductsisanimportantstepfor
characterizingparticulatesystems(GomesdaCosta,Silva,Toledo
Hijo,Azevedo,&Borges,2015).ConditionsoftemperatureaboveTg
providemoremolecularmobility,acceleratingthereactionrates
ConditionsoftemperaturebelowTgprovidehigherstabilityofthe
productsagainstdeteriorationduringstorage(Oikonomopoulou,
Fig 4.DSC curves of pure inulins and annatto seed oil microparticles.
Krokida,&Karathanos,2011).SilvaandMeireles(2015)evaluated X-raydiffractogramsofGR-andHP-inulins,aswellasGR-FDand HP-FDmicroparticles.GR-andHP-inulinswerecharacterizedas amorphousmaterialsandbothmicroparticleswerecharacterized
asamorphousmaterialswithcrystallineregions
Semicrystallinebiopolymerscanpresentthreethermal transi-tioncharacteristics:a)glasstransitiontoamorphousfraction;b) fusionofthecrystallinefraction;c)transitionasaconsequenceof crystallization(Teac˘a,Bodîrl˘au,&Spiridon,2013).When evaluat-ingencapsulatingsystems,themorerelevantphasetransitionis theglasstransition,becauseTgofamorphousmaterialsisdefined
asthetemperaturewhichthematerialchangesfromamorphous statetogummy(elastic)state.Therefore,afterthetransition,the microparticlescoatingstructurethatentrap(protect)theannatto seedoillooseitsefficiencyasencapsulatingmatrix,releasingthe activematerial
DSC curves of pure inulins and microparticles containing annattoseedoil(Fig.4)wereobtainedafterthecoolingperiodat secondscanningstage,aimingtoerasethethermalhistoryoverTg (Haque,Kawai,&Suzuki,2006).Overall,glasstransitionis eval-uated in terms of themoisture of thematerial, because water actsasplasticizing,thusreducingTgasaconsequenceofreducing interandintramacromolecularforces(Chuang,Panyoyai,Shanks,
&Kasapis,2015).Thesampleswereanalyzedattheconditionsof moistureandawfromFDprocess,asdescribedbySilvaandMeireles (2015),searchingforthecharacterizationofproductsobtainedon theirnaturalconditions
AccordingtoDSCcurves(Fig.4 thephenomenaofglass tran-sitionofGR,HP,GR-FDandHP-FDsamplessucceededat132◦C,
157◦C,144◦Cand 169◦C,respectively.Afteranalyzingthepure biopolymers,increasingthedegree ofpolymerizationincreased
Tgofinulin.Themolecularchainlengthofinulindidnot influ-enceTgofmicroparticles.Althoughdifferenceshigherthan25◦C
intheTgofpureinulinswereobserved,thepresenceofannatto seed oil approximated the physical properties of the systems Ronkart,Paquot,Fougnies,Deroanne,andBlecker(2009)evaluated themoisturecontentoverTgofinulin(meanDP=23).Theauthors concludedtheglasstransitionofinulinsucceededbetween150◦C and160◦Cformoisturecontentsbelow5wt.%(drymassbasis), similarlytoourfindings
Trang 7Fig 5. Water adsorption isotherms of annatto seed oil microparticles.
3.5 Wateradsorptionisothermsofannattoseedoil
microparticles
Studyingtheisothermalbehaviorofwateradsorptionofannatto
seedoilmicroparticlesallowspredictingthebeststorage
condi-tionsformaintaininglongshelflifeofproducts.Wateradsorption
ofdehydratedproductsisthemainfactorofdegradationofsuch
products.Increasingmoisturecontent,afterwateradsorption,can
causeseveralchangesontheencapsulatingmatrix.Forinstance,
microparticlescanagglomerateorTgcanreduce,compromising
theefficiencyofthepolymericmatrix
Wateradsorption isotherms of annatto seed oilat 30◦C for
eachdegreeofinulinpolymerizationarepresented(Fig.5)
HP-FDsamplespresentedbehaviorofTypeII:sigmoidal.Accordingto
classificationofBrunauer,Deming,andTeller(1940),thisbehavior
istypicalofporousormacroporousmaterialswhichpresenthigh
adsorptionenergy.Otherwise,GR-FDsamplespresented
behav-iorofTypeIII:non-sigmoidal.Thisbehavioristypicalofporous
ormacroporousmaterialswhichpresentlowadsorptionenergy
Thebehaviorscorroboratethedifferencesontheequilibrium
mois-tures observedfor microparticles withrelative moisturehigher
Fig 6.Images of annatto seed oil microparticles after water adsorption at seven equilibrium relative moistures.
than30%.Inthesameconditionsofpressureandtemperature,
GR-FDsamplespresentedlargercapacityofwateradsorptionthanthat observedforHP-FDsamples.Then,wateradsorptionintheinulin withsmallermolecularchainexpendslowerenergy
Aftercomparingthebehaviorofthecurves,reductionofwater adsorptioncapacityinthematrixathighrelativemoistures(>70%) wasverifiedwhenthedegreeofinulinpolymerizationisincreased (highermolecularlength) However,theopposite behavior was observedatlowrelativemoistures(<30%).Similarfindingswere reportedbySchaller-Povolny,Smith,andLabuza(2000)when eval-uatingfourdegreesofinulinpolymerization(meanDPequalto5,
9,11and23)overwateradsorptionisothermsat23◦C.Thiseffect
iscoupledwiththemolecularlengthandarrangementofinulin,
Trang 8Table 2
Parameters fitted for GAB model.
Microparticles X m (g water/100 g dry solids) C K R 2 E (%)
whichtheshortestchaincontainsmorehydroxylgroupsavailable
tobondwithwater
GABmodelwasusedtofittheparametersthatrepresentthe
experimentaldatabecausesuchmodelcansuccessfullydescribe
waterisothermaladsorptionofpowderproducts(Rao&Labuza,
2012;Zhou,Liu,Chen,Chen,&Labuza,2014).Thus,theparameters
ofGABmodelwerefittedandthefitwasevaluatedstatistically
(Table2).Accordingtohighvaluesofcoefficientofdetermination
(R2≥0.995)andlowvaluesofmeanrelativepercentagedeviation
modulus(E≤4.41),thecurvesfittedtotheadsorptionisotherms
weresuitabletodescribethebehavioroftheexperimentaldata
AfterfittingtheparametersofGABmodel,Xmwasobtained.This
parametercomprisesthecontentofwaterthatisstronglyadsorbed
tothebondingsitesonthemicroparticlessurface.Xmisimportant
forthephysicalstabilityofparticulatesystemsagainstlipid
oxida-tion,enzymaticactivity,non-enzymaticbrowningandchangesin
thestructuralcharacteristics.Therefore,Xmisconsideredtobethe
suitablemoisturecontentforextendingtheshelflifeofproducts
(Rao&Labuza,2012)
C and K constants of GAB model are associated with the
monolayer and monolayer properties, respectively Ranges of
5.67≤C<∞ and 0.24<K≤1 indicate that GAB model properly
describeswateradsorptionisotherms(Lewicki,1997).Increasing
Kbydecreasingthedegreeofinulinpolymerizationcorroborates
thechangeoftheshapeofisothermalcurvefromTypeIItoType
III
Afterthe equilibrium of microparticles with water vapor in
sevenrelative moistures,theimagesofthesamplesweretaken
(Fig.6).Novisiblephasetransition(i.e.,liquefaction)wasobserved
ineachmatrix,eventhoughathighrelativemoistures.However,
theGR-FDmicroparticlesdisplayedcakingaftersubmittedto
rel-ativemoisturehigherthan32%,whilstHP-FDmicroparticleswere
stableatallconditionsofrelativemoisture
4 Conclusion
Themicroparticlesformedandpresentedinthispaperare
high-lightedasaconsequenceoftheirsingularproperties,whichhave
beennotenoughstudiedonscientificcommunity.Such
micropar-ticles are totally functional, because the bioactive compounds
encapsulatedandtheencapsulatingmatrixaretherapeutic
sub-stancestobeappliedinfood-relatedandpharmaceutical-related
products Considering the technical approach, after comparing
inulins with two degrees of polymerization (GR: DP≥10; HP:
DP≥23)for encapsulatingannattoseed oil,theconclusionwas
thatthepolymericmatrixinfluencedthemicroparticlesproperties
Whentheemulsionswerereconstituted,theemulsionstabilized
with HP-inulin showed stability against phase separation 24h
afterthereconstitution.Bothinulins couldentrapannatto seed
oil;therefore,themicroparticlespresentedthesamecapacityof
geranylgeraniolretention(77%).Furthermore,forwateractivities
higherthan0.3,waterisothermaladsorptionwaslowerwhenusing
HP-inulin.Images of HP-FDmicroparticles indicated theywere
morestable atallconditions ofrelative moisture(11%to90%)
Therefore, HP-inulinis inferred tobe a potentialencapsulating
agentofbioactivecompoundsextractedfromvegetalsources,as
annattoseeds
Acknowledgements
Authors are grateful to CNPq (470916/2012-5) and FAPESP (2012/10685-8; 2015/13299-0) for the financial support Eric KevenSilvathanksCNPq(140275/2014-2)forthePh.D.scholarship andFAPESP(2015/22226-6)forthepostdoctoralscholarship Gio-vaniL.ZabotthanksFAPESP(2014/15685-1)forthepostdoctoral scholarship.M.AngelaA.MeirelesthanksCNPq(302423/2015-0) fortheproductivitygrant.Inaddition,theauthorswouldthankthe accesstoequipmentandassistanceprovidedbytheNational Insti-tuteofScienceandTechnologyonPhotonicsAppliedtoCellBiology (INFABIC)attheUniversityofCampinas;INFABICisco-fundedby FAPESP(08/57906-3)andCNPq(573913/2008-0)
References
Albuquerque, C L C., & Meireles, M A A (2012) Defatting of annatto seeds using supercritical carbon dioxide as a pretreatment for the production of bixin: Experimental, modeling and economic evaluation of the process Journal of Supercritical Fluids, 66, 86–94.
Botrel, D A., de Barros Fernandes, R V., Borges, S V., & Yoshida, M I (2014).
Influence of wall matrix systems on the properties of spray-dried microparticles containing fish oil Food Research International, 62, 344–352.
Brunauer, S., Deming, L S., & Teller, E (1940) On a theory of Van der Waals adsorption of gases Journal of the American Chemists Society, 62, 1723–1732.
Carvalho, A G S., da Costa Machado, M T., da Silva, V M., Sartoratto, A., Rodrigues,
R A F., & Hubinger, M D (2016) Physical properties and morphology of spray dried microparticles containing anthocyanins of jussara (Euterpe edulis Martius) extract Powder Technology, 294, 421–428.
Chranioti, C., Chanioti, S., & Tzia, C (2016) Comparison of spray, freeze and oven drying as a means of reducing bitter aftertaste of steviol glycosides (derived from Stevia rebaudiana Bertoni plant) – Evaluation of the final products Food Chemistry, 190, 1151–1158.
Chuang, L., Panyoyai, N., Shanks, R., & Kasapis, S (2015) Effect of sodium chloride
on the glass transition of condensed starch systems Food Chemistry, 184, 65–71.
Fernandes, R V d B., Borges, S V., & Botrel, D A (2014) Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation
of rosemary essential oil Carbohydrate Polymers, 101, 524–532.
Fuchs, M., Turchiuli, C., Bohin, M., Cuvelier, M E., Ordonnaud, C., Peyrat-Maillard,
M N., et al (2006) Encapsulation of oil in powder using spray drying and fluidised bed agglomeration Journal of Food Engineering, 75(1), 27–35.
Gomes da Costa, J M., Silva, E K., Toledo Hijo, A A C., Azevedo, V M., & Borges, S.
V (2015) Physical and thermal stability of spray-dried Swiss cheese bioaroma powder Drying Technology, 33(3), 346–354.
Greenspan, L (1977) Humidity fixed points of binary saturated aqueous solutions Journal of Research of the National Bureau of Standards A Physics and Chemistry, 81a, 89–112.
Haque, M K., Kawai, K., & Suzuki, T (2006) Glass transition and enthalpy relaxation
of amorphous lactose glass Carbohydrate Research, 341(11), 1884–1889.
Kolida, S., & Gibson, G R (2007) Prebiotic capacity of inulin-type fructans The Journal of Nutrition, 137(11), 2503S–2506S.
Lewicki, P P (1997) The applicability of the GAB model to food water sorption isotherms International Journal of Food Science and Technology, 32(6), 553–557.
Marcuzzi, A., Zanin, V., Piscianz, E., Tricarico, P M., Vuch, J., Girardelli, M., et al (2012) Lovastatin-induced apoptosis is modulated by geranylgeraniol in a neuroblastoma cell line International Journal of Developmental Neuroscience, 30(6), 451–456.
Mazutti, M A., Zabot, G., Boni, G., Skovronski, A., de Oliveira, D., Di Luccio, M., et al (2010) Optimization of inulinase production by solid-state fermentation in a packed-bed bioreactor Journal of Chemical Technology & Biotechnology, 85(1), 109–114.
Mensink, M A., Frijlink, H W., van der Voort Maarschalk, K., & Hinrichs, W L J (2015) Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics Carbohydrate Polymers, 130, 405–419.
Moraes, M N., Zabot, G L., & Meireles, M A A (2015) Extraction of tocotrienols from annatto seeds by a pseudo continuously operated SFE process integrated with low-pressure solvent extraction for bixin production The Journal of Supercritical Fluids, 96, 262–271.
Oikonomopoulou, V P., Krokida, M K., & Karathanos, V T (2011) Structural properties of freeze-dried rice Journal of Food Engineering, 107(3–4), 326–333.
Pandey, A., Soccol, C R., Selvakumar, P., Soccol, V T., Krieger, N., & Fontana, J D (1999) Recent developments in microbial inulinases Its production, properties, and industrial applications Applied Biochemistry and Biotechnology, 81(1), 35–52.
Rao, Q., & Labuza, T P (2012) Effect of moisture content on selected physicochemical properties of two commercial hen egg white powders Food Chemistry, 132(1), 373–384.
Ronkart, S N., Paquot, M., Fougnies, C., Deroanne, C., & Blecker, C S (2009) Effect
of water uptake on amorphous inulin properties Food Hydrocolloids, 23(3),
Trang 9Ruiz-Aceituno, L., García-Sarrió, M J., Alonso-Rodriguez, B., Ramos, L., & Sanz, M L.
(2016) Extraction of bioactive carbohydrates from artichoke (Cynara scolymus
L.) external bracts using microwave assisted extraction and pressurized liquid
extraction Food Chemistry, 196, 1156–1162.
Saengthongpinit, W., & Sajjaanantakul, T (2005) Influence of harvest time and
storage temperature on characteristics of inulin from Jerusalem artichoke
(Helianthus tuberosus L.) tubers Postharvest Biology and Technology, 37(1),
93–100.
Schaller-Povolny, L A., Smith, D E., & Labuza, T P (2000) Effect of water content
and molecular weight on the moisture isotherms and glass transition
properties of inulin International Journal of Food Properties, 3(2), 173–192.
Silva, E K., & Meireles, M A A (2015) Influence of the degree of inulin
polymerization on the ultrasound-assisted encapsulation of annatto seed oil.
Carbohydrate Polymers, 133, 578–586.
Silva, E K., Fernandes, R V d B., Borges, S V., Botrel, D A., & Queiroz, F (2014).
Water adsorption in rosemary essential oil microparticles: Kinetics,
thermodynamics and storage conditions Journal of Food Engineering, 140,
39–45.
Silva, E K., Azevedo, V M., Cunha, R L., Hubinger, M D., & Meireles, M A A (2016).
Ultrasound-assisted encapsulation of annatto seed oil: Whey protein isolate
versus modified starch Food Hydrocolloids, 56, 71–83.
Silva, E K., Borges, S V., da Costa, J M G., & Queiroz, F (2015) Thermodynamic
properties, kinetics and adsorption mechanisms of Swiss cheese bioaroma
powder Powder Technology, 272, 181–188.
Silva, E K., Gomes, M T M S., Hubinger, M D., Cunha, R L., & Meireles, M A A.
(2015) Ultrasound-assisted formation of annatto seed oil emulsions stabilized
by biopolymers Food Hydrocolloids, 47, 1–13.
Silva, E K., Zabot, G L., & Meireles, M A A (2015) Ultrasound-assisted encapsulation of annatto seed oil: Retention and release of a bioactive compound with functional activities Food Research International, 78, 159–168.
Silva, E K., Zabot, G L., Cazarin, C B B., Maróstica, M R., Jr., & Meireles, M A A (2016) Biopolymer-prebiotic carbohydrate blends and their effects on the retention of bioactive compounds and maintenance of antioxidant activity Carbohydrate Polymers, 144, 149–158.
Teac˘a, C.-A., Bodîrl˘au, R., & Spiridon, I (2013) Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films Carbohydrate Polymers, 93(1), 307–315.
Van den Berg, C (1984) Description of water activity of foods for engineering purposes by means of the GAB model of sorption In B M McKenna (Ed.), Engineering and food (Vol 1) (pp 311–321) New York: Elsevier Applied Science.
Zabot, G., Silva, E K., Azevedo, V M., & Meireles, M A A (2016) Replacing modified starch by inulin as prebiotic encapsulant matrix of lipophilic bioactive compounds Food Research International, 85, 26–35.
Zhou, P., Liu, D., Chen, X., Chen, Y., & Labuza, T P (2014) Stability of whey protein hydrolysate powders: Effects of relative humidity and temperature Food Chemistry, 150, 457–462.
Zou, L., & Akoh, C C (2015) Antioxidant activities of annatto and palm tocotrienol-rich fractions in fish oil and structured lipid-based infant formula emulsion Food Chemistry, 168, 504–511.