Gold nanorods (AuNRs) are suitable for constructing self-assembled structures for the development of biosensing devices and are usually obtained in the presence of cetyltrimethylammonium bromide (CTAB).
Trang 1jo u r n al h om ep a g e :w w w e l s e v i e r c o m / l o c a t e / c a r b p o l
Heloise Ribeiro de Barrosa, Leandro Piovana, Guilherme L Sassakib,
Diego de Araujo Sabryb, Ney Mattosoc, Ábner Magalhães Nunesd, Mario R Meneghettid,
Izabel C Riegel-Vidottia,∗
a Grupo de Pesquisa em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal do Paraná—UFPR, CxP 19081, CEP 81531-980,
Curitiba, PR, Brazil
b Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná—UFPR, CxP 19046, CEP 81531-980, Curitiba, PR, Brazil
c Departamento de Física, Universidade Federal do Paraná—UFPR, CxP 19044, CEP 81531-980, Curitiba, PR, Brazil
d Grupo de Catálise e Reatividade Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av Lourival de Melo Mota s/n, CEP
57072-970, Maceió, AL, Brazil
a r t i c l e i n f o
Article history:
Received 14 April 2016
Received in revised form 28 June 2016
Accepted 5 July 2016
Available online 5 July 2016
Keywords:
Gold nanorods
Sulfated chitosan
Surface interactions
Self-assembling
a b s t r a c t
Goldnanorods(AuNRs)aresuitableforconstructingself-assembledstructuresforthedevelopmentof biosensingdevicesandareusuallyobtainedinthepresenceofcetyltrimethylammoniumbromide(CTAB) Here,asulfatedchitosan(ChiS)andgumarabic(GA)wereemployedtoencapsulateCTAB/AuNRswith thepurposeofstudyingtheinteractionsofthepolysaccharideswithCTAB,whichiscytotoxicandis responsiblefortheinstabilityofnanoparticlesinbuffersolutions.Thepresenceofavarietyoffunctional groupssuchasthesulfategroupsinChiSandthecarboxylicgroupsinGA,ledtoefficientinteractions withCTAB/AuNRsasevidencedthroughUV–visandFTIRspectroscopies.Electronmicroscopies(HR-SEM andTEM)revealedthatnanoparticleclusterswereformedintheGA-AuNRssample,whereas individ-ualAuNRs,surroundedbyadenselayerofpolysaccharides,wereobservedintheChiS-AuNRssample Therefore,thepresentedworkcontributestotheunderstandingofthedrivingforcesthatcontrolthe surfaceinteractionsofthestudiedmaterials,providingusefulinformationinthebuilding-upofgold self-assemblednanostructures
©2016ElsevierLtd.Allrightsreserved
1 Introduction
Goldnanoparticles(AuNPs)haveincreasinglybeengiven
exten-sive attention due to their unique properties making those
materialsusefulincatalysis,nanoelectronicsand,more
interest-ingly, inoptical sensingand diagnosticsin thebiomedical field
(Garabagiu & Bratu,2013; Kopwitthaya et al., 2010; Mitamura,
Imae,Saito,&Takai,2007;Pierrat,Zins,Breivogel,&Sonnichsen,
2007)
AmongtheAuNPs,considerableattentionhasbeendedicated
togoldnanorods(AuNRs).Thecoherentoscillationoftheelectrons
alongtheshortaxis(transversalSPR)andthelongaxis(longitudinal
SPR)ofthenanorodscausestwosurfaceplasmonresonance(SPR)
bands.Atleastoneofthesebandscanbefoundinthevisible
spec-tra.ThetransversalSPRbandhasamaximumabsorptionaround
∗ Corresponding author.
E-mail addresses: izabel.riegel@ufpr.br , iriegel@gmail.com (I.C Riegel-Vidotti).
520nm(Rayavarapuetal.,2010), whereasthelongitudinalSPR bandisobservedintherangefrom650nm(shorterrods)to950nm (longer rods)(Eutis &El-Sayed, 2006; Rayavarapuet al.,2010)
AstransversalandlongitudinalSPRareshapeandsizedependent (Murphy&Jana,2002;Xieetal.,2011),theAuNRsareparticularly suitableforbuildingupself-assembledstructuresforthe develop-mentofbiosensors(Yuetal.,2014),nanodevices(Xieetal.,2011), andnon-invasiveprobes(Charanetal.,2012)
Regarding the applications of AuNPs in biological environ-ments,someimportantissuesariseconcerningthemaintenance
oftheirmorphologicalstability,cytotoxicity,andinteractionswith different organisms or theircomponents Therefore, the choice forappropriatestabilizingagentsisoftheutmostimportancein obtainingAuNRsthatarestableindifferentenvironmental condi-tions(pHandionicstrength)andthatexhibitlowtoxicity Theseedmediatedmethodinthepresenceofthesurfactant cetyltrimethylammoniumbromide(CTAB)isthemostcommonly employedproceduretoobtainAuNRs,althoughsomeother meth-ods have beenrecently proposed(da Silva, Nunes,Meneghetti, http://dx.doi.org/10.1016/j.carbpol.2016.07.018
0144-8617/© 2016 Elsevier Ltd All rights reserved.
Trang 2Mulvaney,2005).Ingeneral,themethodinitiallyproposedby
Mur-phy(Gole,Orendorff&Murphy,2004;Jana,Gearheart&Murphy,
2001a; Jana, Gearheart, & Murphy, 2001b; Jana, Gearheart, &
Murphy,2001c;Johnson,Dujardin,Davis,Murphy&Mann,2002;
Murphy&Jana,2002)andEl-Sayedgroups(Nikoobakht&El-Sayed,
2001)consists oftheformation of theAuNRs fromsmall sized
sphericalAuNPs(seedsolution),whichthenactsasnucleation
cen-tersintheAuNRssynthesis.InthepresenceofCTAB,theAuNRs
growthismainlyunidirectionalsincetheinteractionsbetweenthe
polarheadgroups of thesurfactant, i.e.thequaternary
ammo-niumbromidemoiety,andthecrystallographic{110}facetofthe
growingparticleispreferential,causingthegrowthinthe
longitu-dinaldirection,paralleltothe{001}planes(daSilva,Meneghetti,
Denicourt-Nowicki, & Roucoux, 2014; Meena & Sulpizi, 2013;
Nikoobakht&El-Sayed,2003).Therefore,thedifferentgrowthrates
ofthefacetsarethefactorsthatdeterminethefinalshapeofthe
nanoparticle(shortversuslongNRs).Inaddition,CTABis
responsi-bleformaintainingthecolloidalstabilitysincethebilayerstructure,
whichisformedbytheself-interactionofthealkylgroupsofCTAB,
promotesthesuitableprotectionagainstparticleagglomerationin
aqueousmediathroughelectrostaticandstericinteractions(Boca
&Astilean,2010).However,CTABiscytotoxicandcausesAuNRs
instabilityinbuffersolutions,whichthenrestrictstheirusein
bio-logicalapplications(Boca&Astilean,2010;Hamon,Bizien,Artzner,
Even-Hernandez,&Marchi,2014;Rayavarapuetal.,2010)
Therefore, when focusing on the obtention of AuNRs that
safelycan beusedin thebiomedicalfield, it isfundamental to
replacepartof CTAB or encapsulatethe CTAB/AuNRstoobtain
particles with reduced toxicity that are also stable under
dif-ferentenvironments.Kopwitthaya etal.(2010)and Rayavarapu
et al (2010) synthetized CTAB/AuNRs and showed that the
replacement of CTAB by thiolated poly(ethylene glycol)
(PEG-SH)producedparticleswithlowercytotoxicitycomparedtothe
as-preparedAuNRs(Kopwitthayaetal.,2010;Rayavarapuetal.,
2010) In addition, other molecules have beenused to replace
CTABintending to reduce thecytotoxicity,such aspolystyrene
sulfonate, polyethylene glycol (Rayavarapu et al., 2010),
1-Mercaptoundec-11-yl)hexa(ethyleneglycol) (EG6OH)(Xieet al.,
2011), thio-polyethylene glycols (Bogliotti et al., 2011),
poly-acrylicacid,poly(allylamine)hydrochloride(PAH)(Huang,Jackson
&Murphy,2012),and3-mercaptopropionicacid(MPA)(Garabagiu
&Bratu,2013)
Polysaccharidesarepartofaverypromisingfamilyofnaturally
occurringmoleculesthathavealsobeendescribedtointeractwith
goldnanoparticles.Thepresenceofavarietyoffunctionalgroups
intheirstructure assiststhefavorableinteractions betweenthe
AuNRsandthesurroundingmedia,whichisresponsibleforthe
AuNRsstabilizationand alsoprovidessites forfurtherchemical
modifications(Erathodiyil&Ying,2011;Liuetal.,2013).Inaddition
tobeingnaturalproducts,polysaccharideshaveinherent
proper-tiessuchasbiodegradability,biocompatibility,andlowtoxicity(Liu
etal.,2013).Surprisingly,thereisarelativelylownumberof
scien-tificworksreportingtheuseofpolysaccharidesasstabilizingagents
ofAuNRs(Wang,Chang&Peng,2011;Yuetal.,2014),although
manyworkshavereportedtheefficientstabilizationofspherical
goldnanoparticlesbypolysaccharides
Chitosan(Chi) is a linear polysaccharide extracted fromthe
exoskeletonof crustaceans,obtainedbydeacetylation of chitin
MediumandhighmolarmasschitosanisonlysolubleinwateratpH
lowerthan6.0(Williams&Phillips,2000,Chp.21).Chitosan(Boca
etal.,2011)anditsderivativeshavebeensuccessfullyemployedto
capAuNPsforphotothermaltherapy(Wang,Chang&Peng,2011;
Yangetal.,2015),foroptoacoustictomography(Wangetal.,2015),
amongotherapplications.Gumarabic(GA)isahighlybranched
naturalpolysaccharideexudedfromthetrunksandbarksofacacia
trees.Thispolysaccharidehasbeenextensivelyusedforthe stabi-lizationofsphericalAuNPs(Chandaetal.,2010;Kattumurietal., 2007;Wu&Chen,2010),displayingoptimalperformanceinawide
pHrange(Barrosetal.,2016)
In order to reduce the cytotoxicity inherent to CTAB stabi-lizedAuNRs andsimultaneouslyimprovetheAuNRsstability in physiologicalmedia,weusedasulfatedchitosan(ChiS)orGAto encapsulateCTAB/AuNRs Thenon-toxicityand biocompatibility
ofChiandGAwereevaluatedinpreviousworks(Bicho,Roque, Cardoso,Domingos,&Batalha,2009;Bocaetal.,2011).The chem-icalmodification of Chito obtainChiS is of interestbecause it doesnotonlykeeptheChimainchainbackboneintact,butitalso improvesitssolubilityinaqueousmedia(Jayakumar,Nwe,Tokura,
&Tamura,2007).Moreover,itcanpotentiallyinfernew functional-itiestothemodifiedChisincesulfatedpolysaccharides,likeheparin forexample,areknowntopresentimportantbiologicalfunctions suchasanticoagulantand/orantithromboticactions(Asifetal., 2016;Jayakumaretal.,2007;Maasetal.,2012)
HereinwedemonstratebyUV–vis(Ultraviolet–visible)andFTIR (FourierTransformInfrared)spectroscopies,andalsoby transmis-sionandscanningelectronmicroscopiesthatChiSandGAinteract differentlywiththeAuNRs.Thedifferencesarediscussedinterms
ofthedifferentfunctionalgroupspresentineachpolysaccharide thatleadstodistinctpolysaccharide/AuNRsstructures.Therefore, thisstudycontributestounderstandingandcontrollingthe self-assemblingbehaviorofAuNRs,mediatedbythecappingagent
2 Materials and methods
2.1 Materials Tetrachloroauricacid(HAuCl4·3H20,30%indiluteHCl,99,9%), CTAB(≥98%),GA(Mw=9.3×105gmol−1;uronicacidcontentof 17%)(Greinet al.,2013),chitosan (≥75% deacetylated),and sil-ver nitrate (AgNO3,>99%) were purchased from Sigma-Aldrich Sodiumborohydride(NaBH4,≥98%)waspurchasedfromNuclear (SãoPaulo,Brasil)andascorbicacid(AA,>99%)waspurchasedfrom Dinâmica(SãoPaulo,Brasil).Milli-Qgradewater(18.2Mcm, Mil-lipore,USA)wasusedinthepreparationofallsolutions.Priorto use,GApowderwassolubilizedinwater,leftovernightat4◦Cand subsequentlydialyzedfor48hagainstdistilledwater througha dialysismembrane(12–14kDacut-off)andfreeze-dried
2.2 Sulfationofacommercialchitosan Commercial chitosan (Chi) underwent thesulfation reaction according to Terbojevich, Carraro, and Cosani (1989)’s sulfuric acid:chlorosulfonicacidmethod.Briefly,1.00gofcommercial chi-tosanwasaddedtothepre-cooled(4◦C)reactionmixture(40mLof sulfuricacid(H2SO495%)and20mLofchlorosulfonicacid(HClSO3
98%)) Then, thereaction wascarried outat roomtemperature understirringfor1h.Thesulfationwasstoppedbypouring250mL
ofcolddiethylether(Et2O)intothereactionmixture.The precipi-tateformedwaswashedwithcoldEt2O,thensuspendedindistilled water,neutralized withsaturatedNaHCO3,dialyzedagainst tap waterthrougha3500kDacut-offmembrane,andfreeze-dried.The finalproductwasfullycharacterized(ChiS,Mw=1.4×104gmol−1;
SO4=48%;SO3 O–3=6.8%and SO3 O–6=41.2%)(Supplementary material—Fig.S1andTableS1)andresultedinapaleyellowpowder thatwasstoredinamoisturefreeenvironment
The surface charge wasobtained using a Zetasizer Nano ZS instrumentbysolubilizingthepolysaccharides(ChiSandGA)using Milli-Qwater
Trang 32.3 Synthesisofthegoldnanorods(AuNRs)
The AuNRs were synthetized by theseed-mediated method
accordingto daSilva etal (2013) andpreviously described by
Sau and Murphy (2004).In a typicalprocedure, the seed
solu-tionwaspreparedby5.0mLofaqueoussolution0.5×10−3molL−1
HAuCl4addedto2.5mLof0.20molL−1CTABsolution.Then,0.6mL
ofice-cold0.01molL−1 NaBH4 solutionwasadded.Thecolorof
thesolutionimmediatelychangedfromdarktobrownishyellow
Next,thesolutionwaskeptundergentlemixingfor2minandleft
torestforatleast2hpriortouse.Afterwards,thegrowth
solu-tionwasprepared bygentlemixing ofa 2.5mL of0.20molL−1
CTABsolution,5.0mLofaqueoussolution1×10−3molL−1HAuCl4
and150Lof4.0×10−3molL−1 AgNO3solution.Then,70Lof
80×10−3molL−1ascorbicacidsolutionwasaddedandthecolor
changedimmediatelyfromdarkyellowtocolorless.Lastly,12L
ofseedsolutionwasaddedbymixinggentlyfor 10s.Thecolor
changedslowlyfromcolorless topurple.Thefinal solutionwas
keptundisturbedfor at least4h UV–vis spectroscopy (Agilent,
model8453)wasusedtomonitortheAuNRsformationthrough
theobservationoftheSPRbands
2.4 PreparationofGA-AuNRsandChiS-AuNRs
TheAuNRsstabilizedbythepolysaccharides,eitherGA-AuNRs
orChiS-AuNRs,werepreparedbyasimplemethod.First,the
as-preparedAuNRswerecentrifuged(10.000rpm,15min) andthe
supernatantwasdiscardedtoremovetheexcessCTAB.The
precip-itatewasdispersedin0.5mLofwater.Then,itwasadded4.5mLof
GAorChiSsolution0.1wt%.Thefinalsolutionwaskeptundergentle
magneticstirring at roomtemperature(∼25◦C)for 24h.
After-wards,thesamplewasagaincentrifugedandthesupernatantwas
discardedtoremovetheunboundGAorChiSfromthesolution.The
precipitatewasdispersedin2.0mLofMilli-Qwater(18.2Mcm
at25◦C)andusedthereafter.UV–visspectroscopy(Agilent,model
8453)wasusedtoverifyanychangesintheSPRbandsasa
conse-quenceoftheinteractionsoftheAuNRswiththepolysaccharides
2.5 MicroscopicandspectroscopicinvestigationofAuNRs,
GA-AuNRsandChiS-AuNRs
Transmissionelectronmicroscopy(TEM)wasperformedusing
aJEOL1200EX-IImicroscopeworkingatanaccelerationvoltage
of80kV.Adrop(∼10L)ofthecolloidalsolutionwasdeposited
onto400meshcarbon-coatedgridsandair-dried.Highresolution
scanningelectronmicroscopy(HR-SEM)wasperformedusingaFEI
Quanta450FEGmicroscopeworkingatanaccelerationvoltageof
10kV.Analiquotof80Lofthecolloidalsolutionwasdeposited
onto a sample supportand air-dried FTIR measurementswere
performedusingaBIORADFTS-3500GXFTIRspectrometer.The
measurementsweremadeinthetransmissionmodeinaspectral
domainrangingfrom400to4000cm−1,usingKBrpellets
3 Results and discussion
InordertoensurethefullsurfacecoverageoftheAuNRs,the
concentrationofthepolysaccharides(GAorChiS)waskeptmuch
higher thanthe concentrationof theAuNRs inthe preparation
ofGA-AuNRsandChiS-AuNRs.Both,GAandChiSarenegatively
chargedinaqueoussolutionwithpH∼5.Thezetapotentialvalues
()ofGAandChiSare−36.3mVand−28.6mV,respectively.The
negativechargeofGAisduetothepresenceofthe COO−groups,
whereasthenegativechargeofChiScorrespondstothepresence
of OSO3−.However,duetothecationicquaternaryammonium
headgroupofCTAB,theas-preparedAuNRsbearpositivesurface
400 500 600 700 800 900 1000 0,0
0,1 0,2 0,3
(a) (b)
Wavelength (nm) (c)
Fig 1. UV–vis absorption spectra of (a) as-prepared AuNRs, (b) GA-AuNR and (c) ChiS-AuNRs.
charge(Rayavarapuetal.,2010).Therefore,thechoiceofusing neg-ativelychargedpolysaccharidesaidstheinteractionsbetweenthe AuNRsandthepolysaccharidesthroughelectrostaticattraction Theas-synthesizedAuNRspresenttypicalSPRbandscentered around1=515nmand2=740nm(Fig.1)thatallowthe determi-nationoftheparticleconcentrationusingtheextinctioncoefficient (Garabagiu&Bratu,2013;Orendorff&Murphy,2006).The esti-mated concentration of particles of the as-prepared AuNRs is
5×10−10molL−1 Theprofiles of theSPRbands of GA-AuNRsand ChiS-AuNRs are also shown in Fig 1 Slight shifts at the maximum wave-lengthsareobservedsincethepresenceofGAandChiSchanges thedielectricconstantofthesurroundingenvironment.Inthecase
ofChiS-AuNRs,itisevidenttheappearanceofastrongabsorption
atlongerwavelengths,possiblycausedbythechangesinthe sur-roundingenvironment,whichwillbeclarifiedintheTEMimages Furthermore,themaintenanceofthepositionoftheSPRbandsafter thepolysaccharidesadsorptionindicatesthataggregationhasnot takenplace,preservingthemorphologyoftheparticles
Through TEM images theAuNRs were observed to have an averagesize of45nm×15nm (aspectratio=3).Although some sphericalparticlesareseen,mostoftheobjectsarerod-like struc-tures,characterizingahighyieldsynthesis(Fig.2a).Also,theshape andsizeoftheAuNRswerepreservedinthepresenceofGAorChiS (Fig.2b–e).TheGA-AuNRsandChiS-AuNRsexhibitedaveragesizes
of47nm×15nmand43nm×14nm,respectively,corroborating whatwasobservedbyUV–visspectroscopy
ItisnoticeablefromtheTEMimagesthattheGA-AuNRssample resultedinnanoparticleclusters(Fig.2b).Thehighmagnification imagerevealed that theGAadsorbedmolecules arenot distin-guishablefromthesubstrate.However,thenanoparticlesinthe ChiS-AuNRsampleareseparatedfromeachotherbyadense struc-turethatissuggestedtobecomposedoftheChiSmolecules.This behaviorcouldbeassociatedwiththedifferencesobservedinthe shapeoftheUV–visabsorptionspectra.Forabetter understand-ingoftheorganizationofthepolysaccharidesaroundtheAuNRs, HR-SEMimageswereobtainedusingsecondaryandbackscattered electrons.Thecomparativeanalysisoftheimagesprovidesadeeper insightintotheinteractionsbetweenthepolysaccharidesandthe AuNRs
Fig.3 andbclearlyshowsthedifferencesintheAuNRs sur-roundingmediumduetothepresenceofGAorChiS,respectively Bothimageswereobtainedusingsecondaryelectronsignalthat providestopographic contrast.As observed byTEM, nanoparti-cleclusterswereseeninFig.3 (GA-AuNRs),whereasinFig.3b
(ChiS-AuNRs)theAuNRswereindividuallysurroundedbyChiSin
Trang 4Fig 2.TEM images of (a) as-prepared AuNR, (b-c) after the adsorption of GA (GA-AuNRs) and (d-e) of ChiS (ChiS-AuNRs) on AuNR surface.
acloud-likearrangement.Asaresult,whenGAisusedasthe
sta-bilizingagent,anincreasedparticledensity(numberorparticles
perunitvolume)isattainedwhencomparedwithChiS.Fig.3cand
ecorrespondstolowmagnificationimagesthatwerecollectedat
thesameregionandobtainedbysecondaryandbackscattered
elec-trons,respectively.Thecontrastobtainedbybackscatteredelectron
signalisrelatedtotheelectrondensityofthematerial.Ascanbe
seen,noimportantdifferenceswereobservedsupposedlybecause
GAisarrangedasathinlayerontheSEMsupport.Sample
ChiS-AuNRswas analyzed similarly (Fig.3d and f) and in this case,
strikingdifferenceswereobserved.InthecaseofFig.3d,which
wasobtainedbysecondaryelectrons,theedgesofthestructure
arehighlighted,providingavolumeperspective(topographic
con-trast).InFig.3f,obtainedbybackscatteredelectrons,theelectron
densityandcontrastoftheorganicmatrixofChiSwiththemetallic
supportarestronglyevidencingthattheparticlesaresurrounded
byChiSmolecules,confirmingthatChiSactsasanefficient
encapsu-lating/wrappingagentforindividualAuNRs.Atlowmagnification,
thesharpdifferenceofcontrastinthistypeofsampleisveryuseful
toquicklyfindtheareatobestudiedatgreatermagnifications
ThedifferencesobservedbycomparingtheimagesofGA-AuNRs
andChiS-AuNRscanbeascribedtothedifferencesbetweenthe
electrondensities ofGA andChiS and tothedifferent
arrange-mentofthepolysaccharidesaroundtheAuNRs.ChiShashigher electron density when compared withGA due to thepresence
ofsulfategroups.Additionally,themoleculesaredenselypacked aroundthenanoparticlesduetotheirlowermolarmassandchain linearity,favoringtheformationofathree-dimensionalstructure
Ontheotherhand,GA,whichisahighlybranched,highmolarmass polysaccharide,bearsatomswithlowelectrondensity(mainlyC,
O,H),formingathinlayeronthesupport
Someother aspects can bediscussed to clarifythe HR-SEM observations, as follows It is widely known that GA presents surfactant-likeproperties and is highly soluble in water (Grein
etal.,2013).Therefore,whenGA-AuNRswerewashedtoremove theexcessofGA,themoleculesthatwereweaklyboundedonthe AuNRssurfacemostlikelywereremoved,loweringtheresulting finalconcentrationofGAaroundthegoldsurface.Conversely,itis knownthatChiexhibitsagglutinativeproperties(Lehr,Bouwstra, Schacht,&Junginger,1992)andsinceChiissolubleonlyinacidic media,thesulfationprocessimprovesitssolubilityinwater How-ever,GAis morewater soluble thanChiS,resulting ina higher concentrationofChiSthanGAmoleculesaroundtheAuNRs Thus, the adequate selection of the stabilizing agent can efficiently tunetheself-aggregationof AuNRs.Gold nanoparti-cleclustershave applicationsinphotothermal therapy (Zharov,
Trang 5Fig 3. HR-SEM images of GA-AuNRs (a, c, e) and ChiS-AuNRs (b, d, f) obtained by secondary electrons (a, b, c, d) and backscattered electrons (e, f).
Mercer,Galitovskaya,&Smeltzer,2006),whereasindividual
func-tionalized gold nanoparticles can perform important biological
functionsvia specific signaling pathways(Li,Kawazoe &Chen,
2015;Nethietal.,2014)
FTIRspectroscopy waschosen toevaluatethenature ofthe
interactionsbetweenthepolysaccharidesandtheAuNRs.The
dis-placement, appearance or disappearance of bands in the FTIR
spectramaybeattributedtotheinteractionsthatoccurinthese
assemblies.First,thespectraoftheas-preparedAuNRsandneat
CTABispresented(Fig.4).Theassignmentsofthemainbandsare
inTable1.Itwasobservedthatthecharacteristicbandspresentin
CTABarepreservedintheAuNRs(Tang,Huang,&Man,2013).The
maintenanceofthebands,relativetosymmetricandasymmetric
stretchingvibrationof CH2 ofCTABchain(2918and2850cm−1),
indicatesthat thehydrophobictails ofCTABarenot interacting
withtheAuNRssurface.Itissuggestedthatthealkyltailsare
self-interacting,forminga bilayeronthegoldsurface thatdoesnot
restrainthestretchingvibrationalmodes.Accordingtothis
propo-sition,unboundandboundsurfactantheadgroupsarefoundinthe
goldsurroundings(Nikoobakht&El-Sayed,2001),thusrendering
someC N+groupsfreeforfurtherinteractions(Goleetal.,2004)
However,thebandscorrespondingtosymmetric and
asymmet-ricC HscissoringvibrationsofH3C N+moiety(1487,1473,1462
and1431cm−1),andthebandcorrespondingtoC N+stretching
(960cm−1)arerelativelylessintenseandslightlyshiftedinAuNRs
whencomparedtopureCTAB.Thisdecreaseinintensityindicates
Wavenumber (cm-1)
AuNR CTAB
18 28
Fig 4. FTIR spectra of as-prepared AuNRs and neat CTAB.
thatthehydrophilicportionofCTABboundtotheAuNRssurface Additionally,thebandscorrespondingtothe CH2chainrocking modedemonstrateimportantdifferences.PureCTABshowstwo bandsat719and731cm−1whereasAuNRsshowonlyonebandat
669cm−1.Thisfactisclearevidenceoftheconstrainmentsthatthe CTABalkylchainsaresubjectedtoduetotheinteractionswiththe particles,resultingintheformationofacompactlayeredstructure
Trang 64000 3500 3000 1500 1000 500
GA
AuNRs
Wavenumber (cm-1)
GA-AuNRs
18 2850
18 2850
Fig 5. FTIR spectra of GA-AuNR, as-prepared AuNR and GA.
aroundtheparticles.Therefore, it wasconfirmedbyFTIR
spec-troscopythatCTABremainedontheAuNRssurfaceevenafterthe
washingprocedure
TheFTIRspectrumofGA-AuNRsispresentedinFig.5
Impor-tantdifferencescanbeseenwhencomparingwiththeas-prepared
AuNRsspectrum.Theassignmentofthemainbandsforboth
sam-plesisshowninTable2.ThecharacteristicbandsofAuNRs,relative
tothesymmetricandasymmetricstretchingvibrationsof−CH2−
ofCTAB(2918and2850cm−1)weremaintainedintheGA-AuNRs
spectrum.Thus,itwasevidencedthatCTABisstillpresentonthe
AuNRssurface.Additionally,theabsenceofsomebandsattributed
toC N+moiety(1473,1462,1433and960cm−1)andtheabsence
ofthetwostrongbandsintheGAspectrumattributedtothe
asym-metricand symmetricstretchingvibration ofthe COO− group
(1608and1419cm−1).Theprofilechangeofthebands
correspond-ingtothestretchingoftheC O(1253,1143,1064and1031cm−1)
in the GA-AuNRs spectrum is an indication of the interaction
betweentheC N+headgroupofCTABwiththenegativelycharged
carboxylategroupsonGAstructure.Furthermore,theobservation
ofnewbandsaround1060and700–400cm−1(fingerprintregion)
intheGA-AuNRspectrumcouldbeassociatedtotheinteractions
thatoccurthroughGAadsorbedontheAuNRsurface
The presence of CTAB in ChiS-AuNRs samples was likewise
observed,asseenbytheFTIRspectrainFig.6.Thebandsat2918
and2850cm−1arepresent,whereasthebandsat1487–1433andin
960cm−1disappearedintheChiS-AuNRsspectrumincomparison
totheAuNRsspectrum.Furthermore,themainbandsobservedin
theChiSspectrumdonotdisappearwhenChiSisassociatedwith
theAuNRs,butinsteadexhibitanintensitydecreaseinthe
ChiS-AuNRsspectrum(1647,1542,1153,1072,1062and1004cm−1)
Theassignmentof themain bandsis shown inTable 2
There-fore,theinteractionbetweentheC N+fromCTABandChiSoccurs
throughamutualinteractionofthediversenegativecharge
func-tionalgroupspresentinitsstructure
4000 3500 3000 1500 1000 500
ChiS
AuNRs
Wavenumber (cm-1)
18 2
18 28
Fig 6.FTIR spectra of ChiS-AuNR, as-prepared AuNR and ChiS.
It is widely known that alkanethiols exhibit a preferential bindingonthesurfaceofgoldnanoparticles,promotedby ther-modynamicallyfavoredcovalentbonds(Karpovich,&Blanchard, 1994;Leff,Brandt,&Heath,1996;Templeton,Pietron,Murray,& Mulvaney,2000;Zakariaetal.,2013).Yet,thesulfurpresentin sul-fatefunctionalgroupsdoesnotpresentthesamecharacteristicsas alkanethiolssincethestabilizationandtheabsenceoffree elec-tronpairspromotedbytheelectrondelocalizationbetweenthe oxygenatomshinderstheoccurrenceofnewbindings.However, sulfategroupsmaystabilizenanoparticlesbyelectrostatic interac-tionlikehydroxyl,carbonylandaminogroupsthatareintrinsically inhibitorytoparticleaggregation
It was confirmed through FTIR analyses that CTAB was not entirelyremovedfromtheAuNRssurfacesincesulfateand car-boxylgroupsfromChiSandGA,respectively,exhibitpreferential interactionswiththepositivelychargedheadgroupsofCTAB.The interactionsofthepolysaccharidesandtheAuNRssurface, there-fore,occurviatheC N+ofCTABandcarboxylateorsulfategroups,
ofGAandChiS,respectively,asdepictedinFig.7
4 Conclusions
Withasimple,straightforwardmethodologywedemonstrated thatGAandChiSefficientlyinteractwiththesurfaceofCTABcoated AuNRs.Theresultingself-assembledstructureswerefully char-acterized Microscopyimagesshowedthat GAproduced AuNRs irregular clusters and ChiS acted as an efficient encapsulat-ing/wrappingagentresultinginindividualAuNRs,whichwerewell separatedbytheChiSmolecules.FTIRanalysesclearlyshowedthat
GAandChiSinteractwiththeAuNRsviachargedgroupsofCTAB
byelectrostaticinteractions,leavingthe CH2groupsintact Com-biningourresultswithdataalreadyavailableintheliterature,the toxicityofChiS-AuNRsandGA-AuNRsisexpectedtodecreasein relationtoCTAB-AuNRs.Therefore,byusinganewpolysaccharide
wepresentaninterestingstrategytoproduceindividuallywrapped
Fig 7. Schematic representation of the interaction of CTAB/AuNRs with (a) ChiS (CTA + ROSO − /CTA + /CTAB/AuNR) and (b) GA (CTA + RCOO − /CTA + /CTAB/AuNR).
Trang 7Table 1
FTIR band assignments of CTAB and as-prepared AuNRs.
Symmetric and assymetric stretching of CH 2 of CTAB chain 2918 and 2850 2918 and 2850
Asymmetric and symmetric C H scissoring of H 3 C N + moiety 1487, 1473, 1462 and 1431 1487, 1473, 1462 and 1431
Rocking mode of the CH 2 chain ((CH 2 ) n , n > 4) 719 and 731 669
a Based on Nikoobakht & El-Sayed, 2001 ; Sui et al., 2006 ; Tang et al., 2013;Campbell et al., 2004 ; Innocenzi, Falcaro, Grosso & Babonneau 2006
FTIR band assignments of as-prepared AuNRs, GA, GA-AuNR, ChiS and ChiS-AuNRs.
Symmetric and asymmetric stretching of
C CH 2 of CTAB chain
2918 and 2850 – 2918 and 2850 – 2918 and 2850 Assymetric and symetric stretching of the
carboxilic acid salt COO
Asymmetric and symmetric C H scissoring
vibrations of CH 3 N + moiety
1487, 1473, 1462 and 1431 – 1487 – –
C O stretching – 1253, 1143, 1064 and 1031 – 1062 and 1004 1062 and 1004 Could be attributed to the interactions that
take place by GA-AuNRs interactions
Symmetric stretching of C O C bands – – – 1153 1153
a Based on Davidovich-Pinhas et al., 2014; Espinosa-Andrews et al., 2010; Tang et al., 2013
AuNRs,applicablewhenwelldispersednanoparticlesarerequired
Inaddition,theobservationofclustersorindividualAuNRsadds
informationtothepropermanipulationandusageofthese
polysac-charidefunctionalizednanoparticles
Acknowledgements
The authors acknowledge the support given by the
Brazil-ianNationalCounselofTechnologicalandScientificDevelopment
(CNPq)mainlythroughthegrants577232/2008-8,
477467/2010-5and564741/2010-8.H.R.Barros,D.A.SabryandA.M.Nunes
expresstheirgratitudetoCAPESfortheirfellowships.Theauthors
areverygratefultotheElectronMicroscopyCenterofUFPR
(CME-UFPR)fortheTEMimagesandtoSENAIPR-InstituteofInnovation
inElectrochemistryforthezetapotentialmeasurements
Appendix A Supplementary data
Supplementarydataassociatedwiththisarticlecanbefound,in
theonlineversion,athttp://dx.doi.org/10.1016/j.carbpol.2016.07
018
References
Asif, S., Ekdahl, K N., Fromell, K., Gustafson, E., Barbu, A., Le Blanc, K., et al (2016).
Heparinization of cell surfaces with short peptide-conjugated PEG-lipid
regulates thromboinflammation in transplantation of human MSCs and
hepatocytes Acta Biomaterialia, 35, 194–205.
Barros, H R., Cardoso, M B., de Oliveira, C C., Franco, C R C., Belan, D L., Vidotti,
M., et al (2016) Stability of gum arabic-gold nanoparticles in physiological
simulated pHs and their selective effect on cell lines RSC Advances, 6,
9411–9420.
Bicho, A., Roque, A C A., Cardoso, A S., Domingos, P., & Batalha, I L (2009) In vitro
studies with mammalian cell lines and gum arabic-coated magnetic
nanoparticles Journal of Molecular Recognition, 23, 536–542.
Boca, S C., & Astilean, S (2010) Detoxification of gold nanorods by conjugation
with thiolated poly(ethylene glycol) and their assessment as SERS-active
carriers of Raman tags Nanotechnology, 21, 235601.
Boca, S C., Potara, M., Toderas, F., Stephan, O., Baldeck, P L., & Astilean, S (2011).
Uptake and biological effects of chitosan-capped gold nanoparticles on Chinese
Hamster Ovary cells Materials Science and Engineering C, 31, 184–189.
Bogliotti, N., Oberleitner, B., Di-Cicco, A., Schmidt, F., Florent, J C., & Semetey, V.
research: functionalization, stabilization and purification Journal of Colloid and Interface Science, 357, 75–81.
Campbell, R A., Parker, S R W., Day, J P R., & Bain, C D (2004) External reflection FTIR spectroscopy of the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) on an overflowing cylinder Langmuir, 20, 8740–8753.
Chanda, N., Kan, P., Watkinson, L D., Shukla, R., Zambre, A., Carmack, T L., et al (2010) Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA- 198 AuNP nanoconstruct in prostate tumor-bearing mice Nanomedicine-Nanotechnology Biology and Medicine, 6, 201–209.
Charan, S., Sanjiv, K., Singh, N., Chien, F C., Chen, Y F., Nergui, N N., et al (2012).
Development of chitosan oligosaccharide-modified gold nanorods for in vivo targeted delivery and noninvasive imaging by NIR irradiation Bioconjugate Chemistry, 23, 2173–2182.
da Silva, M G A., Meneghetti, M R., Denicourt-Nowicki, A., & Roucoux, A (2014).
Tunable hydroxylated surfactants: an efficient toolbox towards anisotropic gold nanoparticles RSC Advances, 4, 25875–25879.
da Silva, M G A., Nunes, A M., Meneghetti, S M P., & Meneghetti, M R (2013).
New aspects of gold nanorod formation via seed-mediated method Comptes Rendus Chimie, 16, 640–650.
Davidovich-Pinhas, M., Danin-Poleg, Y., Kashi, Y., & Bianco-Peled, H (2014).
Modified chitosan: a step toward improving the properties antibacterial food packages Food Packing and Shelf Life, 1, 160–169.
Erathodiyil, N., & Ying, J (2011) Functionalization of inorganic nanoparticles for bioimaging applications Accounts of Chemical Research, 44, 925–935.
Espinosa-Andrews, H., Sandoval-Castilla, O., Vázquez-Torres, H., Vernon-Carter, E J., & Lobato-Calleros, C (2010) Determination of the gum Arabic–chitosan interactions by Fourier Transform Infrared Spectroscopy and characterization
of the microstructure and rheological features of their coacervates.
Carbohydrate Polymers, 79, 541–546.
Eutis, S., & El-Sayed, M (2006) Why nanoparticles are more precious than pretty gold: noble metal surface plasmon ressonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes Chemical Society Review, 35, 209–217.
Garabagiu, S., & Bratu, I (2013) Thiol containing carboxylic acids remove the CTAB surfactant onto the surface of gold nanorods: an FTIR spectroscopy study Applied Surface Science, 284, 780–783.
Gole, A., Orendorff, C J., & Murphy, C J (2004) Immobilization of gold nanorods onto acid-terminated self-assembled monolayers via electrostatic interactions Langmuir, 20, 7117–7122.
Grein, A., da Silva, B C., Wendel, C F., Tischer, C A., Sierakowski, M R., Moura, A B D., et al (2013) Structural characterization and emulsifying properties of polysaccharides of Acacia mearnsii de Wild gum Carbohydrate Polymers, 92, 312–320.
Hamon, C., Bizien, T., Artzner, F., Even-Hernandez, P., & Marchi, V (2014).
Replacement of CTAB with peptidic ligands at the surface of gold nanorods and their self-assembling properties Journal of Colloid and Interface Science, 424, 90–97.
Huang, J., Jackson, K S., & Murphy, C J (2012) Polyelectrolyte wrapping layers control rates of photothermal molecular release from gold nanorods Nano Letters, 12, 2982–2987.
Trang 8Innocenzi, P., Falcaro, P., Grosso, D., & Babonneau, F (2006) Order-disorder
transitions and evolution of silica structure in self-assembled mesostructured
silica films studied through FTIR spectroscopy The Journal of Physical Chemistry
B, 107, 4711–4717.
Jana, N R., Gearheart, L., & Murphy, C J (2001a) Evidence for seed-mediated
nucleation in the chemical reduction of gold salts to gold nanoparticles.
Chemistry of Materials, 13, 2313–2322.
Jana, N R., Gearheart, L., & Murphy, C J (2001b) Seed-mediated growth approach
for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles
using a surfactant template Advanced Materials, 13, 1389–1392.
Jana, N R., Gearheart, L., & Murphy, C J (2001c) Wet chemical synthesis of high
aspect ratio cylindrical gold nanorods The Journal of Physical Chemistry B, 105,
4065–4067.
Jayakumar, R., Nwe, N., Tokura, S., & Tamura, H (2007) Sulfated chitin and
chitosan as novel biomaterials International Journal of Biological
Macromolecules, 40, 175–181.
Johnson, C J., Dujardin, E., Davis, S A., Murphy, C J., & Mann, S (2002) Growth and
form of gold nanorods prepared by seed-mediated: surfactant-directed
synthesis Journal of Materials Chemistry, 12, 1765–1770.
Karpovich, D S., & Blanchard, G J (1994) Direct measurement of the
adsorption-kinetics of alkanethiolate self-assembled monolayers on a
microcrystalline gold surface Langmuir, 10, 3315–3322.
Kattumuri, V., Katti, K., Bhaskaran, S., Boote, E J., Casteel, S W., Fent, G M., et al.
(2007) Gum arabic as a phytochemical construct for the stabilization of gold
nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies.
Small, 3, 333–341.
Kopwitthaya, A., Yong, K T., Hu, R., Roy, I., Ding, H., Vathy, L A., et al (2010).
Biocompatible PEGylated gold nanorods as colored contrast agents for targeted
in vivo cancer applications Nanotechnology, 21, 315101.
Leff, D V., Brandt, L., & Heath, J R (1996) Synthesis and characterization of
hydrophobic: organically-soluble gold nanocrystals functionalized with
primary amines Langmuir, 12, 4723–4730.
Lehr, C M., Bouwstra, J A., Schacht, E T., & Junginger, H E (1992) In vitro
evaluation of mucoadhesive properties of chitosan and some other natural
polymers International Journal of Pharmaceutics, 78, 43–48.
Li, J J., Kawazoe, N., & Chen, G (2015) Gold nanoparticles with different charge
and moiety induce differential cell response on mesenchymal stem cell
osteogenesis Biomaterials, 54, 226–236.
Liu, X., Huang, H., Liu, G., Zhou, W., Chen, Y., Jin, Q., et al (2013) Multidentate
zwitterionic chitosan oligosaccharide modified gold nanoparticles: stability:
biocompatibility and cell interactions Nanoscale, 5, 3982–3991.
Maas, N C., Gracher, A H P., Sassaki, G L., Gorin, P A J., Iacomini, M., & Cipriani, T.
R (2012) Sulfation pattern of citrus pectin and its carboxy-reduced
derivatives: influence on anticoagulant and antithrombotic effects.
Carbohydrate Polymers, 89, 1081–1087.
Meena, K S., & Sulpizi, M (2013) Understanding the microscopic origin of gold
nanoparticle anisotropic growth from molecular dynamics simulations.
Langmuir, 29, 14954–14961.
Mitamura, K., Imae, T., Saito, N., & Takai, O (2007) Fabrication and self-sssembly of
hydrophobic gold nanorods The Journal of Physical Chemistry B, 111,
8891–8898.
Murphy, C J., & Jana, N R (2002) Controlling the aspect ratio of inorganic
nanorods and nanowires Advanced Materials, 14, 80–82.
Nethi, S K., Mukherjee, S., Veeriah, V., Barui, A K., Chatterjee, S., & Patra, C R.
(2014) Bioconjugated gold nanoparticles accelerate the growth of new blood
vessels through redox signaling Chemical Communication, 50, 14367–14370.
Nikoobakht, B., & El-Sayed, M A (2001) Evidence for bilayer assembly of cationic
surfactants on the surface of gold nanorods Langmuir, 17, 6368–6367
Nikoobakht, B., & El-Sayed, M A (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method Chemistry of Materials, 15, 1957–1962.
Orendorff, C J., & Murphy, C J (2006) Quantitation of metal content in the silver-assisted growth of gold nanorods The Journal of Physical Chemistry B,
110, 3990–3994.
Pérez-Juste, J., Pastoriza-Santos, I., Liz-Marzán, L M., & Mulvaney, P (2005) Gold nanorods: synthesis: characterization and applications Coordination Chemistry Reviews, 249, 1870–1901.
Pierrat, S., Zins, I., Breivogel, A., & Sonnichsen, C (2007) Self-assembly of small gold colloids with functionalized gold nanorods Nano Letters, 7, 259–263.
Rayavarapu, R G., Petersen, W., Hartsuiker, L., Chin, P., Janssen, H., van Leeuwen, F W., et al (2010) In vitro toxicity studies of polymer-coated gold nanorods Nanotechnology, 21, 145101.
Sau, T K., & Murphy, C J (2004) Seeded high yield synthesis of short au nanorods
in aqueous solution Langmuir, 20, 6414–6420.
Tang, J., Huang, J., & Man, S Q (2013) Preparation of gold nanoparticles by surfactant-promoted reductive reaction without extra reducing agent Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 103, 349–355.
Templeton, A C., Pietron, J J., Murray, R W., & Mulvaney, P (2000) Solvent refractive index and core charge influences on the surface plasmon absorbance
of alkanethiolate monolayer-protected gold clusters Journal of Physical Chemistry B, 104, 564–570.
Terbojevich, M., Carraro, C., & Cosani, A (1989) Solution studies of chitosan 6-O-sulfate Makromolecular Chemistry, 190, 2847–2855.
Sui, Z., Chen, M., Wang, X., Xu, L M., WC, Chai, Y C., et al (2006) Capping effect of CTAB on positively charged Ag nanoparticles Physica E, 33, 308–314.
Wang, C H., Chang, C W., & Peng, C A (2011) Gold nanorod stabilized by thiolated chitosan as photothermal absorber for cancer cell treatment Journal of Nanoparticle Research, 13, 2749–2758.
Wang, J., Xie, Y., Wang, L., Tang, J., Li, J., Kocaefe, D., et al (2015) In vivo pharmacokinetic features and biodistribution of star and rod shaped gold nanoparticles by multispectral optoacoustic tomography RSC Advances, 5, 7529–7538.
Williams, P A., & Phillips, G O (2000) Handbook of hydrocolloids Cambridge: Woodhead Publishing Limited.
Wu, C.-C., & Chen, D H (2010) Facile green synthesis of gold nanoparticles with gum arabic as a stabilizing agent and reducing agent Gold Bulletin, 43, 234–240.
Xie, Y., Guo, S., Ji, Y., Guo, C., Liu, X., Chen, Z., et al (2011) Self-assembly of gold nanorods into symmetric superlattices directed by OH-terminated hexa(ethylene glycol) alkanethiol Langmuir, 27, 11394–11400.
Yang, Z., Liu, T., Xie, T., Sun, Z., Liu, H., Lin, J., et al (2015) Chitosan layered gold nanorods as synergistic therapeutics for photothermal ablation and gene silencing in triple-negative breast cancer Acta Biomaterialia, 25, 194–204.
Yu, C., Zhu, Z., Wang, Q., Gu, W., Bao, N., & Gu, H (2014) A disposable indium-tin-oxide sensor modified by gold nanorod–chitosan nanocomposites for the detection of H 2 O 2 in cancer cells Chemical Communications, 50, 7329–7331.
Zakaria, H M., Shah, A., Konieczny, M., Hoffmann, J A., Nijdam, A J., & Reeves, M E (2013) Small molecule- and amino acid-induced aggregation of gold nanoparticles Langmuir, 29, 7661–7673.
Zharov, V P., Mercer, K E., Galitovskaya, E N., & Smeltzer, M S (2006).
Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles Biophysical Journal, 90, 619–627.