1. Trang chủ
  2. » Giáo án - Bài giảng

Layer-by-layer polysaccharide-coated liposomes for sustained delivery of epidermal growth factor

7 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Layer-by-layer polysaccharide-coated liposomes for sustained delivery of epidermal growth factor
Tác giả Gabriel A.T. Kaminski, Maria Rita Sierakowski, Roberto Pontarolo, Larissa Antoniacomi dos Santos, Rilton Alves de Freitas
Trường học Universidade Federal do Paraná
Chuyên ngành Biomedical Technology
Thể loại Research Article
Năm xuất bản 2015
Thành phố Curitiba
Định dạng
Số trang 7
Dung lượng 3,01 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

A three-dimensional layer-by-layer (LbL) structure composed by xanthan and galactomannan biopolymers over dioctadecyldimethylammonium bromide (DODAB) liposome template was proposed and characterized for protein drug delivery.

Trang 1

jo u r n al h om ep a g e :w w w e l s e v i e r c o m / l o c a t e / c a r b p o l

a BioPol, Chemistry Department, Universidade Federal do Paraná, R Coronel F H dos Santos, Curitiba 210–81531-980, PR, Brazil

b CEB, Pharmacy Department, Universidade Federal do Paraná, Av Prof Lothário Meissner, Curitiba 3400–80210-170, PR, Brazil

a r t i c l e i n f o

Article history:

Received 14 September 2015

Received in revised form 31 October 2015

Accepted 7 December 2015

Available online 17 December 2015

Keywords:

DODAB

Xanthan

Galactomannan

EGF

Layer-by-layer

Liposomes

a b s t r a c t

Athree-dimensionallayer-by-layer(LbL)structurecomposedbyxanthanandgalactomannan biopoly-mersoverdioctadecyldimethylammoniumbromide(DODAB) liposometemplate wasproposedand characterizedforproteindrugdelivery.Thepolymersandthesurfactantinteractionweresufficiently strongtocreateaLbLstructureupto8layers,evaluatedusingquartzcrystalmicrobalance(QCM)and zetapotentialanalysis.Thepolymer–liposomebindingenthalpywasdeterminedbyisothermaltitration calorimetry(ITC).Thebilayerofbiopolymer-coatedliposomeswithdiametersof165(±15)nm,measured

bydynamiclightscattering(DLS),and␨-potentialof−4(±13)mV.Thesebilayer-coatednanoparticles increasedupto5timesthesustainedreleaseofepidermalgrowthfactor(EGF)atafirstorderrateof 0.005min−1.Thissystemcouldbeusefulforimprovingthereleaseprofileoflow-stabilitydrugslikeEGF

©2015ElsevierLtd.Allrightsreserved

1 Introduction

Therapiesbasedongrowthfactors(GF)havepromising

poten-tialinbiomedicaltechnology.Incasesofchronicwoundsproactive

treatmentisneededforhealingandGFmightprovidethe

neces-sarystimulitoinducewoundclosure(Behm,Babilas,Landthaler,

&Schreml,2011).Ofthevariousgrowthfactors,epidermalgrowth

factor(EGF)hasbeenfirstandmostsuccessfullyappliedfor

treat-ingwounds.Itisapolypeptidecomposedof53aminoacidsthat

enhanceepidermalandmesenchymalregeneration,cellmotility,

andproliferation(Choietal.,2012)

EGFcouldbeemployedtoacceleratere-epithelialization,

reduc-ingriskofinfectionandshorteninghospitalization.However,due

toshorthalf-life,rapiddilutioninthebody,andthefactthatEGF

receptorsareoverexpressedinmostsquamouscarcinomas,brain

gliomasand breast cancers (Gedda, Olsson, Pontén, &Carlsson,

1996;Chen&Mooney,2003),supplyofexogenousEGFmustbe

appliedina sustainedand localizedfashiontobeeffectiveand

safe.TheencapsulationofEGFinliposomesmightbean

alterna-tivetomaximizetheirstabilityandtoavoidenzymaticdegradation

(De˘gimetal.,2011)

∗ Corresponding author Tel.: +55 4133613260; fax: +55 4133613260.

E-mail address: rilton@ufpr.br (R.A.d Freitas).

Liposomeshavealreadybeenstudiedasdeliverysystemsfor

GF(De˘gimetal.,2011).Nevertheless,liposomeshavethe limita-tionsofspillingtheircontentsovertimeandaggregating(Taylor, Davidson,Bruce,&Weiss,2005).Inordertopreventtheseevents, theliposomescanbecoatedwithpolymers,modulatingthedrug deliverytoachievethedesiredreleasekinetics

Averyefficienttechniquetoformpolymericcoatingson two-dimensionalandthree-dimensionalsystems,suchasliposomes,is Layer-by-layer(LbL),introducedbyDecher(1997).Thistechnique consistsin thealternating depositionsof polycationsand poly-anions,generatingamultilayercoatingsupportedmainly,butnot exclusively,bytheelectrostaticinteractionsorofhydrogenbonds (Wangetal.,1997),covalentbonds(Sunetal.,1998),hydrophobic interactions(Lojou&Bianco,2004)andvanderWaalsforces(Sato

&Sano,2005)

Inordertocoatthedioctadecyldimethylammoniumbromide (DODAB)cationicliposomes,usingtheLbLtechnique,two biopoly-merswerechosen.Xanthan(XAN)ananionicbiopolymerproduced

byXanthomonascampestrisandcomposedofa(1→4)-␤-d-glucan cellulosebackbonesubstitutedwithanacidtrisaccharideinthe sidechain(Jansson,Kennark,&Lindberg,1975),and galactoman-nan(GMC),aneutralbiopolymerfromCeratoniasiliquaseedsthat

iscomposedofa(1→4)-␤-d-mannanbackbonewith(1→6)- ␣-d-galactosesubstitutions(Dea&Morrison,1975).Thesepolymers interactpositivelyandsynergistically,aspreviouslydescribedand http://dx.doi.org/10.1016/j.carbpol.2015.12.014

0144-8617/© 2015 Elsevier Ltd All rights reserved.

Trang 2

scattering(Bresolin,Milas,Rinaudo,&Ganter,1998;Khouryieh,

Herald,Aramouni,&Alavi,2007)

Inthismanuscript,weevaluateanewapproachfor

LbL-three-dimensionalsystemsstructuredwithXANandGMC,forsustained

releaseofEGF.WeemployedDODAB,acationiclipidwitha

quater-naryammoniumsaltasitspolarheadandtwo18-carbonsaturated

chains,toformpositivelysuperficialchargedliposomes

potenti-atingthebiopolymerLbLcoating.Theliposomes,includingthose

withcoatings,werecharacterized,andtheEGFreleaserateswere

determinedinvitro

2 Material and methods

2.1 Polymerpreparation

2.1.1 Polymerpurification

XANgum(Sigma-Aldrich)waspurifiedbydialysisthrougha

cel-lulosemembrane(Sigma-Aldrich),firstagainst0.1molL−1 acetic

acidfor3daystoensurethatallthemoleculeswouldbeinthe

molecularconformation,andthenagainstultrapurewater for2

daystoremovetheaceticacid.GMC,fromlocustbeangumfromC

siliquaseeds(Sigma-Aldrich),waspurifiedbydispersionin

ultra-purewaterat40◦Covernightandcentrifugationat10,000×gfor

20minat40◦Cina4K15C(Sigma,OsterodeamHarz,Germany)

centrifugetoprecipitateinsolubleimpurities.Ethylalcohol(99%)

wasaddedtothesupernatanttoachievea70%alcohol

concentra-tion,andthissuspensionwascentrifugedat10,000×gfor20min

at5◦CtoprecipitatethepurifiedXANandGMC.Thepolymerswere

washedwith99%ethylalcohol,centrifugedasdescribedaboveand

driedat40◦C

2.1.2 Polymercharacterization

Thepolymerswerecharacterizedat0.5mgmL−1byhigh

per-formancesizeexclusionchromatography(HPSEC)with0.1molL−1

NaNO3 and200ppmsodiumazideat0.4mLmin−1asthemobile

phase at 40◦C The system was composed of a UV/vis

detec-tor, refractometer, light scattering detector at 7◦ and 90◦ and

a differential viscometer detector (Viscotek, Westborough, MA,

USA)withan OHpakSB-806MHQcolumn (Shodex, NewYork,

NY,USA)

The persistence length (Lp) was determined as previously

described for other galactomannans by Salvalaggio, de Freitas,

Franquetto,Koop,andSilveira(2015)

Thezetapotentialwasdeterminedforpolymersdispersionsat

0.5mgmL−1 inultrapurewaterusingtheelectrophoretic

mobil-itymeasuredonaZetasizerNano-ZS(Malvern,Westborough,MA,

USA)at25◦Cwith120sofstabilization

TheproteinquantificationofpurifiedGMCwasdeterminedby

theHartreemethod(Hartree,1972)

Infrared spectroscopy (FTIR), using an attenuated total

reflectance(ATR)modewasdeterminedinaVERTEX70(BRUKER)

with4cm−1 of resolution and 4000–600cm−1 (Supplementary

materialS1)

2.2 Liposomepreparation

Liposomeswerepreparedbyamodifiedmethod(Alvesetal.,

2009) DODAB (Sigma-Aldrich, Switzerland) was dispersed in

chloroformat5mmolL−1,thesolventwasremovedbyrotary

evap-orationat40◦C,andthelipidwasresuspendedina5␮gmL−1EGF

(Caregen)solutionat35◦C,similartoAlvesetal.(2009)andDe˘gim

etal.(2011).Thesuspensionwasthensubmittedtosonicationat

25◦Cinpulsemodefor5min

TheEGF-liposomesolutionwasdiluted1:10inultrapurewater

andcentrifugedat10,000×gfor20minat25◦C.Thesupernatant

wasdiscarded,andtheliposomeswereresuspendedin0.5mgmL−1 XANsolution,followedbycentrifugationandwashingwith ultra-purewater.Thesameprocedurewasperformedwitha0.5mgmL−1 GMCsolution

2.3 Liposomecharacterization Thehydrodynamicdiametersofthecoatedliposomeswere ana-lyzedandcomparedwiththoseoftheplainliposomesbydynamic light scattering (DLS) on a NanoDLS (Brookhaven Instruments, Holtsville,NY,USA).Theuncoatedliposomesandpolymer-coated liposomeswerealsocharacterizedbytheir␨-potentialandAFMas describedelsewhere

The zeta potential of the liposomes was determined for

5mmolL−1dispersionofDODABinultrapurewaterusingthe elec-trophoreticmobilitymeasuredonaZetasizerNano-ZS(Malvern, Westborough,MA,USA)at25◦Cwith120sofstabilization 2.4 PolymerandDODAB/DODABvesicleinteraction

2.4.1 Isothermaltitrationcalorimetry(ITC) ExperimentswereperformedinaVP-ITC(Microcal, Westbor-ough,MA,USA)calorimeterwithanormalcell(1.464mL)at25◦C TheDODABvesicledispersionwasinjectedintoultrapurewateror intoapolymersolutionat0.5mgmL−1.Eachtitrationconsistedofa preliminary2␮Linjectionfollowedby29subsequent10␮L injec-tionswith600sintervalsbetweeneachinjection.Thesyringetip actedasablade-typestirrertoensurepropermixingat300rpm DatawerecollectedandprocessedwithOrigin7.0software (Origin-Lab,Northampton,MA,USA)

2.4.2 Quartzcrystalmicrobalance(QCM) AnalyseswereperformedintriplicateinaSRSQCM200usingthe flowcellmode.TheQCM(Gold/Cr5MHz,SRS,Sunnyvale,CA,USA) crystalswerecleanedbyimmersionin1:3(v/v)H2O2:H2SO4 for

5minandfollowedbyrinsingwithultrapurewater.Tomimicthe liposomecoatingprocess,thegoldsurfacewasmodifiedwith hex-anethiol(Sigma-Aldrich)toformahydrophobicsurfaceandthen coatedwithDODABbyimmersionina5mmolL−1chloroform solu-tionsimilartoMorita,Nukui,andKuboi(2006).Onemilliliterof eachpolymersolution(0.5mgmL−1)wasalternatelyinjectedat 0.1mLmin−1withasyringepump(KD100,KDScientific,Holliston,

MA,USA),and1mLofultrapurewaterwasinjectedbetweeneach solution

2.4.3 Atomicforcemicroscope(AFM) ImagesofeachlayerontheQCMcrystalwereobtainedona PicoPlusMolecularImagingmicroscope(Agilent,SantaClara,CA, USA)intheintermittentcontactmodeinairat25◦Cwithsilicon cantilevers,anoscillatingamplitudeof50to100nmanda reso-nancefrequencycloseto300kHz.Thedynamictappingmodewas usedwithanoxide-sharpenedmicro-fabricatedsilicon␮-Masch cantileverwitha4.7Nm−1nominalspringconstantandtip cur-vatureradiusoflessthan10nm.Theimageprocessingandroot meansquareroughness(rms)determinationwereperformedwith Gwyddionsoftware(CzechMetrologyInstitute,Brno-sever,Czech Republic)

2.4.4 Contactangle Theanglesof thepolymersubstratesweredetermined with OCA15+(DataPhysics,Filderstadt,Germany)deviceequippedwith SCA20softwarebythesessiledropmethodat25◦Cwiththe deliv-eryof10␮LultrapurewaterdropsontotheQCMcrystal-coated surface

Trang 3

2.5 EGF-liposomereleasekinetics

EGFreleaseprofilesweredeterminedbyHPLCquantification

usingaProminence(Shimadzu,Columbia,MD,USA)systemwitha

SymmetryC18(4.6×250mm,5␮mparticles)column.Apreviously

describedmethod(Yang,Huang,Wu,&Tsai,2005)wasadaptedto

use40%isocraticgradeacetonitrile(Fluka)in0.1%TFAat40◦Cwith

1mLmin−1flowrateand210nmUVdetection.TheresultingEGF

retentiontimewas4.8min

Avolumeof10mLofPlainEGF-liposomes,XAN-coated

EGF-liposomesorGMC+XAN-coatedliposomes,allintriplicates,were

placedinadialysisbag(12,000gmol−1cutoff)andimmersedin

90mL of 0.1molL phosphate buffersaline (PBS)at pH 5.5 and

35◦Ctomimicdermaldeliveryconditions(Wagner,Kostka,Lehr,&

Schaefer,2003)withmagneticstirringforupto48h.Onemilliliter

aliquotswerecollected,ateachtimepoint,fromthemediumand

thatvolumewasreplacedwithfreshPBS

3 Results and discussion

3.1 Polymers

Allthepurifiedpolymersexhibitedaunimodaldistributionas

measuredbyHPSEC(datanotshown).Afterpurification,theXAN

andGMCpresentedthemolarmass(Mw),intrinsicviscosityand

radiusofgyration(Rg)asseeninTable1.Thezetapotentials(

␨-potential)(Table1)showedalargedifferencebetweenDODABand

XAN,suggestingthatthesepolymersmayinteractwitheachother

electrostatically.ThenegativechargeontheneutralGMCpolymer

couldbecausedbyattachedproteins,determinedas4%(m/m),that

remainedevenafterpolymerprecipitationwithethanol

3.2 Liposomes-LbLbiopolymercoating

Thesizeoftheliposomesincreased(Fig.1a)from62(±9)nmto

132(±22)nmwhencoatedwithXANandto165(±15)nmwhen

coatedwiththeXANandtheGMClayers.Thesizeoftheliposomes,

after48hwas79nm,140and195nm,respectivelyforplain,XAN

andXAN-GMClayers,suggestingansmallincreaseinthesize

dur-ingstorageoftheliposomes.Althoughtherewasgreateradsorption

fortheGMCcoating,theXANlayerrepresentedalargerincrease

inthediameteroftheliposomes.Thisincreasewasmostlikely

becauseofitslargerpersistencelength(Lp)of125nm,similarto

thefoundbyRinaudo(2001),thanofGMC(9nm)andtheCoulomb

repulsionbetweennegativelychargedXAN,resultinginporeson

thesurface,whichwereoccupiedbyGMC.Theplainandcoated

liposomescanbeseeninAFM(Fig.2)

ItisclearthatXANleftporesonthesurface,becausethefirst

layeronlydecreasedthe␨-potentialoftheliposomesto

approx-imately+35mV(Fig.1b).However,thefirstGMClayershielded

allthepositivechargefromDODABanddecreasedthe␨-potential

of theliposomes toapproximately −4mV, closetothe own

␨-potentialofthepolymer.BecauseGMCfilledtheporesleftbyXAN,

Table 1

Physicochemical characteristics of the polymers and the surfactant: molar mass

(M w ), radius of gyration (R g ) and zeta potential (␨-potential).

Molecules M w (g mol −1 ) * R g (nm) * ␨-potential (mV) **

XAN 1.03 × 10 6 69 −54.1 (±7.7)

GMC 0.26 × 10 6 52 −5.4 (±6.2)

DODAB 630 – + 66.5 (±9.4)

* 0.1 mol L -1 NaNO 3 and 200 ppm sodium azide as the mobile phase at 0.4 mL min −1

at 40 ◦ C through a Shodex OHpak SB-806 HQ column The zeta potential was

deter-mined using the electrophoretic mobility in ultrapure water at 25◦C.

theeffectofitsadsorptiononthestandarddeviationoftheQCM crystalwaslarger(differentamountsofGMCwererequired) 3.3 Physical–chemicaldescriptionofliposomes-LbLbiopolymer coating

QCMwasusedtoverifythattherewereinteractionsbetweenall layers,enablingtheformationandmaintenanceoftheLbL struc-ture.Becausetheliposomeswerethetemplateforthebiopolymers coating,theQCMcrystalshouldbecoatedwithDODABbefore poly-merdeposition.ToassuretheproperDODABcoating,thecrystal was first coated withhexanethiol Thus, thethiol group inter-acted strongly with gold,and itsalkyl chain pointed upwards, allowinghydrophobicinteractionswiththealkyltailsofDODAB Therefore, the cationic amino head onthesurface was able to interact with anionic XAN molecules, the first polymeric layer injected

ThecrystaltopographywasanalyzedbyAFM(Fig.3 andthe surfacecontactanglewasmeasuredwithultrapurewaterdrops after thefirst layer of XANand the first layerof GMC, ontop

ofXAN.QCMshowedtheadsorptionofbothpolymers (Supple-mentarymaterialS2),withgreateradsorptionforGMC.Thegrater irregularityoftheXANcoating,asevidencedbyAFM,canexplain thisfinding.ItappearsthattheLpofXANmoleculesleavespores thatarefilledbyGMC,amuch moreflexiblemolecule.Because GMC has a slightly negative charge, it can also interact with DODAB

Thecontactangleconfirmedthatallthelayerswereproperly fixed.Hexanethiolformedthemostapolar surface,and DODAB themostpolar,consistentwithitsgreater␨-potential.Thecontact angleoftheXANlayerwasslightlygreaterthanthatofDODAB, indi-catingalesspolarsurface.TheGMClayer,aneutralpolysaccharide, raisedthesurfacecontactangle

AstheLbLprocesscontinued,theadsorbedmassproportional

to−F,wasincreased(Fig.1c).Itisunderstandablethatthe elec-trostaticinteractionis greaterthanotherinteractions.Thus, the DODABchargewasresponsibleforthelargeinitialadsorption.As shieldingdecreasedtheeffectivepositivecharge,fewerpolymers wereadsorbed.Althoughtheadsorbedmassdecreased,itwas suf-ficienttochangethe␨-potentialofthenanoparticlesateachlayer

WeconfirmedthattheLbLprocesswasefficientforupto4tested layersofeachpolymer(Fig.1b)

Isothermaltitrationcalorimetry(ITC)wasusedtodeterminethe bindingenthalpybetweenthecoatingpolymers,XANandGMC, andtheDODABvesicles.ITCanalysisresultsinabindingisotherm (Fig.4)thatprovidespreciseanalyticalinformation, suchasthe numberoffreeandboundvesiclesatdifferentstagesofthebinding process.Itisalsopossibletodeterminetheaveragestoichiometry

ofsupramolecularsurfactant-polymerclusters

Fig.4showstherawsignalcurve(top)andtheintegralofthe areaateachinjection(bottom).Theenthalpymeasuredinthecell

isthesumofseveraldifferentenergies,suchastheenergyofthe dilutioneffectandtheenergyofthepolymersbindingontothe surfactantvesicles.Theenergyofthepolymersbindingtothe vesi-clesismoresignificantthanthesumoftheotherenergies,which representthesmallenergychangesthatoccurafterallpolymer moleculesareconsumed

Theenthalpycurvesofbothpolymersexhibitonlyone coopera-tiveendothermiceventateachinjection,attributedtothebinding

ofthepolymerstotheDODABvesicles.TheHcoat(Hattributed

tothecoatingofDODABvesiclesbypolymermolecules)was calcu-latedasthedifferencebetweentheinitialHandtheaverageH plateaureached

Fig.4ashowsthateachGMCmoleculeinteractedwith approx-imately25DODABmoleculesinthevesicle,themoleculesinside thevesicleswerenotconsidered(neithertheflip-flopeffect),with

Trang 4

Fig 1. (a) Gaussian distribution of nanoparticles showing the increase in hydrodynamic diameter (Dh) caused by the polymer coating, determined by DLS at 90 ◦ (b) Zeta potential determined by electrophoretic mobility at 25◦C for LbL-coated liposomes after each layer Bars denote the standard deviation (c) Frequency shift tendency determination (n = 3) by QCM for LbL with polymers injected at 0.1 mL min−1 The crystal was washed with ultrapure water between polymer injections.

abindingenthalpyof17.6kJmol−1ofDODAB.At∼50␮molL−1of

DODABallGMCmoleculeswereconsumedandthereisasurplus

offreeDODABvesicles

In the ITC plot of the DODAB vesicles titration in the XAN

solution(Fig.4b),aplateauisobservedbetweensurfactant

con-centrations of 600 and 900␮molL−1 At these concentrations,

all XAN molecules were consumed; each XAN molecule coats

∼1500DODABmoleculesinthevesiclewitha coatingenthalpy

of26.4kJmol−1 ofDODAB.Thesmallremainingenthalpieswith furtherliposomesadditiontendtozeroandmightbeattributedto associationsinotherlargercolloidalsystems

TobettercomprehendthepolymercoatingsoftheDODAB lipo-somes,thenumberofsurfactant (Ntot) moleculesthatformedeach liposomewascalculatedbythefollowingequation:

Trang 5

Fig 2.AFM topography 4 × 4 ␮m images of the LbL process on a QCM crystal (a) Gold surface; (b) Hexanethiol; (c) DODAB; (d) XAN; (e) GMC.

Fig 3.AFM topography image of (a) Plain liposomes; (b) XAN-coated liposomes; (c) GMC + XAN-coated liposomes.

Ntot=



4

d/22

+4

d/2

−h2 a



(1)

wheredistheliposomesdiameter,62nmdeterminedbyDLS,h

isthebilayerthickness,4nm(Correia,Petri,&Carmona-Ribeiro,

2004)andaisthesurfactantheadgrouparea.Itwasfoundthat

approximately31,000DODABmolecules associatetoformeach

colloidalstructure.Therefore,approximately1250GMCmolecules

coatedeachliposomewhile,approximately,only20moleculesof

XAN

Possible explanations for this great difference include the

electrostaticrepulsionbetweenadsorbedXANmoleculesonthe

liposomesurface,hinderingtheadsorptionofnewlyarrivedXAN

molecules.TheXANmoleculesusedinthisresearcharelargerthan

theGMCmolecules,theyhave4timesthemolarmass.Also,the

longerLpofXANmoleculesplayaroleinthelackoforganization

oftheadsorbedmolecules,whiletheGMCmoleculescanadjust

betteronthesurfaceandeveninteractwitheachother

The largeenthalpy observed in our study suggeststhat the chargedsitesofXANmoleculesarestronglyattractedtotheDODAB liposomes Thelargerheatexchange ofDODAB-XAN, compared withthatofDODAB-GMC,islikelyduetotheion-exchange inter-actionsbetweenDODA+andthenegativesitesonXAN

3.4 Releasekinetics Afterconfirmingtheformationandstructureoftheliposomes coatedwithbiopolymersandthephysical-chemicalparametersof thecoating,EGFwasencapsulatedinthesystem.Theentrapment efficiency was72±3%.The efficiencywasdetermined byHPLC quantificationthroughthedirectmethodoflysingliposomeswith 3%TritonX-100,describedbyLiu,Yang,Liu,andJiang(2008)and

anindirectmethodthatmeasuredtheEGFinthesupernatantof centrifugedliposomes

ThekineticsdataweretreatedwiththeBerensandHopfenberg (1978)model(Eq.(2)),suitableforspheres,whichshowed confi-denceintervalsabove99%forthe3systems:

Trang 6

Fig 4.Thermogram (top) and binding isotherm (bottom) The latter resulted from the integration of the ITC peaks in the former, which were at 25 ◦ C (a) DODAB liposomes titrated in a solution of GMC at 0.5 mg mL -1 (b) DODAB liposomes titrated in a solution of XAN at 0.5 mg mL -1

Mt

M∞ =1−F

2

n=3

n2



exp

−42n2Dt

d2 −Rexp (−kx)

(2)

whereDisthediffusioncoefficient,kisthefirst-orderrelaxation

constant,FandRarethefractionsofsorptioncontributedby

Fick-iandiffusionandchainrelaxation,respectively,disthediameterof

thenanoparticleandtistime

Eachlayerofcoatingcontributedtothereleasekinetics,asseen

inFig.5.Theplainliposomespresentedaconstantdrugdelivery

rate(k)of0.025min−1,andtheXANlayerreducedthedeliveryrate

to0.016min−1,1.6timeslonger.Fortheliposomescoatedwithone

layerofbothpolymers,thedeliverykdecreasedto0.005min−1,5

timessmallerthantherateoftheplainliposomes

Non-linearleastsquarefittingroutinewasusedtofittherelease

ofEGFfromthenanoparticlesintotheabovemodel.Thismodel

describesthereleasebehaviorintermsofFickianandnon-Fickian

contributions.AsthecoatingtookplacetheRparameterbecame

dominate When the last term of the equation is switched to



−X/

,itprovidesthecharacteristicrelaxationtime()

Thecoatingthicknesses(L)ofthelayersweredeterminedas

thedifference between thenanoparticles hydrodynamic radius

(Fig.1a).The

Mt/M∞

wasplottedagainstthesquarerootoft/L2

incm2toprovidetheEGFdiffusibility(D),theangularcoefficient,in

allnanoparticlesaccordingtoVogt,Soles,Lee,Lin,andWu(2004)

TheandtheDvalueswereplottedtogetheragainstthecoating

layersandcanbeseeninSupplementarymaterial(S3)

0.0 0.2 0.4 0.6 0.8 1.0

Time (min)

Fig 5. The tendency profile in vitro of EGF from the nanoparticles in PBS at pH 5.5 and 35 ◦ C by dialysis • Plain liposomes, 䊏 XAN coated liposomes and  XAN + GMC coated liposomes Bars denote the standard deviation (n = 3).

Theplainliposomesrelaxationtime(t)wasfoundtobe40min, theXANlayerincreasedto60minandtheXANandGMCcoatings increasedto195min.ItcanbenoticedthattheXANlayer con-tributedtoa50%increaseinthenanoparticlessustainedrelease, whiletheGMCovertheXANlayerincreaseditinalmost400%.One additionallayerofeachpolysaccharideXAN-GMCreduced com-pletelythedrugdeliverytozeroduring480minofevaluation

Trang 7

thecoatinglayersbecamemoreimportantforthereleaseofEGF

Thisway,asDdecreased,increasedexponentially

4 Conclusion

Thenatural interactionbetweenXANand GMCwas

demon-stratedtobesufficientlystrongtoprovideLbLstructureforupto8

biopolymerlayers.TheassociationoftheanionicXANandthe

neu-tralGMCforliposomescoatingprovidedasynergisticeffectthat

builtacohesivenanoparticlecapableofincreasing5timesthe

sus-taineddeliveryofEGFwithonlyonelayerofeachpolymer.TheEGF

releasefromthenanoparticleswasattributedtothepolymerchains

relaxationbytheuseofthediffusionandrelaxationmodel.The

useofthesenaturalpolysaccharidesinthree-dimensionaldelivery

systemsprovidesbiocompatibility,easeandabundanceatlowcost

Acknowledgements

We acknowledgetheBrazilian fundingagencies CNPq

(Con-selho Nacional de Pesquisa, process no 477275/2012-5 and

300343/2010-8, Fundac¸ão Araucária, project 23643, convênio

447/2012,andRedeNanobiotec/Capes-Brazil,project34,for

finan-cialsupport.WearegratefultoDra.LeilaBeltramini(Institutode

FísicadeSãoCarlos) forITC analysis,Dr.WatsonLoh(Instituto

deQuímicaUNICAMP)forthermodynamicdiscussionaidandDr

LionelGamarra(InstitutoCérebro,HospitalAlbertEinstein)for

␨-potentialanalysis

Appendix A Supplementary data

Supplementarydataassociatedwiththisarticlecanbefound,in

theonlineversion,atdoi:10.1016/j.carbpol.2015.12.014

References

Alves, J B., Ferreira, C L., Martins, A F., Silva, G A B., Alves, G D., Paulino, T P., et al.

(2009) Local delivery of EGF-liposome mediated bone modeling in orthodontic

tooth movement by increasing RANKL expression Life Sciences, 85, 693–699.

Behm, B., Babilas, P., Landthaler, M., & Schreml, S (2011) Cytokines, chemokines

and growth factors in wound healing Journal of the European Academy of

Dermatology and Venereology, 26, 812–820.

Berens, A R., & Hopfenberg, H B (1978) Diffusion and relaxation in glassy

polymer powders: 2 Separation of diffusion and relaxation parameters.

Polymer, 19, 489–496.

Bresolin, T M B., Milas, M., Rinaudo, M., & Ganter, J L M S (1998).

Xanthan–galactomannan interactions as related to xanthan conformations.

International Journal of Biological Macromolecules, 23, 263–275.

Correia, F M., Petri, D F S., & Carmona-Ribeiro, A M (2004) Colloid Stability of

Lipid/Polyelectrolyte Decorated Latex Langmuir, 20, 9535–9540.

Chen, R R., & Mooney, D J (2003) Polymeric growth factor delivery strategies for tissue engineering Pharmaceutical Research, 20, 1103–1112.

Choi, J K., Jang, J.-H., Jang, W.-H., Kim, J., Bae, I.-H., Bae, J., et al (2012) The effect of epidermal growth factor (EGF) conjugated with low-molecular weight protamine (LMWP) on wound healing of the skin Biomaterials, 33, 8579–8590 Dea, I C M., & Morrison, A (1975) Chemistry and interactions of seed

galactomannans Advances in Carbohydrate Chemistry and Biochemistry, 32, 241–312.

Decher, G (1997) Fuzzy nanoassemblies: Toward layered polymeric multicomposites Science, 277, 1232–1237.

De˘gim, Z., C¸ elebi, N., Alemdaro˘glu, C., Deveci, M., Öztürk, S., & Özo˘gul, C (2011) Evaluation of chitosan gel containing liposome-loaded epidermal growth factor on burn wound healing International Wound Journal, 8, 343–354 Gedda, L., Olsson, P., Pontén, J., & Carlsson, J (1996) Development and in vitro studies of epidermal growth factor–dextran conjugates for boron neutron capture therapy Bioconjugate Chemistry, 7, 584–591.

Hartree, E F (1972) Determination of protein: A modification of the lowry method that gives linear photometric response Analytical Biochemistry, 48, 422–427 Jansson, P E., Kennark, L., & Lindberg, B (1975) Structure of the extracellular polysaccharide from Xanthomonas campestris Carbohydrate Research, 45, 275–282.

Khouryieh, H A., Herald, T J., Aramouni, F., & Alavi, S (2007) Intrinsic viscosity and viscoelastic properties of xanthan/guar mixtures in dilute solutions: Effect

of salt concentration on the polymer interactions Food Research International,

40, 883–893.

Liu, Y., Yang, Y., Liu, X., & Jiang, T (2008) Quantification of pegylated liposomal doxorubicin and doxorubicinol in rat plasma by liquid

chromatography/electrospray tandem mass spectroscopy: Application to preclinical pharmacokinetic studies Talanta, 74, 887–895.

Lojou, É., & Bianco, P (2004) Buildup of polyelectrolyte-protein multilayer assemblies on gold electrodes Role of the Hydrophobic Effect Langmuir, 20, 748–755.

Morita, S., Nukui, M., & Kuboi, R (2006) Immobilization of liposomes onto quartz crystal microbalance to detect interaction between liposomes and proteins Journal of Colloid and Interface Science, 298, 672–678.

Rinaudo, M (2001) Relation between the molecular structure of some polysaccharides and original properties in sol and gel states Food Hydrocolloids, 15, 433–440.

Salvalaggio, M O., de Freitas, R A., Franquetto, E M., Koop, H S., & Silveira, J L M (2015) Influence of the extraction time on macromolecular parameters of galactomannans Carbohydrate Polymers, 116, 200–206.

Sato, M., & Sano, M (2005) Van der Waals layer-by-layer construction of a carbon nanotube 2D network Langmuir, 21, 11490–11494.

Sun, J., Wu, T., Sun, Y., Wang, Z., Zhang, X., Shen, J., et al (1998) Fabrication of a covalently attached multilayer via photolysis of layer-by-layer self-assembled films containing diazo-resins Chemical Communications, 17, 1853–1854 Taylor, T M., Davidson, P M., Bruce, D B., & Weiss, J (2005) Liposomal nanocapsules in food science and agriculture Critical Reviews in Food Science and Nutrition, 45, 587–605.

Vogt, B D., Soles, C L., Lee, H.-J., Lin, E K., & Wu, W.-L (2004) Moisture absorption and absorption kinetics in polyelectrolyte films: Influence of film thickness Langmuir, 20, 1453–1458.

Wagner, H., Kostka, K.-H., Lehr, C.-M., & Schaefer, U F (2003) pH profiles in human skin: Influence of two in vitro test systems for drug delivery testing European Journal of Pharmaceutics and Biopharmaceutics, 55, 57–65.

Wang, L Y., Wang, Z Q., Zhang, X., Shen, J C., Chi, L F., & Fuchs, H (1997) A new approach for the fabrication of an alternating multilayer film of

poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding Macromolecular Rapid Communications, 18, 509–514.

Yang, C.-H., Huang, Y.-B., Wu, P.-C., & Tsai, Y.-H (2005) The evaluation of stability

of recombinant human epidermal growth factor in burn-injured pigs Process Biochemistry, 40, 1661–1665.

Ngày đăng: 07/01/2023, 20:32

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm