A three-dimensional layer-by-layer (LbL) structure composed by xanthan and galactomannan biopolymers over dioctadecyldimethylammonium bromide (DODAB) liposome template was proposed and characterized for protein drug delivery.
Trang 1jo u r n al h om ep a g e :w w w e l s e v i e r c o m / l o c a t e / c a r b p o l
a BioPol, Chemistry Department, Universidade Federal do Paraná, R Coronel F H dos Santos, Curitiba 210–81531-980, PR, Brazil
b CEB, Pharmacy Department, Universidade Federal do Paraná, Av Prof Lothário Meissner, Curitiba 3400–80210-170, PR, Brazil
a r t i c l e i n f o
Article history:
Received 14 September 2015
Received in revised form 31 October 2015
Accepted 7 December 2015
Available online 17 December 2015
Keywords:
DODAB
Xanthan
Galactomannan
EGF
Layer-by-layer
Liposomes
a b s t r a c t
Athree-dimensionallayer-by-layer(LbL)structurecomposedbyxanthanandgalactomannan biopoly-mersoverdioctadecyldimethylammoniumbromide(DODAB) liposometemplate wasproposedand characterizedforproteindrugdelivery.Thepolymersandthesurfactantinteractionweresufficiently strongtocreateaLbLstructureupto8layers,evaluatedusingquartzcrystalmicrobalance(QCM)and zetapotentialanalysis.Thepolymer–liposomebindingenthalpywasdeterminedbyisothermaltitration calorimetry(ITC).Thebilayerofbiopolymer-coatedliposomeswithdiametersof165(±15)nm,measured
bydynamiclightscattering(DLS),and-potentialof−4(±13)mV.Thesebilayer-coatednanoparticles increasedupto5timesthesustainedreleaseofepidermalgrowthfactor(EGF)atafirstorderrateof 0.005min−1.Thissystemcouldbeusefulforimprovingthereleaseprofileoflow-stabilitydrugslikeEGF
©2015ElsevierLtd.Allrightsreserved
1 Introduction
Therapiesbasedongrowthfactors(GF)havepromising
poten-tialinbiomedicaltechnology.Incasesofchronicwoundsproactive
treatmentisneededforhealingandGFmightprovidethe
neces-sarystimulitoinducewoundclosure(Behm,Babilas,Landthaler,
&Schreml,2011).Ofthevariousgrowthfactors,epidermalgrowth
factor(EGF)hasbeenfirstandmostsuccessfullyappliedfor
treat-ingwounds.Itisapolypeptidecomposedof53aminoacidsthat
enhanceepidermalandmesenchymalregeneration,cellmotility,
andproliferation(Choietal.,2012)
EGFcouldbeemployedtoacceleratere-epithelialization,
reduc-ingriskofinfectionandshorteninghospitalization.However,due
toshorthalf-life,rapiddilutioninthebody,andthefactthatEGF
receptorsareoverexpressedinmostsquamouscarcinomas,brain
gliomasand breast cancers (Gedda, Olsson, Pontén, &Carlsson,
1996;Chen&Mooney,2003),supplyofexogenousEGFmustbe
appliedina sustainedand localizedfashiontobeeffectiveand
safe.TheencapsulationofEGFinliposomesmightbean
alterna-tivetomaximizetheirstabilityandtoavoidenzymaticdegradation
(De˘gimetal.,2011)
∗ Corresponding author Tel.: +55 4133613260; fax: +55 4133613260.
E-mail address: rilton@ufpr.br (R.A.d Freitas).
Liposomeshavealreadybeenstudiedasdeliverysystemsfor
GF(De˘gimetal.,2011).Nevertheless,liposomeshavethe limita-tionsofspillingtheircontentsovertimeandaggregating(Taylor, Davidson,Bruce,&Weiss,2005).Inordertopreventtheseevents, theliposomescanbecoatedwithpolymers,modulatingthedrug deliverytoachievethedesiredreleasekinetics
Averyefficienttechniquetoformpolymericcoatingson two-dimensionalandthree-dimensionalsystems,suchasliposomes,is Layer-by-layer(LbL),introducedbyDecher(1997).Thistechnique consistsin thealternating depositionsof polycationsand poly-anions,generatingamultilayercoatingsupportedmainly,butnot exclusively,bytheelectrostaticinteractionsorofhydrogenbonds (Wangetal.,1997),covalentbonds(Sunetal.,1998),hydrophobic interactions(Lojou&Bianco,2004)andvanderWaalsforces(Sato
&Sano,2005)
Inordertocoatthedioctadecyldimethylammoniumbromide (DODAB)cationicliposomes,usingtheLbLtechnique,two biopoly-merswerechosen.Xanthan(XAN)ananionicbiopolymerproduced
byXanthomonascampestrisandcomposedofa(1→4)--d-glucan cellulosebackbonesubstitutedwithanacidtrisaccharideinthe sidechain(Jansson,Kennark,&Lindberg,1975),and galactoman-nan(GMC),aneutralbiopolymerfromCeratoniasiliquaseedsthat
iscomposedofa(1→4)--d-mannanbackbonewith(1→6)- ␣-d-galactosesubstitutions(Dea&Morrison,1975).Thesepolymers interactpositivelyandsynergistically,aspreviouslydescribedand http://dx.doi.org/10.1016/j.carbpol.2015.12.014
0144-8617/© 2015 Elsevier Ltd All rights reserved.
Trang 2scattering(Bresolin,Milas,Rinaudo,&Ganter,1998;Khouryieh,
Herald,Aramouni,&Alavi,2007)
Inthismanuscript,weevaluateanewapproachfor
LbL-three-dimensionalsystemsstructuredwithXANandGMC,forsustained
releaseofEGF.WeemployedDODAB,acationiclipidwitha
quater-naryammoniumsaltasitspolarheadandtwo18-carbonsaturated
chains,toformpositivelysuperficialchargedliposomes
potenti-atingthebiopolymerLbLcoating.Theliposomes,includingthose
withcoatings,werecharacterized,andtheEGFreleaserateswere
determinedinvitro
2 Material and methods
2.1 Polymerpreparation
2.1.1 Polymerpurification
XANgum(Sigma-Aldrich)waspurifiedbydialysisthrougha
cel-lulosemembrane(Sigma-Aldrich),firstagainst0.1molL−1 acetic
acidfor3daystoensurethatallthemoleculeswouldbeinthe
molecularconformation,andthenagainstultrapurewater for2
daystoremovetheaceticacid.GMC,fromlocustbeangumfromC
siliquaseeds(Sigma-Aldrich),waspurifiedbydispersionin
ultra-purewaterat40◦Covernightandcentrifugationat10,000×gfor
20minat40◦Cina4K15C(Sigma,OsterodeamHarz,Germany)
centrifugetoprecipitateinsolubleimpurities.Ethylalcohol(99%)
wasaddedtothesupernatanttoachievea70%alcohol
concentra-tion,andthissuspensionwascentrifugedat10,000×gfor20min
at5◦CtoprecipitatethepurifiedXANandGMC.Thepolymerswere
washedwith99%ethylalcohol,centrifugedasdescribedaboveand
driedat40◦C
2.1.2 Polymercharacterization
Thepolymerswerecharacterizedat0.5mgmL−1byhigh
per-formancesizeexclusionchromatography(HPSEC)with0.1molL−1
NaNO3 and200ppmsodiumazideat0.4mLmin−1asthemobile
phase at 40◦C The system was composed of a UV/vis
detec-tor, refractometer, light scattering detector at 7◦ and 90◦ and
a differential viscometer detector (Viscotek, Westborough, MA,
USA)withan OHpakSB-806MHQcolumn (Shodex, NewYork,
NY,USA)
The persistence length (Lp) was determined as previously
described for other galactomannans by Salvalaggio, de Freitas,
Franquetto,Koop,andSilveira(2015)
Thezetapotentialwasdeterminedforpolymersdispersionsat
0.5mgmL−1 inultrapurewaterusingtheelectrophoretic
mobil-itymeasuredonaZetasizerNano-ZS(Malvern,Westborough,MA,
USA)at25◦Cwith120sofstabilization
TheproteinquantificationofpurifiedGMCwasdeterminedby
theHartreemethod(Hartree,1972)
Infrared spectroscopy (FTIR), using an attenuated total
reflectance(ATR)modewasdeterminedinaVERTEX70(BRUKER)
with4cm−1 of resolution and 4000–600cm−1 (Supplementary
materialS1)
2.2 Liposomepreparation
Liposomeswerepreparedbyamodifiedmethod(Alvesetal.,
2009) DODAB (Sigma-Aldrich, Switzerland) was dispersed in
chloroformat5mmolL−1,thesolventwasremovedbyrotary
evap-orationat40◦C,andthelipidwasresuspendedina5gmL−1EGF
(Caregen)solutionat35◦C,similartoAlvesetal.(2009)andDe˘gim
etal.(2011).Thesuspensionwasthensubmittedtosonicationat
25◦Cinpulsemodefor5min
TheEGF-liposomesolutionwasdiluted1:10inultrapurewater
andcentrifugedat10,000×gfor20minat25◦C.Thesupernatant
wasdiscarded,andtheliposomeswereresuspendedin0.5mgmL−1 XANsolution,followedbycentrifugationandwashingwith ultra-purewater.Thesameprocedurewasperformedwitha0.5mgmL−1 GMCsolution
2.3 Liposomecharacterization Thehydrodynamicdiametersofthecoatedliposomeswere ana-lyzedandcomparedwiththoseoftheplainliposomesbydynamic light scattering (DLS) on a NanoDLS (Brookhaven Instruments, Holtsville,NY,USA).Theuncoatedliposomesandpolymer-coated liposomeswerealsocharacterizedbytheir-potentialandAFMas describedelsewhere
The zeta potential of the liposomes was determined for
5mmolL−1dispersionofDODABinultrapurewaterusingthe elec-trophoreticmobilitymeasuredonaZetasizerNano-ZS(Malvern, Westborough,MA,USA)at25◦Cwith120sofstabilization 2.4 PolymerandDODAB/DODABvesicleinteraction
2.4.1 Isothermaltitrationcalorimetry(ITC) ExperimentswereperformedinaVP-ITC(Microcal, Westbor-ough,MA,USA)calorimeterwithanormalcell(1.464mL)at25◦C TheDODABvesicledispersionwasinjectedintoultrapurewateror intoapolymersolutionat0.5mgmL−1.Eachtitrationconsistedofa preliminary2Linjectionfollowedby29subsequent10L injec-tionswith600sintervalsbetweeneachinjection.Thesyringetip actedasablade-typestirrertoensurepropermixingat300rpm DatawerecollectedandprocessedwithOrigin7.0software (Origin-Lab,Northampton,MA,USA)
2.4.2 Quartzcrystalmicrobalance(QCM) AnalyseswereperformedintriplicateinaSRSQCM200usingthe flowcellmode.TheQCM(Gold/Cr5MHz,SRS,Sunnyvale,CA,USA) crystalswerecleanedbyimmersionin1:3(v/v)H2O2:H2SO4 for
5minandfollowedbyrinsingwithultrapurewater.Tomimicthe liposomecoatingprocess,thegoldsurfacewasmodifiedwith hex-anethiol(Sigma-Aldrich)toformahydrophobicsurfaceandthen coatedwithDODABbyimmersionina5mmolL−1chloroform solu-tionsimilartoMorita,Nukui,andKuboi(2006).Onemilliliterof eachpolymersolution(0.5mgmL−1)wasalternatelyinjectedat 0.1mLmin−1withasyringepump(KD100,KDScientific,Holliston,
MA,USA),and1mLofultrapurewaterwasinjectedbetweeneach solution
2.4.3 Atomicforcemicroscope(AFM) ImagesofeachlayerontheQCMcrystalwereobtainedona PicoPlusMolecularImagingmicroscope(Agilent,SantaClara,CA, USA)intheintermittentcontactmodeinairat25◦Cwithsilicon cantilevers,anoscillatingamplitudeof50to100nmanda reso-nancefrequencycloseto300kHz.Thedynamictappingmodewas usedwithanoxide-sharpenedmicro-fabricatedsilicon-Masch cantileverwitha4.7Nm−1nominalspringconstantandtip cur-vatureradiusoflessthan10nm.Theimageprocessingandroot meansquareroughness(rms)determinationwereperformedwith Gwyddionsoftware(CzechMetrologyInstitute,Brno-sever,Czech Republic)
2.4.4 Contactangle Theanglesof thepolymersubstratesweredetermined with OCA15+(DataPhysics,Filderstadt,Germany)deviceequippedwith SCA20softwarebythesessiledropmethodat25◦Cwiththe deliv-eryof10LultrapurewaterdropsontotheQCMcrystal-coated surface
Trang 32.5 EGF-liposomereleasekinetics
EGFreleaseprofilesweredeterminedbyHPLCquantification
usingaProminence(Shimadzu,Columbia,MD,USA)systemwitha
SymmetryC18(4.6×250mm,5mparticles)column.Apreviously
describedmethod(Yang,Huang,Wu,&Tsai,2005)wasadaptedto
use40%isocraticgradeacetonitrile(Fluka)in0.1%TFAat40◦Cwith
1mLmin−1flowrateand210nmUVdetection.TheresultingEGF
retentiontimewas4.8min
Avolumeof10mLofPlainEGF-liposomes,XAN-coated
EGF-liposomesorGMC+XAN-coatedliposomes,allintriplicates,were
placedinadialysisbag(12,000gmol−1cutoff)andimmersedin
90mL of 0.1molL phosphate buffersaline (PBS)at pH 5.5 and
35◦Ctomimicdermaldeliveryconditions(Wagner,Kostka,Lehr,&
Schaefer,2003)withmagneticstirringforupto48h.Onemilliliter
aliquotswerecollected,ateachtimepoint,fromthemediumand
thatvolumewasreplacedwithfreshPBS
3 Results and discussion
3.1 Polymers
Allthepurifiedpolymersexhibitedaunimodaldistributionas
measuredbyHPSEC(datanotshown).Afterpurification,theXAN
andGMCpresentedthemolarmass(Mw),intrinsicviscosityand
radiusofgyration(Rg)asseeninTable1.Thezetapotentials(
-potential)(Table1)showedalargedifferencebetweenDODABand
XAN,suggestingthatthesepolymersmayinteractwitheachother
electrostatically.ThenegativechargeontheneutralGMCpolymer
couldbecausedbyattachedproteins,determinedas4%(m/m),that
remainedevenafterpolymerprecipitationwithethanol
3.2 Liposomes-LbLbiopolymercoating
Thesizeoftheliposomesincreased(Fig.1a)from62(±9)nmto
132(±22)nmwhencoatedwithXANandto165(±15)nmwhen
coatedwiththeXANandtheGMClayers.Thesizeoftheliposomes,
after48hwas79nm,140and195nm,respectivelyforplain,XAN
andXAN-GMClayers,suggestingansmallincreaseinthesize
dur-ingstorageoftheliposomes.Althoughtherewasgreateradsorption
fortheGMCcoating,theXANlayerrepresentedalargerincrease
inthediameteroftheliposomes.Thisincreasewasmostlikely
becauseofitslargerpersistencelength(Lp)of125nm,similarto
thefoundbyRinaudo(2001),thanofGMC(9nm)andtheCoulomb
repulsionbetweennegativelychargedXAN,resultinginporeson
thesurface,whichwereoccupiedbyGMC.Theplainandcoated
liposomescanbeseeninAFM(Fig.2)
ItisclearthatXANleftporesonthesurface,becausethefirst
layeronlydecreasedthe-potentialoftheliposomesto
approx-imately+35mV(Fig.1b).However,thefirstGMClayershielded
allthepositivechargefromDODABanddecreasedthe-potential
of theliposomes toapproximately −4mV, closetothe own
-potentialofthepolymer.BecauseGMCfilledtheporesleftbyXAN,
Table 1
Physicochemical characteristics of the polymers and the surfactant: molar mass
(M w ), radius of gyration (R g ) and zeta potential (-potential).
Molecules M w (g mol −1 ) * R g (nm) * -potential (mV) **
XAN 1.03 × 10 6 69 −54.1 (±7.7)
GMC 0.26 × 10 6 52 −5.4 (±6.2)
DODAB 630 – + 66.5 (±9.4)
* 0.1 mol L -1 NaNO 3 and 200 ppm sodium azide as the mobile phase at 0.4 mL min −1
at 40 ◦ C through a Shodex OHpak SB-806 HQ column The zeta potential was
deter-mined using the electrophoretic mobility in ultrapure water at 25◦C.
theeffectofitsadsorptiononthestandarddeviationoftheQCM crystalwaslarger(differentamountsofGMCwererequired) 3.3 Physical–chemicaldescriptionofliposomes-LbLbiopolymer coating
QCMwasusedtoverifythattherewereinteractionsbetweenall layers,enablingtheformationandmaintenanceoftheLbL struc-ture.Becausetheliposomeswerethetemplateforthebiopolymers coating,theQCMcrystalshouldbecoatedwithDODABbefore poly-merdeposition.ToassuretheproperDODABcoating,thecrystal was first coated withhexanethiol Thus, thethiol group inter-acted strongly with gold,and itsalkyl chain pointed upwards, allowinghydrophobicinteractionswiththealkyltailsofDODAB Therefore, the cationic amino head onthesurface was able to interact with anionic XAN molecules, the first polymeric layer injected
ThecrystaltopographywasanalyzedbyAFM(Fig.3 andthe surfacecontactanglewasmeasuredwithultrapurewaterdrops after thefirst layer of XANand the first layerof GMC, ontop
ofXAN.QCMshowedtheadsorptionofbothpolymers (Supple-mentarymaterialS2),withgreateradsorptionforGMC.Thegrater irregularityoftheXANcoating,asevidencedbyAFM,canexplain thisfinding.ItappearsthattheLpofXANmoleculesleavespores thatarefilledbyGMC,amuch moreflexiblemolecule.Because GMC has a slightly negative charge, it can also interact with DODAB
Thecontactangleconfirmedthatallthelayerswereproperly fixed.Hexanethiolformedthemostapolar surface,and DODAB themostpolar,consistentwithitsgreater-potential.Thecontact angleoftheXANlayerwasslightlygreaterthanthatofDODAB, indi-catingalesspolarsurface.TheGMClayer,aneutralpolysaccharide, raisedthesurfacecontactangle
AstheLbLprocesscontinued,theadsorbedmassproportional
to−F,wasincreased(Fig.1c).Itisunderstandablethatthe elec-trostaticinteractionis greaterthanotherinteractions.Thus, the DODABchargewasresponsibleforthelargeinitialadsorption.As shieldingdecreasedtheeffectivepositivecharge,fewerpolymers wereadsorbed.Althoughtheadsorbedmassdecreased,itwas suf-ficienttochangethe-potentialofthenanoparticlesateachlayer
WeconfirmedthattheLbLprocesswasefficientforupto4tested layersofeachpolymer(Fig.1b)
Isothermaltitrationcalorimetry(ITC)wasusedtodeterminethe bindingenthalpybetweenthecoatingpolymers,XANandGMC, andtheDODABvesicles.ITCanalysisresultsinabindingisotherm (Fig.4)thatprovidespreciseanalyticalinformation, suchasthe numberoffreeandboundvesiclesatdifferentstagesofthebinding process.Itisalsopossibletodeterminetheaveragestoichiometry
ofsupramolecularsurfactant-polymerclusters
Fig.4showstherawsignalcurve(top)andtheintegralofthe areaateachinjection(bottom).Theenthalpymeasuredinthecell
isthesumofseveraldifferentenergies,suchastheenergyofthe dilutioneffectandtheenergyofthepolymersbindingontothe surfactantvesicles.Theenergyofthepolymersbindingtothe vesi-clesismoresignificantthanthesumoftheotherenergies,which representthesmallenergychangesthatoccurafterallpolymer moleculesareconsumed
Theenthalpycurvesofbothpolymersexhibitonlyone coopera-tiveendothermiceventateachinjection,attributedtothebinding
ofthepolymerstotheDODABvesicles.TheHcoat(Hattributed
tothecoatingofDODABvesiclesbypolymermolecules)was calcu-latedasthedifferencebetweentheinitialHandtheaverageH plateaureached
Fig.4ashowsthateachGMCmoleculeinteractedwith approx-imately25DODABmoleculesinthevesicle,themoleculesinside thevesicleswerenotconsidered(neithertheflip-flopeffect),with
Trang 4Fig 1. (a) Gaussian distribution of nanoparticles showing the increase in hydrodynamic diameter (Dh) caused by the polymer coating, determined by DLS at 90 ◦ (b) Zeta potential determined by electrophoretic mobility at 25◦C for LbL-coated liposomes after each layer Bars denote the standard deviation (c) Frequency shift tendency determination (n = 3) by QCM for LbL with polymers injected at 0.1 mL min−1 The crystal was washed with ultrapure water between polymer injections.
abindingenthalpyof17.6kJmol−1ofDODAB.At∼50molL−1of
DODABallGMCmoleculeswereconsumedandthereisasurplus
offreeDODABvesicles
In the ITC plot of the DODAB vesicles titration in the XAN
solution(Fig.4b),aplateauisobservedbetweensurfactant
con-centrations of 600 and 900molL−1 At these concentrations,
all XAN molecules were consumed; each XAN molecule coats
∼1500DODABmoleculesinthevesiclewitha coatingenthalpy
of26.4kJmol−1 ofDODAB.Thesmallremainingenthalpieswith furtherliposomesadditiontendtozeroandmightbeattributedto associationsinotherlargercolloidalsystems
TobettercomprehendthepolymercoatingsoftheDODAB lipo-somes,thenumberofsurfactant (Ntot) moleculesthatformedeach liposomewascalculatedbythefollowingequation:
Trang 5Fig 2.AFM topography 4 × 4 m images of the LbL process on a QCM crystal (a) Gold surface; (b) Hexanethiol; (c) DODAB; (d) XAN; (e) GMC.
Fig 3.AFM topography image of (a) Plain liposomes; (b) XAN-coated liposomes; (c) GMC + XAN-coated liposomes.
Ntot=
4
d/22
+4
d/2
−h2 a
(1)
wheredistheliposomesdiameter,62nmdeterminedbyDLS,h
isthebilayerthickness,4nm(Correia,Petri,&Carmona-Ribeiro,
2004)andaisthesurfactantheadgrouparea.Itwasfoundthat
approximately31,000DODABmolecules associatetoformeach
colloidalstructure.Therefore,approximately1250GMCmolecules
coatedeachliposomewhile,approximately,only20moleculesof
XAN
Possible explanations for this great difference include the
electrostaticrepulsionbetweenadsorbedXANmoleculesonthe
liposomesurface,hinderingtheadsorptionofnewlyarrivedXAN
molecules.TheXANmoleculesusedinthisresearcharelargerthan
theGMCmolecules,theyhave4timesthemolarmass.Also,the
longerLpofXANmoleculesplayaroleinthelackoforganization
oftheadsorbedmolecules,whiletheGMCmoleculescanadjust
betteronthesurfaceandeveninteractwitheachother
The largeenthalpy observed in our study suggeststhat the chargedsitesofXANmoleculesarestronglyattractedtotheDODAB liposomes Thelargerheatexchange ofDODAB-XAN, compared withthatofDODAB-GMC,islikelyduetotheion-exchange inter-actionsbetweenDODA+andthenegativesitesonXAN
3.4 Releasekinetics Afterconfirmingtheformationandstructureoftheliposomes coatedwithbiopolymersandthephysical-chemicalparametersof thecoating,EGFwasencapsulatedinthesystem.Theentrapment efficiency was72±3%.The efficiencywasdetermined byHPLC quantificationthroughthedirectmethodoflysingliposomeswith 3%TritonX-100,describedbyLiu,Yang,Liu,andJiang(2008)and
anindirectmethodthatmeasuredtheEGFinthesupernatantof centrifugedliposomes
ThekineticsdataweretreatedwiththeBerensandHopfenberg (1978)model(Eq.(2)),suitableforspheres,whichshowed confi-denceintervalsabove99%forthe3systems:
Trang 6Fig 4.Thermogram (top) and binding isotherm (bottom) The latter resulted from the integration of the ITC peaks in the former, which were at 25 ◦ C (a) DODAB liposomes titrated in a solution of GMC at 0.5 mg mL -1 (b) DODAB liposomes titrated in a solution of XAN at 0.5 mg mL -1
Mt
M∞ =1−F
2
n=3
n2
exp
−42n2Dt
d2 −Rexp (−kx)
(2)
whereDisthediffusioncoefficient,kisthefirst-orderrelaxation
constant,FandRarethefractionsofsorptioncontributedby
Fick-iandiffusionandchainrelaxation,respectively,disthediameterof
thenanoparticleandtistime
Eachlayerofcoatingcontributedtothereleasekinetics,asseen
inFig.5.Theplainliposomespresentedaconstantdrugdelivery
rate(k)of0.025min−1,andtheXANlayerreducedthedeliveryrate
to0.016min−1,1.6timeslonger.Fortheliposomescoatedwithone
layerofbothpolymers,thedeliverykdecreasedto0.005min−1,5
timessmallerthantherateoftheplainliposomes
Non-linearleastsquarefittingroutinewasusedtofittherelease
ofEGFfromthenanoparticlesintotheabovemodel.Thismodel
describesthereleasebehaviorintermsofFickianandnon-Fickian
contributions.AsthecoatingtookplacetheRparameterbecame
dominate When the last term of the equation is switched to
−X/
,itprovidesthecharacteristicrelaxationtime()
Thecoatingthicknesses(L)ofthelayersweredeterminedas
thedifference between thenanoparticles hydrodynamic radius
(Fig.1a).The
Mt/M∞
wasplottedagainstthesquarerootoft/L2
incm2toprovidetheEGFdiffusibility(D),theangularcoefficient,in
allnanoparticlesaccordingtoVogt,Soles,Lee,Lin,andWu(2004)
TheandtheDvalueswereplottedtogetheragainstthecoating
layersandcanbeseeninSupplementarymaterial(S3)
0.0 0.2 0.4 0.6 0.8 1.0
Time (min)
Fig 5. The tendency profile in vitro of EGF from the nanoparticles in PBS at pH 5.5 and 35 ◦ C by dialysis • Plain liposomes, 䊏 XAN coated liposomes and XAN + GMC coated liposomes Bars denote the standard deviation (n = 3).
Theplainliposomesrelaxationtime(t)wasfoundtobe40min, theXANlayerincreasedto60minandtheXANandGMCcoatings increasedto195min.ItcanbenoticedthattheXANlayer con-tributedtoa50%increaseinthenanoparticlessustainedrelease, whiletheGMCovertheXANlayerincreaseditinalmost400%.One additionallayerofeachpolysaccharideXAN-GMCreduced com-pletelythedrugdeliverytozeroduring480minofevaluation
Trang 7thecoatinglayersbecamemoreimportantforthereleaseofEGF
Thisway,asDdecreased,increasedexponentially
4 Conclusion
Thenatural interactionbetweenXANand GMCwas
demon-stratedtobesufficientlystrongtoprovideLbLstructureforupto8
biopolymerlayers.TheassociationoftheanionicXANandthe
neu-tralGMCforliposomescoatingprovidedasynergisticeffectthat
builtacohesivenanoparticlecapableofincreasing5timesthe
sus-taineddeliveryofEGFwithonlyonelayerofeachpolymer.TheEGF
releasefromthenanoparticleswasattributedtothepolymerchains
relaxationbytheuseofthediffusionandrelaxationmodel.The
useofthesenaturalpolysaccharidesinthree-dimensionaldelivery
systemsprovidesbiocompatibility,easeandabundanceatlowcost
Acknowledgements
We acknowledgetheBrazilian fundingagencies CNPq
(Con-selho Nacional de Pesquisa, process no 477275/2012-5 and
300343/2010-8, Fundac¸ão Araucária, project 23643, convênio
447/2012,andRedeNanobiotec/Capes-Brazil,project34,for
finan-cialsupport.WearegratefultoDra.LeilaBeltramini(Institutode
FísicadeSãoCarlos) forITC analysis,Dr.WatsonLoh(Instituto
deQuímicaUNICAMP)forthermodynamicdiscussionaidandDr
LionelGamarra(InstitutoCérebro,HospitalAlbertEinstein)for
-potentialanalysis
Appendix A Supplementary data
Supplementarydataassociatedwiththisarticlecanbefound,in
theonlineversion,atdoi:10.1016/j.carbpol.2015.12.014
References
Alves, J B., Ferreira, C L., Martins, A F., Silva, G A B., Alves, G D., Paulino, T P., et al.
(2009) Local delivery of EGF-liposome mediated bone modeling in orthodontic
tooth movement by increasing RANKL expression Life Sciences, 85, 693–699.
Behm, B., Babilas, P., Landthaler, M., & Schreml, S (2011) Cytokines, chemokines
and growth factors in wound healing Journal of the European Academy of
Dermatology and Venereology, 26, 812–820.
Berens, A R., & Hopfenberg, H B (1978) Diffusion and relaxation in glassy
polymer powders: 2 Separation of diffusion and relaxation parameters.
Polymer, 19, 489–496.
Bresolin, T M B., Milas, M., Rinaudo, M., & Ganter, J L M S (1998).
Xanthan–galactomannan interactions as related to xanthan conformations.
International Journal of Biological Macromolecules, 23, 263–275.
Correia, F M., Petri, D F S., & Carmona-Ribeiro, A M (2004) Colloid Stability of
Lipid/Polyelectrolyte Decorated Latex Langmuir, 20, 9535–9540.
Chen, R R., & Mooney, D J (2003) Polymeric growth factor delivery strategies for tissue engineering Pharmaceutical Research, 20, 1103–1112.
Choi, J K., Jang, J.-H., Jang, W.-H., Kim, J., Bae, I.-H., Bae, J., et al (2012) The effect of epidermal growth factor (EGF) conjugated with low-molecular weight protamine (LMWP) on wound healing of the skin Biomaterials, 33, 8579–8590 Dea, I C M., & Morrison, A (1975) Chemistry and interactions of seed
galactomannans Advances in Carbohydrate Chemistry and Biochemistry, 32, 241–312.
Decher, G (1997) Fuzzy nanoassemblies: Toward layered polymeric multicomposites Science, 277, 1232–1237.
De˘gim, Z., C¸ elebi, N., Alemdaro˘glu, C., Deveci, M., Öztürk, S., & Özo˘gul, C (2011) Evaluation of chitosan gel containing liposome-loaded epidermal growth factor on burn wound healing International Wound Journal, 8, 343–354 Gedda, L., Olsson, P., Pontén, J., & Carlsson, J (1996) Development and in vitro studies of epidermal growth factor–dextran conjugates for boron neutron capture therapy Bioconjugate Chemistry, 7, 584–591.
Hartree, E F (1972) Determination of protein: A modification of the lowry method that gives linear photometric response Analytical Biochemistry, 48, 422–427 Jansson, P E., Kennark, L., & Lindberg, B (1975) Structure of the extracellular polysaccharide from Xanthomonas campestris Carbohydrate Research, 45, 275–282.
Khouryieh, H A., Herald, T J., Aramouni, F., & Alavi, S (2007) Intrinsic viscosity and viscoelastic properties of xanthan/guar mixtures in dilute solutions: Effect
of salt concentration on the polymer interactions Food Research International,
40, 883–893.
Liu, Y., Yang, Y., Liu, X., & Jiang, T (2008) Quantification of pegylated liposomal doxorubicin and doxorubicinol in rat plasma by liquid
chromatography/electrospray tandem mass spectroscopy: Application to preclinical pharmacokinetic studies Talanta, 74, 887–895.
Lojou, É., & Bianco, P (2004) Buildup of polyelectrolyte-protein multilayer assemblies on gold electrodes Role of the Hydrophobic Effect Langmuir, 20, 748–755.
Morita, S., Nukui, M., & Kuboi, R (2006) Immobilization of liposomes onto quartz crystal microbalance to detect interaction between liposomes and proteins Journal of Colloid and Interface Science, 298, 672–678.
Rinaudo, M (2001) Relation between the molecular structure of some polysaccharides and original properties in sol and gel states Food Hydrocolloids, 15, 433–440.
Salvalaggio, M O., de Freitas, R A., Franquetto, E M., Koop, H S., & Silveira, J L M (2015) Influence of the extraction time on macromolecular parameters of galactomannans Carbohydrate Polymers, 116, 200–206.
Sato, M., & Sano, M (2005) Van der Waals layer-by-layer construction of a carbon nanotube 2D network Langmuir, 21, 11490–11494.
Sun, J., Wu, T., Sun, Y., Wang, Z., Zhang, X., Shen, J., et al (1998) Fabrication of a covalently attached multilayer via photolysis of layer-by-layer self-assembled films containing diazo-resins Chemical Communications, 17, 1853–1854 Taylor, T M., Davidson, P M., Bruce, D B., & Weiss, J (2005) Liposomal nanocapsules in food science and agriculture Critical Reviews in Food Science and Nutrition, 45, 587–605.
Vogt, B D., Soles, C L., Lee, H.-J., Lin, E K., & Wu, W.-L (2004) Moisture absorption and absorption kinetics in polyelectrolyte films: Influence of film thickness Langmuir, 20, 1453–1458.
Wagner, H., Kostka, K.-H., Lehr, C.-M., & Schaefer, U F (2003) pH profiles in human skin: Influence of two in vitro test systems for drug delivery testing European Journal of Pharmaceutics and Biopharmaceutics, 55, 57–65.
Wang, L Y., Wang, Z Q., Zhang, X., Shen, J C., Chi, L F., & Fuchs, H (1997) A new approach for the fabrication of an alternating multilayer film of
poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding Macromolecular Rapid Communications, 18, 509–514.
Yang, C.-H., Huang, Y.-B., Wu, P.-C., & Tsai, Y.-H (2005) The evaluation of stability
of recombinant human epidermal growth factor in burn-injured pigs Process Biochemistry, 40, 1661–1665.