Bacterial cellulose (BC) and silk fibroin (SF) are natural biopolymers successfully applied in tissue engineering and biomedical fields. In this work nanocomposites based on BC and SF were prepared and characterized by scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA).
Trang 1jo u r n al h om ep a g e :w w w e l s e v i e r c o m / l o c a t e / c a r b p o l
H.G Oliveira Barudb, Hernane da S Baruda,e,∗, Maurício Cavicchiolia,
Thais Silva do Amarala, Osmir Batista de Oliveira Juniorb, Diego M Santosc,
Antonio Luis de Oliveira Almeida Petersenc, Fabiana Celesc, Valéria Matos Borgesc,
Camila I de Oliveirac, Pollyanna Francielli de Oliveirad, Ricardo Andrade Furtadod,
Denise Crispim Tavaresd, Sidney J.L Ribeiroa
a Institute of Chemistry – São Paulo State University – Unesp, P.O Box 355, Araraquara, SP 14801-970, Brazil 1
b School of Dentistry/Unesp, São Paulo State University – Unesp, Rua Humaitá, 1680, Zip code 14801-903, Araraquara, SP, Brazil 2
c Gonc¸alo Moniz Research Center, FIOCRUZ, Av Waldemar Falcão, 121, Zip code 40296-710, Salvador, BA, Brazil 3
d University of Franca, Av Dr Armando Salles de Oliveira, 201, Zip code 14404-600, Franca, SP, Brazil 4
e Laboratório de Química Medicinal e Medicina Regenerativa (QUIMMERA) – Centro Universitário de Araraquara (UNIARA), Araraquara, SP, Brazil
a r t i c l e i n f o
Article history:
Received 1 October 2014
Received in revised form 3 April 2015
Accepted 8 April 2015
Available online 17 April 2015
Chemical compounds studied in this article:
d-Glucose (PubChem CID: 5793)
glycine (PubChem CID: 750)
l-Alanine (PubChem CID: 5950)
MTT (PubChem CID: 64965)
XTT (PubChem CID: 14195569)
Keywords:
Bacterial cellulose
Silk fibroin
Biocompatible materials
Nanocomposites
Scaffold
Tissue engineering.
a b s t r a c t Bacterialcellulose(BC)andsilkfibroin(SF)arenaturalbiopolymerssuccessfullyappliedintissue engi-neeringandbiomedicalfields.InthisworknanocompositesbasedonBCandSFwerepreparedand characterizedbyscanningelectronmicroscopy(SEM),infraredspectroscopy(FT-IR),X-raydiffraction (XRD)andthermogravimetricanalysis(TGA).Inaddition,theinvestigationofcytocompatibilitywas donebyMTT,XTTandTrypanBluedyetechnique.Cellularadhesionandproliferationweredetected additionally.Theevaluationofgenotoxicitywasrealizedbymicronucleusassay.Invitrotestsshowed thatthematerialisnon-cytotoxicorgenotoxic.SEMimagesrevealedagreaternumberofcellsattached
attheBC/SF:50%scaffoldsurfacethanthepureBCone,suggestingthatthepresenceoffibroinimproved cellattachment.ThiscouldberelatedtotheSFaminoacidsequencethatactsascellreceptors facil-itatingcelladhesionandgrowth.Consequently,BC/SF:50%scaffoldsconfiguredanexcellentoptionin bioengineeringdepictingitspotentialfortissueregenerationandcultivationofcellsonnanocomposites
©2015ElsevierLtd.Allrightsreserved
1 Introduction
Tissueengineering hasthepurpose ofdeveloping
therapeu-tic options especially designed to be appliedin special clinical
conditions, aiming to replace or regenerate damaged tissues
∗ Corresponding author at: Institute of Chemistry – São Paulo State University –
Unesp, P.O Box 355, Araraquara, SP 14801-970, Brazil.
E-mail address: hernane.barud@gmail.com (H.d.S Barud).
1 Tel.: +55 16 3301 9500.
2 Tel.: +55 16 3301 9300.
3 Tel.: +55 71 3176 2201.
4 Tel.: +55 16 3711 8871.
using biomaterials The success of the methodology depends
on Biomaterials’ properties that can be manipulated to mimic thethree-dimensionalarchitectureofextracellularmatrix(ECM) native tissues which is regarded as a complex organization of fibrousstructuralproteinssuchascollagensandawidevarietyof proteoglycansandpolysaccharides(Cai&Xu,2011;Shietal.,2012,
2014)
In recent years, dueto climatechanges andthe decreaseof oilsupply,syntheticmaterialsarebecomingincreasingly unfavor-able,enhancingtheneedtofindrenewablegreenalternatives.Itis generallyknownthatnanomaterialsshowunusualproperties,not observedinthebulkmaterials,suchashighsurfacereactivityand abilitytocross-cellmembranes.Thedevelopmentofmaterialswith biomimeticbehaviorisessentialfortissueengineeringpurposes
http://dx.doi.org/10.1016/j.carbpol.2015.04.007
0144-8617/© 2015 Elsevier Ltd All rights reserved.
Trang 2becausescaffolds based onnanofibres (NFs) mimic the natural
extracellularmatrix and its nanoscalefibrous structure (Barnes
etal.,2008;Hutchens,Benson,Evans,O’Neill,&Rawn,2006)
Celluloseis the mostabundant biopolymer on earth and is
presentinawidevarietyoflivingspeciesbeingharvestedmainly
obtainedfromtreesandcotton.Itcanalsobeobtainedfromthe
bacteria Gluconacetobacter xylinus that produces nanobacterial
cellulose (BC)free of lignin and hemicellulosein a 3-D
hierar-chicalnetwork composedbybundles ofmuch finermicrofibrils
ofnanometricsizerangefrom3.0to3.5m(Barudetal.,2011;
Klemm,Heublein,Fink,&Bohn,2005;Svenssonetal.,2005).Since
itsdiscoveryBChasshowntremendouspotentialasaneffective
biopolymerinvariousfields,asthestructuralaspectofBCisfar
superiortothoseofplantcellulose,whichprovideitwithbetter
properties(Ul-Islam,Khan,&Park,2012)
Then,BCisacompletelybiocompatiblepolymeralsousefulas
scaffoldforcellulargrowthandtissueengineering(Bäckdahletal.,
2006;Heleniusetal.,2006;Ramboetal.,2008;Svenssonetal.,
2005).ItisdistinguishedfromtheusualscaffoldsbecauseBC
pos-sessesnaturalrefined3-Dnanofibrilsnetworksbearingashape
similartothatofthecollagennanofibrilsinnaturaltissuesuchas
umbilicalcord(Bäckdahletal.,2006)andbasementmembranein
cornea(Fraseretal.,2008)
DuetothisuniformstructureandmorphologyBCisendowed
withuniquecharacteristicssuchashighpurity,highcrystallinity
andremarkablemechanicalproperties,goodchemicalstability,and
thehighwaterholdingcapacity(Svenssonet al.,2005).Despite
itshighwatercontent,BCshowsagoodmechanicalperformance
andBCcanbeproducedinalmostanyshapebecauseofitshigh
moldabilityduringformation(Ross,Mayer,&Benziman,1991)
BCisusedasawounddressingsinceitprovidesamoist
envi-ronment,resultinginbetterwoundhealingwithnotoxicity(Barud
etal.,2007;Klemm etal.,2005).Besidesthat,BCoffersa wide
rangeofapplications,especiallyinmedicalapplications,artificial
microvessel,andtissueengineeringofcartilageandbone(Fontana
etal.,1990;Klemm,Schumann,Udhardt,&Marsch,2001;Svensson
etal.,2005).Otherstudieswithendothelial,smoothmusclecells
andchondrocyteshaveshownthatthesecellspresentgood
adhe-siontobacterialcellulose(Bäckdahletal.,2006;Heleniusetal.,
2006;Ramboetal.,2008;Svenssonetal.,2005)
However,somecharacteristicsthatwouldlimitBCinmedical
applicationsisthatBCisnoteasilyabsorbedinhumanbody;in
driedstateBCnanofibrilsforma densemeshthatcanlimitcell
adhesionandproliferation(Bäckdahletal.,2006).Besidesthat,BC
hasnoantibacterialpropertiesandactsonlyasaphysicalbarrier
againstinfection(Czaja,Young,Kawecki,&Brown,2007)
Polymer composites have enhanced material and biological
propertiescomparedtopurepolymers.Basedonthenatureand
sizeofthereinforcementmaterial,BCcompositesaresynthesized
throughnumerousroutesaimingtoovercomeitslimitationsand
increaseitsapplications
Literature displaysseveral composites basedon BC, suchas
BC/chitosan (Kim et al., 2011), BC/agarose (Yang et al., 2011),
BC/poly(3-hydroxybutyrate)(PHB)(Barudetal.,2011;Barud,Caiut,
Dexpert-Ghys, Messaddeq, & Ribeiro, 2012), BC/hydroxyapatite
(Hap) (Grande etal., 2009; Saskaet al.,2011)and BC/Collagen
(Luo et al., 2008; Saska et al., 2012) These bacterial cellulose
based materials have been commercialized and recognized as
non-genotoxicandnon-cytotoxic(Jonas &Farah,1998;Schmitt,
Frankos,Westland,&Zoetis,1991).Amongtheinvestigated
mate-rialsthatcouldpossiblybeassociatedwithBC,wehaveoptedto
usesilkfibroin(SF)
Fibroinisanaturalproteinextractedfromsilkcocoonsof
Bom-byxmori silkwormthat canbeprocessed tocreate avariety of
materialssuchashydrogels,ultrathinandthickfilms,3Dporous
matrices, and fibers with controllable diameters (Omenetto &
Kaplan,2010).Thisproteinisalsoapotentialcandidatematerialfor biomedicalapplicationsbecauseithasseveralattractiveproperties, includinggoodbiocompatibility,goodoxygenandwatervapor per-meability,andbiodegradability(Altmanetal.,2003;Wang,Blasioli, Kim,Kim,&Kaplan,2006)thatcanbecontrolledby functionaliza-tionoffibroinorchangingtheprocessingmethods
SFrevealssomeknownapplicationslikethepreparationof scaf-foldsfor bone and meniscusregeneration (Altman et al.,2003; Bhardwajet al.,2011; Kim, Jeong,etal., 2005;Kim, Park, Kim, Wada,&Kaplan,2005;Mandal,Park,Gil,&Kaplan,2011;Mauney
etal.,2007;Zhanget al.,2010), small-diametergraftfor vascu-larsubstitution(Alessandrinoetal.,2008;Cattaneoetal.,2013; Enomotoetal.,2010;Marelli,Alessandrino,Fare,Tanzi,&Freddi, 2009;Marellietal.,2010)andtransparentthinfilmsfor biopho-tonics(Amsdenetal.,2010)
Inaddition,SFasproteinhasaminoacidsthatactascell recep-torsandmediateimportantinteractionsbetweenmammaliancells and extra cellular matrix (ECM) facilitating cell adhesion and growth(Fang,Chen,Yang, &Li,2009; Fang,Wan,Tang,Gao, & Dai,2009)anditpresentsantimicrobialactivity(Lietal.,2011) However,theregeneratedSFhassomedisadvantages,suchas brit-tleness,easyfragmentation,and difficultyincreatinga uniform thickness(Lee,Kim,Lee,&Park,2013)
Some authors have prepared plate BC/SF composites and observedtheimprovementofthemechanicalpropertiesofSF(Choi, Cho,Heo,&Jin,2013)andothersappliedtheminananimalmodel
topromotethecompletehealingofsegmentaldefectsofzygomatic arch(Leeetal.,2013)withoutpreviouslystudyingitinvitro.Despite bothmaterialsbeingseparatelybiocompatible,itisimportantto demonstrateifthisnewcompositecanbesafelyappliedintissue regeneration
Thus, theaimof this studywas toprepareporousscaffolds basedonBCandSFbylyophilizationprocess,inordertomaintain theirpropertiesandcomplementeachotherasacomposite,taking advantageofBC’ssurfacemodificationwithaminoacidsextracted fromSF.Towardmeetingtheseobjectives,theresultant nanocom-positeswerecharacterizedbyphysicochemicaltechniquesandthe cytocompatibilitywasassessedbytheinvestigationofthe cytotox-icityandgenotoxicityofthedevelopedmaterial
2 Experimental
2.1 Materials 2.1.1 Bacterialcellulose Bacterial cellulose membranes were obtained from cultiva-tionoftheGluconacetobacterhanseniistrainATCC23769.Cultures wereincubatedfor96hat28◦Cintrays30cm×50cm, contain-ingmediumcomposedofglucose50gL−1,yeastextracts4gL−1, anhydrous disodium phosphate 2gL−1, heptahydrated magne-sium,sulphate0.8gL−1andethanol20gL−1.Afterthreedaysof incubationhydratedBCpelliclesof3mmofthicknesscontaining
upto99%ofwaterand1%ofcellulosewereobtained.These mem-braneswerewashedina1wt%aqueousNaOHat70◦Cinorder
toremovebacteriaandthenseveraltimesinwater,untilneutral
pH.Pristinebacterialcellulosemembranes(25cm2)wereusedfor nanocompositepreparation
2.1.2 Silkfibroinsolution Silkfibroin(SF)solutionwasobtainedfromsilkcocoons pro-ducedbyBombyxmorisilkwormssuppliedbyBratac,Fiac¸ãode SedaS.A.(Bastos/SP,Brazil).Themethodwasbasedonprevious reportsfromliteratures(Kweon,Ha,Um,&Park,2001;Rockwood
etal.,2011).Rawsilkwasdegummedwith0.02MNa2CO3solution
at100◦Cfor30minandwashedthoroughlywithdistilledwater DegummedsilkwasdissolvedinasolutioncomposedofCaCl2,H2O,
Trang 3ofthesolvent.Theresultingviscoussolutionwasdialyzedagainst
mili-Qwaterfor48hinordertoremovesalts.A3.7%(w/V)aqueous
fibroinsolutionfreeofimpuritieswasobtainedafterthe
centrifuga-tion(twice)ofthedialyzedsolutionat20,000rpmat4◦Cfor30min
ThefinalconcentrationofaqueousSFsolution(3.7wt.%)was
deter-minedbyweighingthedriedsolids.Thefinalsolutionwasstored
at4◦C beforeuse.Thestockfibroinsolution(3.7%)wasusedto
prepareBC/fibroincomposites
2.1.3 Bacterialcellulose/silkfibroinnanocomposites
Porous composites of BC/SF were prepared by soaking BC
membranes(25cm2)intosilkfibroinsolutionsofdifferent
concen-trations(1%,3%and7%ofSFcontent(w/v)inordertoexchange
waterbythesilkfibroinsolutionintothemicrofibrillarcellulose’s
network.Themembraneswerekeptinfibroinsolutionsfor24h
undershaking,removedandfreezedried
ThefinalSFcontentsinBC/SFnanocompositesweredetermined
bythemasspercentagesofSF.TheremainingSFinsolutionwas
measuredandsubtractedfromtheinitialSFamountinorderto
calculateSFboundtotheBCmembranes.Samplesweretermed
accordingtoSFcontentsBC/SF:25%,BC/SF:50%andBC/SF:75%.They
wereallpackedandsterilizedwitha25kGy gammairradiation
(Embrarad–Brazil)
2.2 Fieldemissionscanningelectronmicroscopy
Scanningelectronmicroscopy(SEM)imageswereobtainedwith
theuseof a Field EmissionScanningElectron MicroscopeJEOL
JSM–7500F.Freeze-driedscaffoldswerecarefullysectionedat
hori-zontalplanewitharazorblade,mountedwithconductiveadhesive
tapeoncopperstubs,andsputter-coatedwithacarbonlayer
2.3 Solubilitytest
BC/SFnanocompositeswerecutintopiecesof1.0cm2,weighed
(mi),immersedin20mLofdistilledwaterand keptat37◦Cfor
24h.Afterthisperiod,thesamplesweredriedandweighedagain
(mf.Thepercentageofsolublemasswasdeterminedbythe
fol-lowingequation.Allexperimentswereperformedintriplicate,and
standarddeviationwascalculated
Solublemass (%)= (mi−mmf)100
i 2.4 Water-uptakecapacity
Theswellingratiowascalculatedbyplacingseparatelypristine
freeze-driedBCandBC/SF:50%samplesof1.0cm2indistilledwater
foraspecifictime.Sampleswereremovedatcertaintimes,initially
at1and5min,followedbymeasurementsevery5minupto30min,
andthen60,360and1440min.Afterremovalfromthedistilled
water,excesssuperficialwaterwasremovedbygentletappingwith
filterpaper;thenthesampleswereweighed.Thecontentofthe
distilledwaterintheswollenscaffoldswascalculatedbythe
fol-lowingequation:wateruptake(%)=[(Ws−Wd)/Ws]×100,where
WdistheweightofthedrymembraneandWsistheweightofthe
swollenmembrane,respectively.Allexperimentswereperformed
intriplicate,andstandarddeviationwascalculated
2.5 MeasurementofSFreleasewithtime
ThefibroinproteinconcentrationwasmeasuredbytheBradford
proteinassayprocedure(Bradford,1976),inordertoinvestigatethe
stabilityofscaffoldsinaqueousenvironment.Samplesof1.0cm2
BC/SF:50%scaffoldswereimmersedin 5mLofdeionizedwater
TheBradfordreagentwasaddedandthesampleswereincubated
at30◦C,inthedark.Thealiquotswerecollectedat5,15,30,60,720 and1440min.TheBradfordassayreliesonthebindingofthedye CoomassieBlueG-250toprotein.Therefore,thequantityofprotein canbeestimatedbydeterminingtheamountofdyeintheblueionic form,usuallyachievedbymeasuringtheabsorbanceofthesolution
at595nm.Bovineserumalbuminwasusedasastandardprotein 2.6 FT-IRspectroscopy
InfraredspectrawererecordedonaSpectrum2000FT-IRPerkin Elmerspectrophotometer,usingsamplespreparedasKBrpellets Thespectrawerecollectedovertherangeof4000–700cm−1with
anaccumulationof32scans,resolutionof2cm−1andintervalof 0.5cm−1
2.7 Thermogravimetricanalysis Thermogravimetry(TG)wasconductedusingdriedsampleson
aThermoanalyzerTG/DTAsimultaneousSDT2960TAInstruments underthefollowingconditions:aluminumcrucible,syntheticair (100mL/min),andaheatingrateat10◦Cperminute,from30to
1000◦C
2.8 PowderX-raydiffractometry X-raydiffractionpatterns(XRD)wereobtainedinaSiemens KristalloflexdiffractometerusingnickelfilteredCuK-␣-radiation from4◦to70◦(2angle),instepsof0.02◦andasteptimeof3s 2.9 Porositystudy
A porosity study wasconducted by examining SEM surface imagesofthecompositethatwillbeusedtoperforminvitrotests applyingImageJsoftware.Thecalculationwasbasedon30 diame-termeasurementsofdifferentporestoestimateaverage,coefficient
ofvariationandconfidencelevelofdataobtained
2.10 Cytotoxicityandgenotoxicityassays These testswere performedonly in case ofBC/SF:50% sam-ples.Cytotoxicitycanbemeasuredbymultipledifferentmethods depending on the cell damage: changes in plasma membrane are detected by using dyes, such as Trypan Blue, and changes related tometabolicfunctionsofmitochondriacan bedetected
by a colorimetric method such as MTT (tetrazolium 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) (Kim, Yoon,Lee,&Jeong,2009)andXTT (2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide),accordingtothe manufacturer’sinstructions
Thus,thecytotoxicityassayrequiresaselectionbasedonthe suitabilityofthecellemployedin thetest method.Thepresent studyusedL929cellsfortheMTTtestwhichisinaccordancewith ISO standards (10993-5:2009) and Chinese hamster fibroblasts (V79cells)fortheXTTmethodaccordingtoISO10993-12:2007 thatgoalinvitrocytotoxicitytestsofbiomedicaldevices
2.10.1 Preparationofthesamplesforinvitrotests
AsmentionedinSection2.1.3,freezedriedBCandBC/SF:50% scaffolds previously sterilized were then soaked in RPMI 1640 medium (Invitrogen)for 1h in 24-well plates to facilitate cell adhesion.L-929cellswereliftedwithtrypsin/EDTA(Invitrogen), washedtwicewithsalinebycentrifugation,seededontothe scaf-folds(10L/scaffoldat5×105cells/mL),andallowedtoattachfor
1hat37◦,5%CO2.OnemLofRPMImediumsupplementedwith
2mMl-glutamine,100U/mLpenicillin,100g/mLstreptomycin,
Trang 410%FCS (all fromInvitrogenTM) and0.05M-mercaptoethanol
wasaddedtowellsandcellswerecultivatedfor48h.All
treat-ments,negativecontrolandalsopositivecontrolwereperformed
inquintuplicateandinconditionsofsterility
TheV79celllinewasmaintainedandcultivatedasmonolayers
inplasticcultureflasks(25cm2)containingHAM-F10plusDMEM
(1:1;Sigma–Aldrich),supplementedwith10%fetalbovineserum
(Nutricell)and 2.38mg/mLHepes (Sigma–Aldrich) at37◦C in a
humidified5%CO2atmosphere.Antibiotics(0.01mg/mL
strepto-mycinand 0.005mg/mL penicillin; Sigma–Aldrich) were added
tothemediumtopreventbacterialgrowth.TheBC/SF:50%was
extractedwithHAM-F10plusDMEM(1:1)for72hat37◦C and
sonicatedfor1hbeforetreatment.Immediatelypriortouse,the
culturemediumwastransferredtoanotherflaskandfetalbovine
serumwasaddeduptovolume.Thissolutionwassetasareference
as100%
2.10.2 MTTassay
Afterthepreparation, thesampleswereremovedfromeach
wellandthecultures werewashed with250L ofsaline
solu-tion.With thelaminar flow light off, 200L of M199 medium
(InvitrogenTM)withoutphenolredsolutionwithMTT(final
concen-tration500g/mL)wereplacedperwell.Theplateswereincubated
at37◦Cforatreatmentperiodof4h.Then,thecolorimetric
mea-surementwasverifiedwithspectrophotometerspectraMax190
(MolecularDevices)at570nmand690nm,andtheresultallowsan
OpticalDensitymeasurement(OD)analysis.Thedarkerthecolor,
thehigherthemetabolismofMTTandconsequently,thehigherthe
ODandlesscytotoxicisthematerialtested
2.10.3 TrypanBlueassay
TrypanBlueSolutionisroutinelyusedasastaintoassesscell
viabilityusingthedyeexclusiontest.Thistestisoftenperformed
whilecountingcellswiththehemocytometerduringroutine
sub-culturing,butcanbeperformedanytimecellviabilityneedstobe
determinedquicklyandaccurately.Thedyeexclusiontestisbased
upontheconceptthatviablecellsdonottakeupimpermeabledyes
(likeTrypanBlue),butdeadcellsarepermeableandtakeupthedye
Aftertheinitialpreparation(seeSection2.10.1),thepercentageof
viablecellswasdeterminedbycounting200cellsinatleastfive
randomfieldsusingtheinvertedlightmicroscopeinthepresence
of50LofTrypanBlue
2.10.4 XTTassay
For this experiment, 104 cells were plated onto 96-well
microplates.Eachwellreceived100LHAM-F10/DMEM
contain-ingdifferentpercentagesofBC/SF:50%rangingfrom0.78%to100%
Thecellswereculturedina5%CO2atmospherefor24hat37◦C
Afterincubation,theculturemediumwasremovedandthecells
werewashed with100Lphosphate-buffered saline(PBS) and
exposedto100LHAM-F10culturemediumwithoutphenolred
Next,25LXTT(RocheDiagnostics)wasaddedtoeachwelland
themicroplateswereincubatedfor17hat37◦C.Absorbanceof
thesampleswasreadin amicroplate reader(ELISA, AsysUVM
340/Microwin 2000) at a wavelength of 450nm and a
refer-encelength of 620nm The amountof soluble product formed
(formazan)wasproportionaltothenumberofviablecells.The
neg-ativecontrolgroupwasdesignatedas100%,andtheresultswere
expressedasapercentageofthenegativecontrol.Cytotoxicitywas
calculatedwiththeGraphPadPrismprogram,plottingcellsurvival
againsttherespectivepercentagesofmaterial.One-wayANOVA
wasusedforthecomparisonofmeans(p<0.05).Theexperiments
wereperformedintriplicate
2.10.5 Celladhesionandproliferationassays Aftertheinitialpreparation,thenumberofcellsseededonthe scaffolds wasdetermined bycounting in a Newbauer hemocy-tometerchamberbytreatmentwithtrypsin/EDTA.Scaffoldswere thencollectedandthecellculturewashedtwicewithRPMI1640 medium(Invitrogen).Cellswerefixedinasolutionof2.5% glu-taraldehydegradeII,2%formaldehydeand2.5mMCaCl2in0.1M sodiumcacodylatebufferpH7.0andprocessedforthepreparation
ofSEM
Regardingcellproliferation,treatmentswereperformedin con-tactwiththecells(atthefollowingexperimentalperiods:16,24,
48 and72h)by placinga diskofabout0.8cm diameterofthe biomaterialsineachwell.Aftertherespectiveperiods,cellswere removedfromthewellswithtrypsin-EDTA0.25%V/V(GIBCO), cen-trifugedat1300×grpmand40◦Cfor10min,resuspendedin20L
ofTrypanBlueandthencountedinaNewbauerhemocytometer chamber
2.10.6 Assessmentofgenotoxicity Themicronucleus assayin V79cells was employedto eval-uatethe genotoxicityof BC/SF:50%samples.Therefore, 500,000 cellswereseededintotissue-cultureflasksandincubatedfor24h
in 5mLcompleted HAM-F10/DMEM medium and washed with PBS(pH 7.4).Aftertheseprocedures, thecultures weretreated
inserum-freemediumfor3hwiththreedifferentpercentagesof BC/SF:50%(25%,50%and100%).Weincludedthenegative (with-out treatment) and positive (MMS – methylmethanesulfonate,
44g/mL)controlgroups.ThecellculturestreatedonlywithBC (100%)werealsoincluded.Afterthetreatmentperiod,thecells werewashedwithPBSandaculturemediumsupplementedwith fetal bovine serum containing 3g/mL of cytochalasin-B (CAS: 14930–96-2; Sigma–Aldrich) and the cells were incubated for
17h Aftertheincubation,thecells wererinsedwith5mLPBS, trypsinizedusing0.025%trypsin-EDTAandcentrifugedfor5minat
900rpm.Thepelletwashypotonizedinsodiumcitrate1%at37◦C andthenhomogenizedwithaPasteurpipette.Thiscellsuspension wascentrifugedagain,thesupernatantwasdiscarded,thepellet wasresuspendedinmethanol:aceticacid(3:1)andhomogenized againwithaPasteurpipette.Afterfixation,thecellswerestained
inaGiemsasolution5%.Thecriteriaemployedfortheanalysisof micronucleuswereestablishedbyFenech(2000).Therefore,1000 binucleatedcellswereanalyzedbycultureinatotalof3000 bin-ucleatedcellspertreatment.Thenucleardivisionindex(NDI)was determinedfor500cellsanalyzedperculture,foratotalof1500 cells per treatmentgroup.Cells withwell-preservedcytoplasm containing1–4nucleiwerescoredandtheNDIwascalculatedusing thefollowingformula(Eastmond&Tucker,1989):
IDN=[M1+2(M2)+N3(M3)+4(M4)]
whereM1–M4isthenumberofcellswith1,2,3,and4nuclei, respectively,andNisthetotalnumberofviablecells
3 Results and discussion
3.1 Infraredspectroscopy FT-IRspectraforBC,SFandallBC/SFnanocompositesareshown
in Fig 1 The spectrum obtained for BC Fig 1(a) shows bands
inthe400–700cm−1rangecharacteristicsoftheOHbending, -glucosidiclinkagesbetweentheglucoseunitsat∼896cm−1 and
C OsymmetricstretchingofprimaryalcoholandC O C antisym-metricbridgestretchingat1040cm−1and1168cm−1,respectively TheC Hdeformation(CH3orO Hinplanebending)isobserved
at1340cm−1andthebandcenteredat1400cm−1isrelatedtoCH2 bendingandOHinplanebending.AccordingtoBarudetal.(2008),
Trang 5Fig 1.FT-IR spectra: (a) pure freeze dried BC membrane, (b) freeze dried BC/SF
composite (25% SF), (c) freeze dried BC/SF composite (50% SF), (d) freeze dried BC/SF
composite (75% SF) and (e) pure freeze dried SF.
otherbandsarerelatedtoH O Hbendingofadsorbedwater(at
1650cm−1),CHstretchingofCH2andCH3groups(at2900cm−1)
andOHstretching(broadbandat3500cm−1)
The obtained spectra related to pure silk fibroin, Fig 1(e),
presentbandsintheregionfrom1500to1700cm−1 assignedto
absorptionbythepeptidebackbonesofamideI(1700–1600cm−1)
andamideII(1500–1600cm−1),whichhavebeencommonlyused
fortheanalysisofdifferentsecondarystructures offibroin.The
peaksat1610–1630cm−1(amideI)and1510–1520cm−1(amide
II)arecharacteristicofsilkII(-pleatedsheet)secondary
struc-ture while the absorptions at 1640–1660cm−1 (amide I) and
1535–1542cm−1areindicativeofsilkI(␣-form)conformation(Lu
etal.,2011;Nazarov, Jin,&Kaplan,2004).Inthepresentstudy
theamideIbandoffreezedriedfibroinshowedstrongpeaksat
1647and1537cm−1correspondingtosilkIstructure.Howevera
shoulderat1620cm−1indicatestheformationofsomesilkII
For all BC/SF composites, cellulose bands in the region
1000–1300cm−1 areexactlyobservedatthesamepositionsand
samerelative intensitiesaspristineBCspectrashows.Thereare
noimportantbandschangingaftersilkfibroinimpregnationinthe
nanocomposites.InfactFTIRspectraforallBC/SFnanocomposites
couldbeconsideredonlyasumoftheBCandsilkfibroinspectra
andnonewcovalentbondsweredetected,accordingtoKweon
etal.(2001)
3.2 X-raydiffractionanalysis
Fig.2 shows XRDpatterns for allsamples.Broad diffraction
peaksareobservedat15◦ and22.5◦ forthepureBCmembrane
Thesepeaksareassignedtothecharacteristicinterplanedistances
ofnativecellulosetype1(Kim,Jeong,etal.,2005;Kim,Park,etal.,
2005)
FreezedriedSFpresentspeaksat11.8◦,19.8◦and22.6◦
corre-spondingtotheSilkIcrystallinephase.Thebroadpeaksshouldbe
duetothefreezedryingprocess(Ming&Zuo,2012)
TypicalcellulosetypeIpatternsarepreservedintheBC/SF25%
nanocomposite,Fig.2(b),andtherearenosignificantchangeswhen
(e )
(d ) (c )
(b )
2 θ(d e gre es)
(a )
Fig 2.XRD diffraction patterns: (a) pristine freeze dried BC, (b) freeze dried BC/SF composite (25% SF), (c) freeze dried BC/SF composite (50% SF), (d) freeze dried BC/SF composite (75% SF) and (e) pure freeze dried SF.
comparedtothepristineBCdiffractogram.Fig.2showsdiffraction patternscharacteristicsofthesuperimpositionofBCandSF pat-ternasobserved.BCdiffractionpatternsoverlaptheSFpatternin thecompositesasobservedbyLeeetal.(2013).So,itisnot pos-sibletoelucidatethetypeofSFcrystalpattern (silkIorsilkII)
inthesecomposites.XRDdiffractogramforBC/SF:75% nanocom-positescomprisesanamorphousprofileprobablyduetothelarge amountofsilkfibroindepositedinsidetheBCporousasobserved belowinSEMimages
3.3 Thermogravimetricanalysis
Fig 3 shows TG/DTG curves The curve obtained for freeze driedBCdisplaystwomasslosses.Thefirstone,occurringfrom room temperature to 200◦C is due to evaporation of the sur-facewater(∼4.6%)(DeSalvi,Barud,Caiut,Messaddeq,&Ribeiro,
2012).Thesecondmoresignificanteventrelatedtoahighmass loss(80%) beginsat about280◦,withmaximumdecomposition (Tonset)at373.7◦C.Thiseventisassociatedtothermaldegradation, relatedtodepolymerizationanddecompositionof dehydrocellu-loseintogases(water,carbonmonoxideandcarbondioxide)(Sofia, McCarthy,Gronowicz,&Kaplan,2001)
TheinitialmasslossforfreezedriedSFisrelatedtowaterloss and startsfromroomtemperatureto120◦C (7.3%).Thesecond eventinvolvingmassloss(52%)occursinthetemperaturerange
of180–500◦Cwithmaximumdecomposition(Tonset)at281.4◦C Thiseventisassociatedwiththebreakdownofsidechaingroups
ofaminoacidresidues,aswellasthecleavageofpeptidebonds (Nogueiraetal.,2009)
TGcurvesobtainedforBC/SFcompositespresentthree most important masslossesand display a compositionof theevents observedfortheindividualBCandSFcomponents
Thefirstoneisacontinuousmasslossofaround7%fromroom temperatureuptoaround200◦Cwhichisassociatedwiththewater lossesandispresentinallBC/SFcurves.Next,twomajoreventsin therangeof200–500◦Carepresentinallsamples.Thefirstoneis attributedtofibroindecompositioncounterpartsandthesecond referstoBCdecomposition
Trang 6100 200 300 400 500 600
0 20 40 60 80 100
Temperature/ºC
(a)
373.7
0 20 40 60 80
(c)
369.4
0 20 40 60 80 100
Temperature/ºC
(e)
281.4
0
20
40
60
80
100
300,9
(b)
0
20
40
60
80
100
Temperature/ºC
(d)
305.3
Fig 3.TG curves: (a) pristine freeze dried BC, (b) freeze dried BC/SF composite (25% SF), (c) freeze dried BC/SF composite (50% SF), (d) freeze dried BC/SF composite (75% SF) and (e) pristine freeze dried SF.
TheDTGpeakareaisdirectlyproportionaltomassvariations
andcouldbeusedtocomparetheratiosbetweenpeaksheights
forallcomposites.ThefirstDTGpeak,whichisassociatedwiththe
fibroindecomposition,becomesmoreintensewhenSFcontents
increaseinnanocomposite.BC/SF:50%,Fig.3(c)showsthesame
peakheightforthefirstandsecondDTGpeaks;itisquite
rele-vantduetotheBCandSFpercentage ratiois ofBC/SF50:50in
thiscomposite.InthesamewaytheTG/DTGcurveforBC/SF:75%
sample denotes great similarity with the TG/DTG of the
pris-tinefibroin.TheheightofthefirstDTGpeakassociatedwiththe
fibroindecompositionis largerthanthefirstpeakattributedto
BCdecomposition.Theseresultscorroboratewiththegravimetric
measurementswherebythepercentageoftheBC25:75fibroinin
thisnanocompositewasdetermined.Thisbehaviorisduetohigher
SFcontentinthissample
TG/DTG resultsalso indicate that BC and SF decomposition eventsoccurseparately,andweakinteractionsbetweenBCandSF suggestedinFTIRanalysisarethereforeconfirmed
3.4 Fieldemissionscanningelectronmicroscopy(FEG-SEM) SEMimagesarepresentedinFig.4.Surfaceimagesshowthat freeze-dried BCexhibits a 3-D network nanofibrilsin theform
ofaheterogeneousporousstructurethatisobservedinFig.4(a) TheseporousstructuresofBCspongesaresimilartothatof col-lagenspongesreportedbyMizuno,Watanabe,andTakagi(2004)
Trang 7Fig 4. FEG-SEM images taken at the same magnification (bar – 1 m): (a) pure freeze dried BC, (b) freeze dried BC/SF 25% composite, (c) freeze dried BC/SF 50% composite and (d) freeze dried BC/SF 75%.
ItisimportanttonotethatthemethodemployedforBC
cultiva-tioncouldalterthemorphologyandporosityofthefinalcellulose
membrane
SEM images for BC/SF:25% and 50% nanocomposites reveal
a sponge-like structure where BC nanofibersand fibroin
struc-tures are easily discerned BC/SF samples exhibit a very well
interconnectedporousnetworkstructureformedbyrandom
nano-filaments entangled with each other presenting a large aspect
surface These characteristicsalso suggest that the presence of
fibroinhasmodifiedthesurfaceof BCnanocompositesand this
modificationmaybeinducedbyfibroinconcentration.SEMimage
forBC/SF:75%samplepresentedalessporousstructureduetothe
coatingoftheBCnanofibrilsbyexcessoftheSFsolution
Then,thebestoutcomeobtainedinthisstudywastheonewith
50%ofSFand50%ofBCcontent.Theresultofthisblendof50%of
eachbiomaterialresultsinacompositethatisintendedtopreserve
BCandSFproperties
3.5 Porositystudy
Intotal30diametermeasurementsofdifferentporesby
exam-iningSEMsurfaceimagesofBC/SF:50%compositeswereexamined
Afterstatisticalanalysistheresultsrevealedaporesizerangeof
102±5.43matthesurfaceofthescaffolds
Asa scaffoldfortissueengineering,macroporesarerequired
toallowforcellincorporation,migration,proliferationandtissue
growthintothescaffold,accordingtoChenetal.(2002).But,onthe
otherhandtheliteraturealsodemonstratesthatthereisnogeneral
consensusregardingtheoptimalporesizeforcellgrowthand
tis-sueformation.Zeltinger,Sherwood,Graham,Mueller,andGriffith
(2001)foundthatvascularsmoothmusclecellsshowedequalcell
proliferationandECMformationinporesranginginsizefrom38
to150m.Zhang et al.(2010) showedthat poresizesranging
from100to300mdisplayedhumanbonemarrowmesenchymal
stromalcells(BMSCs)proliferationandECMproductionapplying silkfibroinscaffolds.Theseauthorsalsoobservedthateveninthe presenceofsmallporesof50–100mrange therewereBMSCs proliferationandECMproductionoccurred,butinlessquantity
In terms of porosity of BC/SF:50% scaffolds, our findings (102±5.43m)areinaccordance withtheseprevious observa-tionsand alsowithBhardwajandKundu(2011).Theyprepared SF/ChitosanandpureSFscaffoldsfortissue regenerationandin termsofporosityresultsinarangeof100–155and90mwere identified
Oneobviouschallengeoftissueengineeringisthedesignand fabrication of the 3-D polymer scaffolds composed of refined nanofibrilswithhierarchicalporestructureincludinglargepores and nanoporestomimic theorganizationof ECMs(Kim etal.,
2011).Gaoetal.(2011)producedBCspongesbyfreeze-drying tech-nique,withlargeandnanoporeswithahighsurfaceareaandthey demonstratedthatthematerialexhibitedexcellentcellcompatible
asfibroussynoviumderivedMSCscouldproliferatewellandgrow insidetheBCsponges
Thustheresultsobtainedinthisstudyfurthersupportedbythe literatureleadustoconcludethattheproducedscaffoldscould sup-portBMSCsproliferationandECMproduction,astheporesizesof
ascaffoldmatrixaffectthecelladhesion,proliferationand direc-tionalgrowth,accordingtoBodinetal.(2010)
3.6 Watersolubilitytest PristineSFspongepresentsabout35.4%ofsolubilityinwater,in
aperiodof24h.Ontheotherhand,probablySFbecamemore insol-ubleincontactwithBCnanofibrils.Thus,BC/SF:25%nanocomposite presented0%ofsolubilityindistilledwater,BC/SF:50%,3.0%,and BC/SF:75%,8.6%,aspresentedinFig.5(a).TheincreaseonSF releas-ingmayberelatedtotheexcessofSFattachedtonanocomposites surface,asobservedbySEMimages
Trang 8Fig 5.(a) Water solubility test and (b) water-uptake capacity, expressed in
per-centage (%).
3.7 Water-uptakecapacity
Thewater-uptakecapacityisimportanttocheckifthematerial
hasthepropertytodiffusewater,sincethewaterdiffusionallows
thetransportofnutrients,andhelpsthegrowthofnewcells.The
resultsshowedthatafter24h,thewateruptakeabilityofthe
pris-tineBCandBC/SF:50%scaffoldswereabout600%(Klemmetal.,
2001)and216%,respectively(Fig.5(b)).Allthescaffoldsabsorbed
waterwithin1min;andtheyweresaturatedwithin1h.This
behav-iorisdue totheuniquechemical andphysical structuresofBC
andSF.Thereisdiminishingontheswellingabilityobservedfor
BC/SF:50%scaffold.Thisdecreaseinthecapacityofabsorptionmay
berelated tothereduction of theamounts of BCporesdue to
SFpresence,thathadcoveredandobliteratedBCsurface,asSEM
imagesshowinFig.4
3.8 MeasurementofSFreleasewithtime TheBradfordassaydemonstratedthatnosignificantamount
ofsilkfibroinproteinwasreleasedtothesolutionintheinitial measurements.After24hthefinalconcentrationofreleased pro-teinwas0.89mg/mL.Regardingtheamountofproteinreleasedwe believethatitmayberelatedtotheexcessofsilkfibroinattachedto thescaffoldsincetheamountofproteininsolutionhasnotchanged after24h,indicating thatBC/SF:50%scaffoldremainedstablein aqueousenvironment.OurresultsareinaccordancewithSahand Pramanik(2010)thatobservedthatafter3htheconcentrationof silkfibroinreleasedinsolutionwasabout1.7mg/mL.Theyshow thattheconcentrationofreleasedproteindidnotchangeafter3h, remainingstable
3.9 Cytotoxicityandgenotoxicityassays The statistical analysis was performed according to Kruskal WallisandDunnsinrelationtoMTTand TrypanBluetestsand MannWhitneyforcelladhesionandproliferation,byapplyingthe statisticalprogramGraphpadPrism5.0.Allinvitrotestsresults werestatisticallysignificantatp<0.05
3.9.1 MTTassay Colorimetric measurements were performed as the method described
In termsof cell viabilityfor48hbyMTT, under the experi-mental conditions appliedin this study,theresultsshowed no statisticallysignificantdifferencebetweenBCandBC/SF:50% Nev-ertheless,bothmaterialsshowednocytotoxicityandtheaverage cellviabilityfoundwasBC=91.25%,andBC/SF:50%=123.81%, respectively.TheseresultsareinaccordancewithISOstandards (10993-5)
3.9.2 TrypanBlue
Ontheotherhand,thecytotoxicityassays relatedtoTrypan Bluedyetechniqueevidencedastatisticallysignificantdifference (p=0.02).DunnsposttestpointedoutthatBC/SF:50%group pre-sentedasuperiorperformance,indicatinglesscytotoxicityanda greaternumberofviablecellscomparedtothereferences(Fig.6) AlthoughTrypanBlueresultsdifferfromthoseobtainedbythe MTTassay,bothinvitroassaysevidencedahighcellviabilitygreater than90%foralltreatments,indicatingthatthematerialis non-cytotoxicandcouldallowcellattachmentandproliferation.Despite thecytotoxicityresultsbeingmutuallyconsistentthisdifference mayoccurbecauseTrypanBlueassaymeasuresthecytotoxicity
Trang 9Fig 7. Percentage of cell viability by XTT colorimetric assay in V79 cells BC –
bac-terial cellulose, SF – silk fibroin, DMSO – dimethylsulfoxide *Statistically different
to the negative control.
bycellmembrane integrity,whileMTTmeasurestheactivityof
mitochondrialdehydrogenases
3.9.3 XTTassay
Thepercentageofcellviabilityfoundforeachtreatmentis
pre-sentedinFig.7.TheresultsshowedthatthelyophilizedBC/SF:50%
aswellasBCtreatmentsdo notindicatestatisticallysignificant
differenceswhencomparedtothenegativecontrolinall
concen-trationtested,revealingthelackofcytotoxicity.Cellviabilityofthe
testedmaterialwasgreaterthan95%
3.9.4 Celladhesionandproliferation
Totestthehypothesisthatfibroinincreasescelladhesioninto
cellulosescaffolds,L-929cells wereseededintothepristineBC
scaffoldsandBC/SF:50%nanocomposite.Cellswereliftedupand
countedinhemocytometerchamber.Inrelationtocellproliferation andadhesionassaysthevaluefoundwassignificantatp=0.04 TheimagesofFig.8showthatthecellsseededonpureBCand BC/SF:50%scaffoldssurface(a,b)didnotmigrateintothe mate-rial(c,d).Thisfactwasexpectedbecausethedensestructureof
BCnetworksdisplaysaporesizenotlargeenoughtoallow migra-tionandconsequentlycomplex3Dscaffoldscouldnotbeobtained (Bäckdahletal.,2006).However,thepresenceofSFinduceda sig-nificantincreaseincelladhesiononBC/SF50%nanocompositesin relationtothepurecellulosescaffolds(p<0.05)
Theresultsprovidedbycytotoxicitytestsaddedtothe anal-ysisoftheseimagesindicatethatBC/SF:50%composite displays highercellviabilityincomparisontopureBCintermsoffibroblast adhesion.ThecellsobservedinpureBCscaffoldremained round-shapedwhereasthecellsthat adheredtotheBC/SF50%scaffold arecompletelyspreadoverthesurface,withthepresenceofmany pseudopodiaformingalayer,suggestingthatcellsstretchingtheir morphologywereproliferating
Itisknownthattheporesizesofascaffoldmatrixaffectthe celladhesionandproliferation.Theresultsobtainedinthisstudy relatedtotheporosityofthematerialwereinaccordancewiththe literature;therefore,theBC/SF:50%producedscaffoldscouldact allowingBMSCsproliferationandECMproduction
However,itisimportanttopointthatthisimprovementincells proliferationprobablyoccurredduetothepeculiarcompositionof silkfibroin.Fibroinisaninsolubleproteincontainingupto90%of theaminoacidsglycine,alanine,andserinethatformcrystalline
-sheetsinsilkfibers(Fang,Chen,etal.,2009;Fang,Wan,etal., 2009;Fuetal.,2013).Thesetypesofproteinsusuallyexhibitgreat mechanicalpropertiesand,incombinationwiththeir biocompati-bility,provideanimportantsetofoptionsinthefieldofcontrolled release,biomaterialsandscaffoldsfortissueengineeringand med-icalapplications
Fig 8.To test the hypothesis that the addition of silk fibroin to cellulose scaffolds increases cell adhesion (48 h), L-929 cells were seeded in BC and BC/SF scaffolds SEM images of the cells attached to BC (a) and BC/SF (b) scaffolds surface; cross-section SEM images of BC (c) and BC/SF (d) evidenced that the cells did not migrate into the
Trang 10Table 1
Frequencies of micronuclei (MN) and nuclear division index (NDI) obtained in V79
cell cultures treated with BC/SF 50% and respective controls.
Mean ± SD
NDI b Mean ± SD Negative control 7.33 ± 1.52 1.75 ± 0.02
BC control (100%) 5.66 ± 1.54 1.68 ± 0.01
MMS, methyl methanesulfonate (44 g/mL).
a A total of 3000 binucleated cells were analyzed per treatment group.
b A total of 1500 cells were analyzed per treatment group.
c Significantly different to the negative control group (p < 0.05).
Otherstudies(Chiarinietal.,2003;DalPràetal.,2003;Enomoto
etal.,2010;Petrini,Parolari,&Tanzi,2001)evidencedafewmore
propertiesofsilkfibroinsuchas:it canbechemicallymodified
withadhesionsitesorcytokines,duetotheavailabilityofamine
andacidsidechainsonsomeoftheaminoacids;itpresentsslow
ratesofdegradationinvitroandinvivo,thatisparticularlyusefulin
biodegradablescaffoldsinwhichslowtissueingrowthisdesirable
According to the present findings, BC/SF:50% scaffolds
evidencedpotentialapplicationsintermsofalternativematerials
fortissueregenerationandmedicaldevices.Furtherinvestigation
suchas differentiation,osteogenic and osteoinductivepotential,
improvementsrelated toincrease BC/SFporosityandcontrolled
releaseof active ingredientsshouldbeconducted Additionally,
tests in an animal model to evaluate the performance of the
materialinrelationtospecifictissuesofapplication,areunderway
Future steps point to previously mentioned improvements to
turn the material into a more complex 3D scaffold for tissue
engineering
3.9.5 Assessmentofgenotoxicity
The micronuclei frequency and NDI obtained in V79 cells
treatedwithBC/SF:50%andrespectivecontrolsaredemonstrated
inTable1.Nosignificantdifferenceinthefrequenciesof
micronu-cleiwereobservedbetweentheculturestreated with25%,50%
and100%ofBC/SF:50%whencomparedtothenegativecontrol,
revealingthelackofgenotoxiceffect.In relationtoNDIvalues,
nosignificant differences wereobserved between thedifferent
treatmentsand negativecontrol, demonstrating theabsence of
cytotoxicity
4 Conclusions
Sponge-likenanocompositesbasedonbacterialcelluloseand
silk fibroin (BC/SF:25%, BC/SF:50% and BC/SF:75%) were
devel-oped in this work SEM evaluation results exhibit a very well
interconnectedporousnetworkstructureandlargeaspectofall
nanocompositesproduced.Itcouldbedemonstratedthatthe
pres-enceoffibroininfluencedBC/SFscaffoldssurfacecoveringandthis
aspectwasaffectedby fibroinconcentration.The bestoutcome
obtainedisrelatedto50%fibroincontent,wheretheequalratio
lettoaverygoodsymbioticeffect,preservingthespecific
prop-ertiesofBCandSF.BradfordassaydemonstratedthatBC/SF:50%
nanocompositeisstable.Theresultsforcelladhesionassayshowed
thatthepresenceoffibroininducedasignificantincreaseoncell
adhesion(BC/SF:50%)comparedtopureBCmembranes,duetothe
biologicnatureofSFcoating.Cytotoxicityassaysdemonstratedthat
thematerialis non-cytotoxicandTrypanBlueassociated tothe
SEMimagesrevealedthatBC/SF:50%scaffoldspresenthigherrates
ofcellularviabilitythanpureBC.Further,itwasfoundthatthe
preparedBC/SF:50%scaffoldledtoanimprovedbiocompatibility
comparedtopureBCscaffolds,especiallyconcerning biocompati-bilityandthesuitabilitytoinducecelladhesion.Furthermore,the genotoxicitytestrevealedthatthematerialisnon-genotoxic, indi-catingsafetyformedicalapplications.Generally,thePOCofthe BC/SFcompositescouldbedemonstrated;next,moreadjustments arerequiredtogeneratescaffoldsforcomplextissueengineering
References
Alessandrino, A., Marelli, B., Arosio, C., Fare, S., Tanzi, M., & Freddi, G (2008) Elec-trospun silk fibroin mats for tissue engineering Engineering in Life Sciences, 8(3), 219–225.
Altman, G H., Diaz, F., Jakuba, C., Calabro, T., Horan, R L., Chen, J., et al (2003) Silk-based biomaterials Biomaterials, 24(3), 401–416.
Amsden, J., Domachuk, P., Gopinath, A., White, R., Dal Negro, L., Kaplan, D., et al (2010) Rapid nanoimprinting of silk fibroin films for biophotonic applications Advanced Materials, 22(15), 1746–1749.
Bäckdahl, H., Helenius, G., Bodin, A., Nannmark, U., Johansson, B., Risberg, B.,
et al (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells Biomaterials, 27(9), 2141–2149.
Barnes, C., Elsaesser, A., Arkusz, J., Smok, A., Palus, J., Lesniak, A., et al (2008) Reproducible commet assay of amorphous silica nanoparticles detects no geno-toxicity Nano Letters, 8(9), 3069–3074.
Barud, H., Caiut, J., Dexpert-Ghys, J., Messaddeq, Y., & Ribeiro, S (2012) Transparent bacterial cellulose-boehmite-epoxi-siloxane nanocomposites Composites Part A: Applied Science and Manufacturing, 43(6), 973–977.
Barud, H., de Araujo, A., Santos, D., de Assuncao, R., Meireles, C., Cerqueira, D.,
et al (2008) Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose Thermochimica Acta, 471(1–2), 61–69 Barud, H., Ribeiro, C., Crespi, M., Martines, M., Dexpert-Ghys, J., Marques, R., et al (2007) Thermal characterization of bacterial cellulose-phosphate composite membranes Journal of Thermal Analysis and Calorimetry, 87(3), 815–818 Barud, H., Souza, J., Santos, D., Crespi, M., Ribeiro, C., Messaddeq, Y., et al (2011) Bac-terial cellulose/poly(3-hydroxybutyrate) composite membranes Carbohydrate Polymers, 83(3), 1279–1284.
Bhardwaj, N., & Kundu, S (2011) Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications Carbohydrate Poly-mers, 85(2), 325–333.
Bhardwaj, N., Nguyen, Q T., Chen, A C., Kaplan, D L., Sah, R L., & Kundu, S C (2011) Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering Biomaterials, 32(25), 5773–5781.
Bodin, A., Bharadwaj, S., Wu, S., Gatenholm, P., Atala, A., & Zhang, Y (2010) Tissue-engineered conduit using urine-derived stem cells seeded bacterial cel-lulose polymer in urinary reconstruction and diversion Biomaterials, 31(34), 8889–8901.
Bradford, M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Analytical Biochemistry, 72, 248 Available at: www.ncbi.nlm.nih.gov/pubmed/942051 Cai, X J., & Xu, Y Y (2011) Nanomaterials in controlled drug release Cytotechnology, 63(4), 319–323.
Cattaneo, I., Figliuzzi, M., Azzollini, N., Catto, V., Fare, S., Tanzi, M., et al (2013).
In vivo regeneration of elastic lamina on fibroin biodegradable vascular scaffold International Journal of Artificial Organs, 36(3), 166–174.
Chen, G., Ushida, T., & Tateishi, T (2002) Scaffold design for tissue engineering macromolecular bioscience Macromolecular Bioscience, 2(2), 67–77.
Chiarini, A., Petrini, P., Bozzini, S., Dal Pra, I., & Armato, U (2003) Silk fibroin/poly(carbonate)-urethane as a substrate for cell growth: in vitro inter-actions with human cells Biomaterials, 24(5), 789–799.
Choi, Y., Cho, S Y., Heo, S., & Jin, H.-J (2013) Enhanced mechanical properties of silk fibroin-based composite plates for fractured bone healing Fibers and Polymers, 14(2).
Czaja, W K., Young, D J., Kawecki, M., & Brown, R M (2007) The future prospects of microbial cellulose in biomedical applications Biomacromolecules, 8(1), 1–12 Dal Prà, I., Petrini, P., Chiarini, A., Charini, A., Bozzini, S., Farè, S., et al (2003) Silk fibroin-coated three-dimensional polyurethane scaffolds for tissue engi-neering: interactions with normal human fibroblasts Tissue Engineering, 9(6), 1113–1121.
De Salvi, D., Barud, H., Caiut, J., Messaddeq, Y., & Ribeiro, S (2012) Self-supported bacterial cellulose/boehmite organic–inorganic hybrid films Journal of Sol-Gel Science and Technology, 63(2), 211–218.
Eastmond, D., & Tucker, J (1989) Identification of aneuploidy-inducing agents using cytokinesis-blocked human-lymphocytes and an antikinetochore anti-body Environmental and Molecular Mutagenesis, 13(1), 34–43.
Enomoto, S., Sumi, M., Kajimoto, K., Nakazawa, Y., Takahashi, R., Takabayashi, C., et al (2010) Long-term patency of small-diameter vascular graft made from fibroin,
a silk-based biodegradable material Journal of Vascular Surgery, 51(1), 155–164 Fang, Q., Chen, D., Yang, Z., & Li, M (2009) In vitro and in vivo research on using Antheraea pernyi silk fibroin as tissue engineering tendon scaffolds Materials Science and Engineering: C, 29(5), 1527–1534.
Fang, B., Wan, Y., Tang, T., Gao, C., & Dai, K (2009) Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial