1. Trang chủ
  2. » Giáo án - Bài giảng

Hydroxyethylcellulose used as an eco-friendly inhibitor for 1018 c-steel corrosion in 3.5% NaCl solution

8 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Hydroxyethylcellulose Used as an Eco-Friendly Inhibitor for 1018 C-Steel Corrosion in 3.5% NaCl Solution
Tác giả Mahmoud N. EL-Haddad
Trường học Mansoura University
Chuyên ngành Chemistry
Thể loại Research Article
Năm xuất bản 2014
Thành phố Mansoura
Định dạng
Số trang 8
Dung lượng 1,43 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

The inhibition effect of hydroxyethylcellulose (HEC) on 1018 c-steel corrosion in 3.5% NaCl solution was investigated by using potentiodynamic polarization, electrochemical frequency modulation (EFM) and electrochemical impedance spectroscopy (EIS) techniques.

Trang 1

jo u r n al h om ep a g e :w w w e l s e v i e r c o m / l o c a t e / c a r b p o l

Keywords:

Polarization

EIS

SEM

Theinhibitioneffectofhydroxyethylcellulose(HEC)on1018c-steelcorrosionin3.5%NaClsolution wasinvestigatedbyusingpotentiodynamicpolarization,electrochemicalfrequencymodulation(EFM) andelectrochemicalimpedancespectroscopy(EIS)techniques.Thepotentiodynamicpolarizationstudies suggestedthatHECactsasamixed-typeinhibitor.DataobtainedfromEISwereanalyzedtomodelthe corrosioninhibitionprocessthroughequivalentcircuit.ResultsobtainedfromEFMtechniquewereshown

tobeinagreementwithpotentiodynamicandEIStechniques.TheadsorptionbehaviorofHEConsteel surfacefollowstheLangmuiradsorptionisotherm.Thermodynamicparameter(G◦

ads)andactivation parameters(E∗,H*andS*)werecalculatedtoinvestigatemechanismofinhibition.Scanningelectron microscopy(SEM)andenergydispersiveX-ray(EDX)analysissystemwereperformedtocharacterize thefilmformedonthemetalsurface.DMol3quantumchemicalcalculationswereperformedtosupport theadsorptionmechanismwiththestructureofHECmolecule

©2014TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-ND

license(http://creativecommons.org/licenses/by-nc-nd/3.0/)

1 Introduction

Thecorrosioninhibitionof1018c-steelbecomesofsuch

inter-estbecauseitiswidelyusedasaconstructionalmaterialsinmany

industries,andthisisduetoitsexcellentmechanicalproperties

andlowcost.Topreventthebasemetalattackduringthese

pro-cesses,corrosion inhibitorsare widely used.It is reported that

organicmaterials suchas polymers or macromolecules,having

functionalgroups( OH, COOH, NH2,etc.),arefoundtobe

cor-rosioninhibitorsindifferentcorrosivemedia(Ashassi-Sorkhabi&

Ghalebsaz-Jeddi,2005;Baoa,Zhanga,&Wan,2011;Cheng,Chen,

Liu,Chang,&Yin,2007;Deng,Li,&Xie,2014;El-Haddad,2013;

El-Sayed,1996;Fekry&Mohamed,2010;Müller,Förster,&Kläger,

1997;Sathiyanarayanan,Balakrishnan,Dhawan,&Trivedi,1994;

Solomon&Umoren,2010;Umoren,Solomon,Udosoro,&Udoh,

2010;Waanders,Vorster,&Geldenhuys,2002).Largercorrosion

inhibitionefficiencies thatareobserved usingpolymersarenot

onlyduetothepresenceof␲-electronsbutitcanbealsoattributed

tothe largermolecularsize which ensures greatercoverage of

metallicsurface(Sathiyanarayananetal.,1994).HECiswater

sol-ublepolymerderivedfromcellulose,relativelycheap,non-toxic,

eco-friendlycorrosioninhibitor.It haswide spread applications

asabinder,thickener,stabilizer,suspensionandwaterretaining agentinfoodindustry,pharmaceutical,cosmetic,paperandother industrialareas(WHO,1998).HEChasbeenreportedtoinhibitthe corrosionofaluminumandmildsteelinHClsolution(Arukalam,

2012).Inthepresent workthecorrosioninhibiting behaviorof HECon1018c-steelcorrosion in3.5% NaClsolutionhave been investigatedusingpotentiodynamicpolarization,electrochemical frequencymodulation(EFM)andelectrochemicalimpedance spec-troscopy(EIS)techniques.Thesurfaceof1018c-steelwasanalyzed usingscanningelectronmicroscopy(SEM)andenergydispersive X-ray(EDX)analysissystemtoconfirmthecompositionsofthe corrosionproductsformedonthesurface.DMol3quantum chem-icalcalculationswerealsoemployedtodiscussthecorrelationof inhibitionefficiencyandmoleculestructureofHEC

2 Experimental

2.1 Materialsandsolutions Thechemicalcompositionof1018c-steelusedinthis investi-gationisthefollowing(mass%):C–0.20,Mn–0.35,Si–0.003,P– 0.024andrestFe.Thesteelsheetiscutintocouponsofdimension 1.0cm×1.0cm×0.8cm.Thecouponwasembeddedinepoxyresin

inaglasstube.Acopperwirewassolderedtotherearsideofthe couponasanelectricalconnection.Theexposedsurfaceareaofthe electrode(0.5cm2)wasabradedwithaseriesofemerypapersup http://dx.doi.org/10.1016/j.carbpol.2014.06.032

Trang 2

O O

HO

O O

HO

O

CH2CH2OH

n

to1200grade.Theelectrodewasthenrinsedwithdistilledwater

andethanoltoremovepossibleresidueofpolishingandairdried

Thiswasusedastheworkingelectrodeduringthe

electrochem-icalmethods.Testingelectrolytewas3.5%NaClsolutiondiluted

indistilledwater, usedasblanksolution.Theinhibitor

hydrox-yethylcellulose(HEC)waspurchasedfromSigma–AldrichCo.,and

chemicalstructureof therepeatunitis presentedinFig.1.The

concentrationrangeofHECusedinthisworkwas0.1–0.5mM

2.2 Electrochemicalexperiments

Theelectrochemicalmeasurementswereperformedinatypical

three-compartmentglasscellconsistedofthe1018c-steel

speci-menasworkingelectrode (WE),platinum electrodeasauxiliary

electrode(AE),andasaturatedcalomelelectrode(SCE)asthe

ref-erenceelectrode(RE).Theexperimentswerepreformedusinga

GamryinstrumentPotentiostat/Galvanostat/ZRA(PCI4G750)

con-nectedwithapersonalcomputer;theseincludeGamryframework

systembasedontheESA400.Variouselectrochemicalparameters

weresimultaneouslydeterminedusingdc105corrosionsoftware,

EFM140softwareand EIS300 impedancesoftware Echem

Ana-lyst5.5softwarewasusedforcollecting,fittingandplottingthe

data.Eachrunwascarriedoutinaeratedsolutionsattherequired

temperature,usingawaterthermostat.Allgivenpotentialswere

referredtoSCE.Theworkingelectrodewasimmersedinthetest

solutionfor30minuntiltheopenpotentialcircuitpotential(EOC)

reached.Thepotentiodynamiccurrent–potentialcurveswere

car-riedoutatascanrate1.0mVs−1,andthepotentialwasstarted

from(−1200mV upto +200mV) versusopen circuitpotential

EFMcarriedoutusingtwofrequencies 2.0and 5.0Hz.Thebase

frequencywas1.0Hz Weusea perturbationsignalwith

ampli-tudeof10mVforbothperturbationfrequenciesof2.0and5.0Hz

(Bosch,Hubrecht,Bogaerts,&Syrett,2001;Khaled,2008).EIS

mea-surementswerecarriedoutusingACsignalsofamplitude10mV

peaktopeakattheopen-circuitpotentialinthefrequencyrange

100–50kHz

2.3 Quantumchemicalcalculations

ThemoleculesketchofHECwasdrawnbyChemBioDrawUltra

12.0 Thenthe quantum chemical calculations were performed

usingDMOL3methodinMaterialsStudiopackage(MaterialsStudio,

2009).DMOL3isdesignedfortherealizationoflargescaledensity

functionaltheory(DFT)calculations DFTsemi-corepseudopods

calculations (dspp) were performed with the double

numeri-cal basis sets plus polarization functional (DNP) to obtain the

optimized geometry Then the molecule’s frontier orbital was

expressedasrelativedensitydistributionfigure

2.4 SEMandEDXexamination

Specimensof1018c-steelwereimmersedin3.5%NaClsolution

withoutandwithHEC(0.5Mm)for2daysat25◦C.Afterthat,the

surfaceoftestcouponsexaminedusingascanningelectron

micro-scope(SEM,JOEL, JSM-T20, Japan) and an X-raydiffractometer

0.0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 -1.1 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5

3.5% NaCl 0.1mM 0.3mM 0.5mM

E, mV vs SCE

Philips(pw-1390)withCu-tube (CuK␣1, l=1.54051 ˚A)analysis system

3 Results and discussion

3.1 Electrochemicalmeasurements 3.1.1 Potentiodynamicpolarization Potentiodynamicpolarizationcurvesfor 1018c-steelin3.5% NaClinabsenceandpresenceofdifferentconcentrationsofHEC

at25◦CareshowninFig.2.Tafelslopes(ˇa,ˇc)andcorrosion cur-rentdensity(Icorr),obtainedbyextrapolationoftheTafellines.The percentageinhibitionefficiency(εp%)andthedegreeofsurface cov-erage(),werecalculatedfromthefollowingequation(Sahin,Gece, Karc,&Bilgic,2008):

εp%=×100=

1−Iinh

Ib



whereIbandIinharethecorrosioncurrentdensitiesintheabsence and thepresence of theinhibitor, respectively Asshown from Fig.2,anodicandcathodiccurrentdensity(Icorr)decreasedwith theincreaseininhibitorconcentration,soinhibitionefficiency(εp) increased.Thisduetothat,theadditionofinhibitorreducesanodic dissolutionofmetalandalsoretardsevolutionofhydrogen reac-tion.Thiseffectisduototheadsorptionofinhibitorontheactive centersof steelsurface(Singh&Quraishi, 2010).Thecorrosion parameters,evaluatedfromTafelpolarizationcurvesarelistedin Table1 It wasfoundthat(Table1 theslopes ofthecathodic andanodicTafellinesareapproximatelyconstantand indepen-dentontheinhibitorconcentration.Thisbehaviorsuggeststhatthe inhibitormoleculeshavenoeffectonthemetaldissolution mech-anism.Inaddition,thevaluesof(Ecorr)donotchangesignificantly

inthepresenceofinhibitor.So,HECactsasamixedtypeinhibitor (El-Haddad&Elattar,2012)

3.1.2 Electrochemicalfrequencymodulation(EFM) TheEFMtechniqueisusedtocalculatetheanodicandcathodic Tafelslopesaswellascorrosioncurrentdensitieswithoutprior knowledgeofTafelconstants.EFMisanon-destructivetechnique andisarapidtest.Fig.3aandbshowsrepresentativeexamplesfor EFMintermodulationspectraof1018c-steelin3.5%NaClsolutions devoidofandcontaining0.5mMHECat25◦C.Similarresultswere recordedfortheotherconcentrations.Eachspectrumisacurrent

Trang 3

Table 1

Fig 3. Intermodulation spectra of 1018 c-steel in 3.5% NaCl solution (a), and intermodulation spectra of 1018 c- steel in 3.5% NaCl solution in presence of 0.5 mM HEC (b) at

25 ◦ C.



valuesdecrease,whilethoseof(εEFM%)increasewithincreasein

theinhibitorconcentration,indicatingthatHMCinhibitsthe

cor-rosionofmetalthroughadsorption.Thevaluesofcausalityfactors

(CF2,CF3)areapproximatelyequalthetheoreticalvalues(2)and

(3)according totheEFM theory,indicatingthat, thevalidityof

Tafelslopesandcorrosioncurrentdensities(AbdelRehim,Hazzazi,

Amin,&Khaled,2008;Amin,AbdElRehim,&Abdel-Fatah,2009)

3.1.3 Electrochemicalimpedancespectroscopy(EIS) EISmeasurementswerecarriedoutattherespectivecorrosion potentialsafter30minofimmersionof1018c-steelin uninhib-ited and inhibitedsolutions of 3.5% NaCl.Fig.4 shows Nyquist plots (a)and Bodeplots (b) of 1018c-steel inuninhibited and inhibited 3.5%NaClsolutions containing variousconcentrations

ofHECat25◦C.TheNyquistplots showssinglecapacitiveloop, bothinuninhibitedandinhibitedsolutionsandthediameterofthe capacitiveloopincreasesonincreasingtheinhibitorconcentration indicatingthat,thecorrosioninhibitionofsteel.It isfoundthat theobtainedNyquistplotsarenotyieldperfectsemicirclesdue

tothefrequencydispersion,aswellaselectrodesurface hetero-geneityresultingfromsurfaceroughness,impurities,adsorption

ofinhibitorsandformationofporouslayers(Growcock&Jasinski, 1989; Machnikoval, Pazderova, Bazzaoui, & Hackerman, 2008; Paskossy,1994).ANyquistplotsdoesnotshowanyfrequencyvalue althoughsomedefinitefrequencywasusedtogettheimpedance

ateachdatapoint.Toovercomethisshortcoming,aBodeplotwas developed toindicateexactly whatfrequency wasused to cre-ateadatapoint.Theexperimentaldatafittedusingtheelectrical

1200 1100 1000 900 800 700 600 500 400 300 200 100

0

0

-100

-200

-300

-400

0.1 mM 0.3 mM 0.5 mM

Z real , Ohm.Cm 2

(a)

5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 0.4 0.8 1.2 1.6 2.0 2.4 2.8

3.5% NaCl 0.1mM 0.3mM 0.5mM

log Freq., Hz

0 -20 -40 -60 -80

-100

(b)

Trang 4

Table 2

Fig 5. Electrical equivalent circuit (R s , solution resistance; R ct , charge transfer

resis-tance; C dl , double layer capacitance) used in fitting the experimental impedance

data.

&Zhang,2014).Inthiscircuit,RsandRctrepresentthesolution

resistancebetweenthesteelelectrodeandthereferenceelectrode

andthecharge-transferresistancecorrespondingwiththe

corro-sionreactionat metalsubstrate/solution interface,respectively

ThedoublelayercapacitanceCdlisplacedinparalleltothecharge

transferresistanceRct due tothecharge transfer reaction(Wu,

Ma,&Chen,1999).Thedoublelayercapacitancevalues(Cdl)at

differentinhibitor concentrations,iscalculated accordingtothe

following equation (Benchikh, Aitout, Makhloufi, Benhaddad, &

Saidani,2009):

Cdl= 1

ωRct = 1

2

maxRct

(3) where(ω)istheangularfrequencyand

maxisthefrequencyatthe apexofthefirstcapacitiveloop.Thesemicirclesathighfrequencies

inFig.4areassociatedwiththeelectricaldoublelayercapacitors

(Cdl)andthediametersofthehighfrequencysemicirclescanbe

consideredasthecharge-transferresistance(Rct)(Maetal.,2002)

So,theinhibitionefficiency,(εEIS%)andthedegreeofsurface

cover-age()ofHECcanbecalculatedfromthecharge-transferresistance

asthefollowingequation(El-Haddad,2013):

εEIS%=×100=

1−R∗ct

Rct



whereR∗

ctandRctarethecharge-transferresistancesfor

uninhib-itedandinhibitedsolutions,respectively.Thevariousparameters

derived from EIS measurements and inhibition efficiencies are

giveninTable3

AsseenfromTable3,theRs valuesareverysmallcompared

totheRctvalues.TheRctvaluestendtoincreasewiththeincrease

ofinhibitorconcentration,sothattheεEFM%increased.This

indi-catesthattheinhibitormoleculeshavethecapabilityofforming

uniformcompactadsorbedlayerovermetalelectrode(Benchikh

etal.,2009).Ontheotherhand,thevaluesof Cdl aredecreased

withincreaseininhibitorconcentration,areduetoareductionin

Inhibitor Conc (mM) R ct ( cm 2 ) C dl (␮F cm−2)  ε EIS (%)

&Rawat,2001)

3.2 Adsorptionisothermandthermodynamicparameters

Inordertogainmoreinformationabouttheadsorptionmodeof HEConthemetalsurface,theexperimentaldatahavebeentested withseveraladsorption isotherms includingLangmuir,Temkin, FrumkinandFlory–Huggins.Inordertoobtaintheisotherm,the valuesofsurfacecoverage()werecalculatedfromthefromEFM dataasthefollowingequation(Chenetal.,2012):

=εEFM%

The best correlation between the experimental results and isotherm functions was obtained using Langmuir adsorption isotherm.Accordingtothisisotherm,isrelatedtoinhibitor con-centration(Cinh)bythefollowingequation(Li,Deng,&Fu,2009):

Cinh

1

whereKadsistheadsorptionequilibriumconstant.Theplotsof(C/)

vs.(Cinh)yieldstraightlinewithnearlyunitslopeandthelinear correlationcoefficient(R2)isalmostequalto1(R2=0.998), sug-gestingthattheadsorptionofHEConthemetalobeystheLangmuir adsorptionisothermaspresentedinFig.6.Theinterceptpermits thecalculationoftheequilibriumconstant(Kads)whichisequals 56.08525M−1.ThehighvalueofKadsimpliesmoreadsorptionthan desorptionandconsequentlybetterinhibitionefficiency(Refaey, Taha,&AbdEl-Malak,2004).Kadsisrelatedtothestandardfree

0.5 0.4

0.3 0.2

0.1 0.1 0.2 0.3 0.4 0.5 0.6 R 2 = 0.9998

θθ,,mM

Cinh, mM

Trang 5

Table 4

(Ansari,Quraishi,&Singh,2014):

Kads= 551.5exp



−G◦ads RT



(7)

where isthe valueof 55.5beingtheconcentrationof water in

solutionexpressedinmole,RistheuniversalgasconstantandT

istheabsolutetemperature.Thestandardfreeenergyof

adsorp-tion(G◦ads),whichcancharacterizetheinteractionofadsorption

molecules withmetalsurface, wascalculated by Eq (7) and is

equal to−19.9kJmol−1.The negativevalueof G◦ads indicates

thespontaneous adsorption of HEC molecules from NaCl

solu-tion to themetal surface It is well known that, thevalues of

G◦adsaround−20kJmol−1orlowerareassociatedwithan

elec-trostaticinteractionbetweenchargedmoleculesandchargedmetal

surface(physisorption);thoseof −40kJmol−1 orhigherinvolve

charge sharing or transfer from theinhibitor molecules tothe

metalsurfacetoformacoordinatecovalentbond(chemisorption)

(Ehteshamzadeh,Shahrabi,&Hosseini,2006).ThevalueofG◦

ads

inourexperimentislessthan−40kJmol−1,indicatedthatphysical

adsorption.Inadditiontoelectrostaticinteraction,theremaybe

molecularinteraction(Obot,Obi-Egbedi,&Umoren,2009)

3.3 Effectoftemperatureandkineticparameters

Theeffectof temperatureontheinhibition effectof HECon

1018c-steelcorrosionwasstudiedbypolarizationmethod.Inthis

study,differentconcentrationsoftheinhibitorwereusedat

differ-enttemperaturesaregiveninTable4.Itwasfoundthat(Table4

the(Icorr)increasedwithincreasingtemperatureintheabsence

andpresenceofvariousconcentrationsofinhibitorin3.5%NaCl

solutions,butthe(εp%),decreasedwithincreasingtemperature

ThisbehaviorcanberelatedtotheweaknessofHECadsorptionon

themetalsurfaceathighertemperaturesandsuggestsaphysical

adsorptionofinhibitoronthemetalsurface(Ashassi-Sorkhabi&

Ghalebsaz-Jeddi,2005).Theactivationparameterswerecalculated

fromArrheniusequationandtransitionstateequation(delCampo,

Perez-Saez,Gonzalez-Fernandez,&Tello,2009;Karakus,Sahin,&

Bilgic¸,2005):

Icorr= RT

Nhe((S

Inhibitor Conc (mM) E ∗

a (kJ mol−1) H * (kJ mol−1) −S * (J mol−1k−1)

ofE∗obtainedfromtheslopeof thelinesarelistedinTable5. Fig.7 showedtheplotoflogIcorr/Tvs.1/T.Straightlines were obtained with a slope of (−H*/2.303R) and an intercept of,

have beencalculatedand listedin Table5.It is foundthat, the valuesofE∗determinedinsolutioncontaininginhibitor concen-trationsarehigherthanthatofinabsenceofinhibitorisattributed

tothephysical adsorptionof inhibitoronthemetalsurface.On theotherhand,thehighervaluesofE∗inthepresenceofinhibitor comparedtothatinitsabsenceandthedecreaseofthe(ε%)with temperatureincreasecanbeinterpretedasanindicationof physi-caladsorption(Umoren,2008).ThepositivevaluesofH*indicated thatthecorrosionprocessisendothermicone(Bentissetal.,2007)

Ontheotherhand,theentropyofactivation(S*)isnegativein bothinabsenceandpresenceofinhibitor,implyingthatthe acti-vatedcomplexrepresentedtheratedeterminingstepwithrespect

totheassociationratherthanthedissociationstep.Itmeansthata decreaseindisorderoccurredwhenproceedingfromreactantsto theactivatedcomplex(AbdEl-Rehim,Hassan,&Amin,2001) 3.4 SurfacemorphologybySEM/EDX

Fig.8a–cshowstheresultsofSEMimagesfor1018c-steelin3.5% NaClintheabsence(blank)andpresenceof0.5mMHECinhibitor afterimmersionfor2daysat25◦C,respectively.Themorphology

ofspecimensurfaceintheabsenceofHEC(Fig.8a)showsthat,a veryroughsurfacewasobservedduetorapidcorrosionattackof themetalinthecorrosivesolution.Onthecontrary,inthe pres-enceoftheinhibitor(Fig.8c),theroughsurfaceissuppressed,due

totheformationofanadsorbedprotectivefilmoftheinhibitoron themetalsurface(Badiea&Mohana,2008;Okafor,Liu,&Zheng,

2009).Fig.8b–dpresentstheEDXspectrafor1018c-steelin3.5% NaClsolutionintheabsence(blank)andpresenceof0.5mMHEC inhibitorafterimmersionfor2daysat25◦C,respectively.TheEDX spectraofsteelinabsenceofHECin3.5%NaClsolution(Fig.8b) showsthecharacteristicspeaksoftheelementsconstitutingthe

1018c-steelsample.InpresenceofHEC(Fig.8d),theintensitiesof

CandOsignalsareenhanced.ThisenhancementinCandO sig-nalsisduetothecarbonandoxygenatomsoftheadsorbedHEC Also,thesamespectrashowthattheironpeaksobservedinthe presenceofinhibitorareconsiderablysuppressedrelativetothose observedinblanksolution(Fig.8b),andthissuppressionofthe ironpeaks,occursbecauseoftheoverlyinginhibitorfilm(Amara, Braisaz,Villemin,&Moreau,2008)

3.5 Molecularstructureandinhibitionmechanism TheoptimizedgeometryofHECmoleculeisshowninFig.9a TheadsorptionofHEConthesteelsurfacein3.5%NaClsolution

Trang 6

3.0x10 -3 3.1x10 -3 3.2x10 -3 3.3x10 -3 3.4x10 -3

0.0

0.3

0.6

0.9

1.2

1.5

I corr

1/T, K

(a)

-2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2

-2 , K

1/T, K

maybeachievedbytheinteractionbetweentheunshared

elec-tronpairsinoxygenwithd-orbitalsofironatoms.Theelectron

configurationof iron was[Ar] 4s23d6, it is clear that, 3dorbit

was not fully filled with electron This unfilled orbital of iron

couldbondwiththehighestoccupiedmolecularorbital(HOMO)

ofHECwhilethefilled4sorbitalcouldinteractwiththelowest

unoccupiedmolecularorbital(LUMO)of theinhibitor(Li,Zhao,

Liang,&Hou,2005).Theelectronicorbitaldensity distributions

ofHOMOandLUMOforHECmoleculeareexpressedinFig.9b–c

ItcanbeobservedthatcycleAfor theHOMO(seeFig.9b),has larger electronic density and was more feasible to bind with 3dorbitalof Fe;while fortheLUMO(see Fig.9c), cycleB, and

C had larger orbitaldensity and could takepriorityof interac-tionwith4sorbitalof iron.Fromthegeometryoptimizationof HEC,itcanshowthattheoxygenatomsof inhibitorhave Mul-likenatomicchargeswithhighernegativeelectrondensities.This suggested that the oxygenatoms donatethe unshared pair of electronstothevacantd-orbitalsofiron(Bereket,Gretir,&Yurt,

Trang 7

Fig 9. Optimization geometry of HEC; (a), the molecule orbital of HEC that corresponds to bonding with iron atoms: (b) HOMO orbital density; (c) LUMO orbital density.

2001;Mulliken, 1955).Sothat, theactivesites (oxygenatoms)

facilitatedtheadsorptionofinhibitormoleculeonthesurfaceof

metal

4 Conclusion

Thecorrosioninhibitionof1018c-steelin3.5%NaClsolutionby

hydroxyethylcellulose(HEC)asaneco-friendlyinhibitorhasbeen

studiedusingelectrochemicaltechniques,SEMandEDXanalysis

Theprincipleconclusionsare:

• Resultsobtainedfrompotentiodynamicpolarization indicated

thattheHECismixed-typeinhibitor

• Resultsobtainedfromallelectrochemicaltechniquesareingood

agreement

• AdsorptionofHEConthesteelsurfaceisspontaneousandobeys

theLangmuir’sisotherm

• Corrosioninhibitiondecreaseswhenthetemperatureincreases

• SEMandEDXanalysisofthesteelsurfaceshowedthatafilmof

inhibitorisformedonthesteelsurface.Thisfilminhibitedmetal

dissolutionin3.5%NaClsolution

• DMol3quantumchemicalcalculationswereperformedtosupport

theadsorptionmechanismwiththestructureofHECmolecule

References

aluminum by 1,1(lauryl amido)propyl ammonium chloride in HCl solution.

Materials Chemistry and Physics, 70, 64–72.

cor-rosion inhibition of low carbon steel in concentrated sulphuric acid solutions.

Part I: Chemical and electrochemical (AC and DC) studies Corrosion Science, 50,

2258–2271.

Thiomorpholin-4-ylmethyl-phosphonic acid and morpholin-4-methyl-phosphonic acid as corrosion

inhibitors for carbon steel in natural seawater Materials Chemistry and Physics,

110, 1–6.

frequency modulation and inductively coupled plasma atomic emission

spec-troscopy methods for monitoring corrosion rates and inhibition of low alloy

steel corrosion in HCl solutions and a test for validity of the Tafel extrapolation

method Corrosion Science, 51, 882–894.

triazoles as new and effective corrosion inhibitors for mild steel in hydrochloric

acid solution Corrosion Science, 79, 5–15.

corrosion in hydrochloric acid solution Academic Research International, 2,

35–42.

glycol on the corrosion of carbon steel in sulphuric acid Materials Chemistry and

corrosion mechanism of low carbon steel in industrial water in the absence and presence of 2-hydrazino benzothiazole Korean Journal of Chemical Engineering,

25, 1292–1299.

chitosan/11-alkanethiolate acid composite coating: Dual function for copper protection Applied Surface Science, 257, 10529–10534.

conducting poly(aniline-co-orthotoluidine) copolymer as corrosion inhibitor for carbon steel in 3% NaCl solution Desalination, 249, 466–474.

Understanding the adsorption of 4H-1,2,4-triazole derivatives on mild steel sur-face in molar hydrochloric acid Applied Surface Science, 253, 3696–3704.

4-methyl-5-substituted imidazole derivatives as acidic corrosion inhibitor for zinc Journal of Molecular Structure (Theochem), 571, 139–145.

frequency modulation: A new electrochemical technique for online corrosion monitoring Corrosion, 57, 60–70.

corrosion in 0.5 M NaCl solution by modification of 5-mercapto-3-phenyl-1,3,4-thiadiazole-2-thione potassium self-assembled monolayer Corrosion Science,

61, 53–62.

ecofriendly inhibitor for mild steel in 1 M HCl Materials Letters, 61, 3276–3280.

inversion in isothermal oxidation of uncoated WC-based carbides between 450 and 800 ◦ C Corrosion Science, 51, 707–712.

urea as corrosion inhibitors for steel in HCl solution Corrosion Science, 80, 276–289.

3,4-Dimethoxy-benzaldehydethio-semicarbazone as corrosion inhibitor Anti-corrosion Methods and Materials, 53, 296–302.

medium International Journal of Biological Macromolecules, 55, 142–149.

corro-sion inhibitor for 304 stainless steel in acidic chloride pickling solutions Research

on Chemical Intermediates, 39, 3135–3149.

corro-sion of iron in acidic media Corrosion Prevention and Control, 43, 27–34.

inhibitor for mild steel in sulphuric acid medium Electrochimica Acta, 55, 1933–1939.

mild steel in concentrated hydrochloric acid Journal of Electrochemical Society,

136, 2310–2314.

of some new dithiophosphonic acid monoesthers on the corrosion of the steel

in 1 M HCl medium Materials Chemistry and Physics, 92, 565–571.

3% NaCl solution Materials Chemistry and Physics, 112, 104–111.

mild steel in 1 M H 2 SO 4 Applied Surface Science, 250, 1242–1253.

on the corrosion of cold rolled steel in H 2 SO 4 solution Corrosion Science, 51, 1344–1355.

cor-rosion by several Schiff bases in aerated halide solutions Journal of Applied Electrochemistry, 32, 65–72.

Trang 8

Machnikoval, E., Pazderova, M., Bazzaoui, M., & Hackerman, N (2008) Corrosion

study of PVD coatings and conductive polymer deposited on mild steel Part I:

Polypyrrole Surface and Coatings Technology, 202, 1543–1550.

in aqueous alkaline media by polymers Progress in Organic Coatings, 31,

229–233.

functions Journal of Chemical Physics, 23, 1833–1840.

inhibitors for aluminium in 0.1 M HCl Corrosion Science, 51, 1868–1875.

ethylamino imidazoline derivative in CO 2 -saturated solution Corrosion Science,

51, 761–768.

Electroan-alytical Chemistry, 364, 111–125.

per-formance of tetraphenyl-dithia-octaaza-cyclotetradeca-hexaene (PTAT) during

pickling of mild steel in hot sulfuric acid Materials Chemistry and Physics, 70,

95–99.

pitting corrosion in acidic medium by 2-mercaptobenzoxazole Applied Surface

Science, 236, 175–185.

the effect of some heterocyclic compounds on the corrosion of low carbon steel

in 3.5% NaCl medium Journal of Applied Electrochemistry, 38, 809–815.

Pre-vention of corrosion of iron in acidic media using poly(o-methoxy-aniline) Electrochimica Acta, 39, 831–837.

on the corrosion of mild steel in hydrochloric acid Corrosion Science, 52, 1529–1535.

car-boxymethylcellulose on mild steel corrosion in sulphuric acid solution Corrosion Science, 52, 1317–1325.

medium using gum Arabic Cellulose, 15, 751–761.

and antagonistic effects between halide ions and carboxymethylcellulose for the corrosion inhibition of mild steel in sulphuric acid solution Cellulose, 17, 635–648.

inhi-bition of mild steel: Electrochemical/mössbauer results Hyperfine Interactions, 139–140, 133–139.

series 40.

electrode processes under electrochemical reaction control Journal of Electro-chemical Society, 146, 1847–1853.

nanocom-posite coatings for corrosion protection of mild steel Corrosion Science, 80, 269–275.

Ngày đăng: 07/01/2023, 20:18

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm