Bacterial cellulose (BC) aerogels, which are fragile, ultra-lightweight, open-porous and transversally isotropic materials, have been reinforced with the biocompatible polymers polylactic acid (PLA), polycaprolactone (PCL), cellulose acetate (CA), and poly(methyl methacrylate) (PMMA), respectively, at varying BC/polymer ratios.
Trang 1jo u r n al h om ep a g e :w w w e l s e v i e r c o m / l o c a t e / c a r b p o l
polymers
a University of Natural Resources and Life Sciences Vienna, Division of Chemistry of Renewables, Konrad-Lorenz-Straße 24, A-3430 Tulln, Vienna, Austria
b University of Natural Resources and Life Sciences Vienna, Department of Wood Science, Konrad-Lorenz-Straße 24, A-3430 Tulln, Vienna, Austria
c Clermont Université, ENSCCF, Institute of Chemistry of Clermont-Ferrand, BP 10448, 63000, Clermont-Ferrand, France
d CNRS, UMR 6296, ICCF, 24 av des Landais, 63171 Aubière, France
a r t i c l e i n f o
Article history:
Received 11 November 2013
Received in revised form 30 March 2014
Accepted 10 April 2014
Available online 21 April 2014
Keywords:
Bacterial cellulose
Cellulosic aerogels
Cellulose composite materials
Interpenetrating polymer networks
Reinforcement
Supercritical carbon dioxide
a b s t r a c t
Bacterialcellulose(BC)aerogels,whicharefragile,ultra-lightweight,open-porousandtransversally isotropicmaterials,havebeenreinforcedwiththebiocompatiblepolymerspolylacticacid(PLA), poly-caprolactone (PCL),cellulose acetate(CA), andpoly(methyl methacrylate)(PMMA), respectively,at varyingBC/polymerratios.Supercriticalcarbondioxideanti-solventprecipitationandsimultaneous extractionoftheanti-solventusingscCO2 havebeenusedascoretechniquesforincorporatingthe secondarypolymerintotheBCmatrixandtoconverttheformedcompositeorganogelsintoaerogels Uniaxialcompressiontestsrevealedaconsiderableenhancementofthemechanicalpropertiesas com-paredtoBCaerogels.Nitrogensorptionexperimentsat77Kandscanningelectronmicrographsconfirmed thepreservation(orevenenhancement)ofthesurface-area-to-volumeratioformostofthesamples Theformationofanopen-porous,interpenetratingnetworkofthesecondpolymerhasbeen demon-stratedbytreatmentofBC/PMMAhybridaerogelswithEMIMacetate,whichexclusively extracted cellulose,leavingbehindself-supportingorganogels
©2014TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense
(http://creativecommons.org/licenses/by/3.0/)
1 Introduction
Bacterialcellulose (BC) is anextracellular natural byproduct
ofthemetabolismof variousbacteria(Deinema&Zevenhuizen,
1971),withAcetobacterspp.strainsbeingmostcommonlyused.BC
isproducedbytherespectivebacteriastrainsinresponseto
spe-cificenvironmentalconditions.Acetobacterxylinum,forexample,
producescellulosepelliclesthatkeepthebacteriumfloatingonthe
surfacetomaintainsufficientoxygensupply.Otherbacteria,such
astheplantpathogenAgrobacteriumtumefaciens,usecellulosefor
betterattachmenttoplants,similartothesymbioticRhizobiumspp
Bacterialcellulose,grownundercontrolledconditionson
appro-priatecarbonandnitrogensources,formshighlyporousnetwork
structures, whose voids are filled with the culture medium
Themacroscopicappearance(pellicles,sheets,tubes,etc.)varies
dependingonthetechnologicalapproach(staticvs.agitated,batch
vs.continuouscultivation,rotaryvs.diskfermenters,e.g.).After
∗ Corresponding author Tel.: +43 1 47654 6452.
E-mail address: falk.liebner@boku.ac.at (F Liebner).
1 Current address: Swiss Federal Institute of Technology Zurich, Institute for
Building Materials, Schafmattstraße 6, 8093 Zurich, Switzerland.
removing the culture medium and thorough washing, a taste-less,colorless,andodorlesstranslucentandchewygelisobtained which, todate, ismainlycommercialized asadietaryauxiliary However, applications in skin care (Nanomasque®; Amnuaikit, Chusuit,Raknam,&Boonme,2011)andtopologicalwound heal-ing (Suprasorb®X, Bioprocess®,XCell®,and Biofill®; Petersen & Gatenholm,2011),whichbothtakeadvantageofthehighpurity
ofBC,itspositiveeffectonskintissueregeneration(Sutherland, 1998)anditsgreatwater-retainingandmoisturizingcapabilities, arecurrentlyadvancingstrongly.Beyondthat,good biocompatibil-ityandlowimmunogenicpotential(Heleniusetal.,2006;Klemm, Schumann,Udhardt,&Marsch,2001)renderBCapromising mate-rialforvariousbiomedicalapplications.Thiscomprisestheiruse
asartificialbloodvessels(Klemmetal.,2001), semi-permanent artificialskin(Petersen&Gatenholm,2011),aswellasmatrices forslow-releaseapplications(Haimeretal.,2010),nervesurgery (Klemm et al., 2001), engineering of bone tissue (Zaborowska
etal.,2010)orartificialkneemenisci(Bodin,Concaro,Brittberg,
&Gatenholm,2007)
Quantitativereplacementofwaterbyanorganicsolventand subsequentextractionoftheorganicsolventfromtheporousBC matrixwithsupercriticalcarbondioxide(scCO2)hasbeen demon-strated to be the most successful approach for converting BC http://dx.doi.org/10.1016/j.carbpol.2014.04.029
0144-8617/© 2014 The Authors Published by Elsevier Ltd This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/3.0/ ).
Trang 2mis-ciblewithbothwaterandscCO2,asitisthecasefor,e.g.,ethanol
oracetone.Thisdryingprocedurepreservesthefragilecellulose
networkstructure and thehierarchicalsystemof micro-,meso,
andmacropores(Liebneretal.,2010;Maeda,Nakajima,Hagiwara,
Sawaguchi,&Yano,2006b).Bacterialcelluloseaerogelsfeaturean
outstandinglylowbulkdensityindrystate(≥10mgcm−3),have
lowheattransmissionandthermalexpansioncoefficients,arefully
re-hydratableand sharealloftheabovepropertiesrelevant for
biomedicalapplications.Therefore,BCaerogelsexpandthescope
of BC applications considerably, be it in terms of sensing (e.g
byquantumdots),thermal oracousticinsulation, specific
sorp-tion(from gases orliquids), catalysis, orslow release of active
compounds
However,despitethehightensilemodulusandstrengthof
indi-vidualBCribbons (>10GPaand>17MPa,respectively,Svensson
etal.,2005),theresistanceofBCaerogelsandtheirhydrated
pre-cursorstowardscompressivemechanicalstressisnotsufficiently
highformanyapplicationsthatinvolvemechanicwear.Numerous
reinforcingstrategieshavebeenthereforeinvestigated,including
preparationofall-cellulosecomposites,controllingfibrilproperties
byadding special additivestothenutrient medium,
incorpora-tionofstrength-impartingpolymersduringBCgrowth,chemical
surfacemodification,orcross-linking(Seifert,Hesse,Kabrelian,&
Klemm,2004; Yano,Maeda, Nakajima, Hagiwara,& Sawaguchi,
2008)
Three-dimensionalnetworksofasecondarypolymer
interpen-etratingandreinforcingthatofbacterialcellulosecanbeprepared
bysoaking BC witha solutionof the respectivemonomer and
covalentgraftingontoBC(e.g.BC-g-PMMA,BC-g-PBA,
BC-g-PMMA-co-PBA;Lacerda,Barros-Timmons,Freire,Silvestre,&Neto,2013)
Furthertechniquesareinsitugenerationoftheinterpenetrating
network by loadingand subsequent chain-growth
polymeriza-tionofa suitable monomersuchasmethacrylic acid(Hobzova,
Duskova-Smrckova,Michalek,Karpushkin,&Gatenholm,2012)or
precipitationofthereinforcing polymerfroma compatible
sol-vent, filling thevoids of thecellulosic network, as it hasbeen
described in our previous work for BC/cellulose acetate
com-posites (Liebner,Aigner, Schimper, Potthast, & Rosenau, 2012)
BChybridmaterialscontaininganinorganicpolymerhavebeen
obtainedbyloadingofsilicasolinto(Yanoetal.,2008)or
poly-merizationofsilicateprecursorswithintheBCstructure(Maeda,
Nakajima,Hagiwara,Sawaguchi,&Yano,2006a).Anotherprocess
thataffordsorganic/inorganichybridmaterialsisbiomineralization
ofappropriatelyfunctionalizedcellulosicscaffolds,asittakesplace
in(simulated)bodyfluids(Zimmermann,LeBlanc,Sheets,Fox,&
Gatenholm,2011)
Themajorityof previousstudiesusedtheaboveapproaches
eithertoreinforcethinBCfilmsdirectlyortoobtainmechanically
resistantBCsheetsfrommodifiedbulkBCorganogelsafter
com-paction.However,tomakeuseoftheintriguingnativemorphology
of three-dimensional BC aquogels, the reinforcing approaches
shouldaimatafar-reachingpreservationoftheinherentBC
cel-lulosenetworkarchitecture
ThecurrentstudyinvestigatesthereinforcementofBCaerogels
withinterpenetrating,biocompatibleandpartiallybiodegradable
polymers,suchaspolylacticacid(PLA),polycaprolactone(PCL),
cel-luloseacetate(CA)andpoly(methylmethacrylate) (PMMA).The
three-dimensionalnetwork oftheentangledBCfibershasbeen
studiedasatemplateforthepreparationofporousPLA-,PCL-,
CA-,andPMMAscaffoldsofBC-likemorphologyunderpreservation
orenhancementofthesurface-to-volumeratio.Supercritical
car-bondioxideanti-solventprecipitationandextraction,respectively,
havebeenusedascoretechniquesfordepositingthesecondary
polymerwithintheBCmatrixandtoconverttheformedcomposite
organogelsintoaerogels
2 Materials and methods
PLAwasobtainedfromNatureWorksLLC(PLAPolymer4042D;
Mw209.0kgmol−1,6.1%D-isomer).PCL(Mw48.0–90.0kgmol−1,
Mn∼45.0kgmol−1),CA(Mn∼30.0kgmol−1,39.8wt%acetyl)and PMMA(Mw∼350.0kgmol−1)werepurchasedfromSigma-Aldrich (Vienna,Austria).AbsoluteethanolwasobtainedfromFisher Scien-tific(Vienna,Austria).Tetrahydrofuran(HiPerSolvCHROMANORM forHPLC)andacetone(AnalaRNORMAPUR)wereobtainedfrom VWR(Vienna,Austria)
2.1 Preparationofbacterialcellulose BacterialcellulosewaskindlyprovidedbytheResearchCentre forMedical Technologyand Biotechnology(FZMB)Bad Langen-salza,Germany.Thematerialwasproducedbyastaticcultivation
of Gluconacetobacter xylinum AX5 wild type strain on Hestrin-Schrammgrowthmediumfor30daysat30◦C
TheobtainedBClayerwascutinto120mm×20mm×20mm cuboids,heatedthreetimesfor20minin0.1MaqueousNaOHat
90◦C,andfinallyrinsedwithdeionizedwaterfor24h.Afterwards theBCwassubjectedtoasolventexchange,replacingwaterby96% ethanol
2.2 PreparationofBC-basedcompositeaerogels Priortomodification,theBCwascutintosmallercuboids fea-turingedgelengthsofabout10mm.Consideringthetransverse isotropy of BC aerogels (Liebner, Aigner et al., 2012)and with respecttotheevaluationofthemechanicalpropertiesofthe com-posites, thespecimens were markedalong thedirection ofthe
120mmedgesoftheparentBCsamples.Theseedgescorrespond
tooneofthehorizontal(plane)directionsoftheharvestedBCand areperpendiculartotheir(weaker)growthdirection
TherespectiveBCspecimensweretransferredfirstto tetrahy-drofuran(inthecaseofPCLandPLA)oracetone(inthecaseofCA andPMMA),correspondingtothetypeofsolventusedfor dissolu-tionofthereinforcingpolymer,andsubsequentlyintotheloading bathswhichcontainedsolutionsoftherespectivereinforcing poly-meratoverallconcentrationsof10,20,40,80and120mgmL−1 (samplelabelingreferstotheseconcentrations,e.g.:PLA10).All sol-ventexchangeandloadingstepswerecarriedoutintotalvolumes correspondingtotheten-foldvolumeoftherespectiveBCsample Afteraresidencetimeofatleast24hatroomtemperature(PCL,CA, PMMA)and50◦C(PLA),respectively,thesampleswereremoved fromtheloadingbath.Precipitationofthesecondpolymerwithin theBCporenetworkwascarriedoutwitheitherethanol(inthe caseofPLAandPCL)orscCO2(forCAandPMMA).Conversionof compositeorganogelstotherespectiveaerogelswasineithercase accomplishedbyscCO2drying:Theorganogelswereplacedinto
a300mLautoclaveequippedwithaseparatorforcarbondioxide recycling(Separex,France).Dryingwasperformedunderconstant flowofscCO2 (40gmin−1)at10MPaand40◦Cfortwotothree hours.Thesystemwasthenslowlyandisothermallydepressurized
atarateof<0.1MPamin−1
2.3 CharacterizationofBCaerogelsandBCcompositeaerogels Shrinkageoftheorganogelsduringloading/precipitationand subsequentdryingwasdeterminedbymeasuringthedimensions andcalculatingthevolumeofthecuboidsbeforeloadingwiththe respectivepolymersolutionandafterscCO2 drying.Tocalculate densities,theweightoftheaerogelswasdetermined gravimetri-callyafterdrying
Trang 3(LeicaEMSCD005sputtercoater,layerthickness6nm)was
per-formedonaTecnaiInspectS50instrumentunderhighvacuumat
anaccelerationvoltageof5.00kV
PolarizedlightmicroscopywasperformedonaLeicaDM4000M
microscope.Imageswererecorded witha digitalcamera (Leica
MicrosystemsWetzlarGmbH,Germany)
ThermoporosimetrywasconductedonaMettler-ToledoDSC30
instrument equipped with a liquid nitrogen module calibrated
(bothfortemperatureandenthalpy)withmetallicstandards(In,
Pb,Zn)usingo-xyleneasinterstitialliquid.About10or20mgof
thestudiedmaterialwasplacedintoaDSCpanwhichwasthen
sealedandsubjectedtorepeatedfreezing/thawingcyclesin
com-parisontoanemptyDSCpan.Adetaileddescriptionoftheapplied
temperatureprogramcanbefoundelsewhere(Bruns,Lallemand,
Quinson,&Eyraud,1977;Nedelec,Grolier,&Baba,2006)
Mechanical response profiles towards compressive stress
orthogonallytothe(weaker)growthdirectionofBCwererecorded
onaZwick-Roell MaterialsTestingMachineZ020 Therequired
straintoachieveadeformationspeedof2.4mmmin−1was
mea-suredina500Nloadcell.Yieldstrength(RP0.2)wasdefinedasthe
stressat0.2%plasticdeformation
Nitrogen adsorption/desorption isothermsat 77K havebeen
obtainedonaMicromeriticsASAP2020analyzer.Allsampleswere
degassedinvacuumpriortoanalysis.Specificsurfaceareaswere
calculatedusingtheBrunauer,EmmettandTeller(BET)equation
3 Results and discussion
3.1 Shrinkageandbulkdensity
StaticcultivationofAcetobacterxylinumAX5wildtypestrainon
Hestrin-Schrammmediumaffordsbacterialcelluloseaquogelsthat
canbeconvertedintotherespectiveaerogelsatverylow
shrink-age(1–5%)byscCO2treatment(supercriticalpointofCO2:31.2◦C,
7.38MPa), ifthe interstitialwater is quantitatively replaced by
anappropriateCO2-miscibleorganicsolventpriortothedrying
step(40◦C, 10MPa; Liebneretal.,2010;Maeda, 2006).Ethanol
asa medium-polar solventthat is misciblewithboth H2O and
CO2isfrequentlyusedinscCO2dryingofaerogels.The
morphol-ogyofpolysaccharide-basedgels,suchasofBCaquogels,which
consistofentangledribbon-typecellulosemicrofibrilsand
inter-stitialwater,canbelargelypreservedduringthissolventexchange
(ethanol)andthesubsequentscCO2drying.Thisisreflectedbythe
lowapparentdensityoftheobtainedaerogels(7.8±0.5mgcm−3;
n=5)whichisingoodagreementwithvaluesreportedelsewhere
(8.3±0.7mgcm−3;Liebneretal.,2010)
However, loading of BC gels with the reinforcing polymers
poly(lacticacid) (PLA),polycaprolactone(PCL),cellulose acetate
(CA),and poly(methyl methacrylate) (PMMA)required solvents
otherthanethanolduetosolubilityissues.Whileacetonewasthe
solventforCAandPMMA,tetrahydrofurane(THF)wasusedinthe
caseofPLAandPCL.BCreferencesamples,whichhadbeen
man-ufacturedusingtherespectivesolventsacetoneandTHFinstead
of ethanol and which didnot contain thereinforcing polymer,
revealedthatthetypeoforganicsolventhasaweakimpactonthe
overallshrinkageofthegelsduringprocessingandhenceonthe
apparentdensityandresponseoftheobtainedaerogelstowards
compressivestress.ComparedtoBCaerogelspreparedfromthe
respectivealcogels(7.8±0.5mgcm−3),replacementofthe
inter-stitialethanolbyacetonepriortoscCO2dryingaffordedsomewhat
higherdensitiesof9.4±0.6mgcm−3(referencesamplesCA0and
PMMA0;n=4),similartodatareportedelsewhere;Liebner,Aigner
etal.,2012).Thedensitiesofaerogelsobtainedbysequential
sol-ventexchangefromethanoltoTHFandbacktoethanolpriorto
scCO2drying(referencesamplesPLA0andPCL0)werefoundtobe
inthesamerange(9.6±0.8mgcm−3;n=4)
Theimpactofthetypeofsolventontheapparentdensityofthe aerogelsismostlikelyduetothedifferentstrengthsofinteractions thatoccurbetweentherespectivesolventsandthesurfaceofthe cellulosemicrofibrilsandarestronglyinfluencedbytheabundance
ofOHgroups.AccordingtotheHansenmodelofsolvent–polymer interactions,thecohesiveenergydensity(expressedasHildebrand solubilityparameter)canbecalculatedasthesumofadispersion forcecomponent,apolarcomponentandahydrogenbonding com-ponent.Replacementofethanol (ıSI=26.5MPa1/2)byacetoneor THFdecreasesthetotalHildebrandparametertoıSI=20.0MPa1/2
andıSI=19.4MPa1/2,respectively.Thehydrogenbonding compo-nent,whichis,duetothehighabundanceofOHgroups,supposed
tobeofparticularimportanceforsolvent–polymerinteractions,is evenmoreaffectedanddecreasesfromıH=19.4MPa1/2(ethanol)
to8.0MPa1/2(THF)and7.0MPa1/2(acetone),respectively.A simi-lareffectisassumedtooccurintheinitialphaseofscCO2drying, whenCO2 andsolventformarathernon-polar,expandedliquid phaseinsidetheporesofthegelstobedried.Thisisevidentfrom theextensiveshrinking thathasbeenreportedforthe prepara-tionof aerogelsfromavarietyof biopolymers(starch,alginate, cellulose)
Correspondingtotherathermarginal,solvent-dependent dif-ferencesinshrinkage,thespatialdimensionsofBCspecimenwere largelypreservedthroughoutloadingandprecipitationofPLA,CA and PMMA, andduring scCO2 drying ofthe BC/PLA,BC/CAand BC/PMMAhybridorganogels,inparticularforthosevariantswith lowpolymerconcentrationintheloadingbaths.Strongershrinkage wasobservedonlyatconcentrationlevelsof80and120mgmL−1, correspondingtoapolymer-to-BCmassratioof≥7.9,withthe high-estvalueobservedforPMMA120(23.7%,Fig.1)
Reinforcement of cellulose aerogels with polycaprolactone (PCL)throughethanolanti-solventprecipitationfromTHFand sub-sequentscCO2 drying,turnedouttobealessfeasibleapproach
assubstantialcollapsingofthespecimenoccurredduringscCO2 drying This effect, which was observed for all PCL/BC hybrid organogelsexceedingaPCL/BCmassratioof2.0(cf.Fig.1 is trig-geredbythecomparativelystrongexpansionofPCLunderscCO2 conditions,causedbythelowglasstransitiontemperature(TG)of PCL(−60◦C)andthegoodsolubilityofCO2inPCL,whichexistsin
arubberystateundertheconditionsemployed.Whilefast depres-surizationofCO2-expandedneatPCLaffordsstablefoams(Xuetal., 2004), slowdepressurizationratesof lessthan 0.1MPamin−1 –
astypicallyusedtopreservethefragilecellulosenetwork struc-tureofrespectiveorganogels(Liebneretal.,2010)–causesthe expandedPCLrubbertocollapse.Asaresult,compactBChybrid materialswithdensitiesabouttwiceashighasobservedfor all otherhybridaerogelswereobtainedwithcelluloseribbonsstuck togetherbyPCL.Interestingly,collapsingofthenetworkstructure wasmuch more pronounced along thegrowthdirection of BC, indirectlyconfirmingtheiranisotropicmorphologyandresponse towardsmechanicalstress(seebelow).Asimilarshrinkageeffect wasnotobservedforPLA(TG=55–60◦C),PMMA(TG=90–105◦C; Buck,Diem,Schreyer,&Szigeti,1975;Dixitetal.,2009)andCA (TG=140–190◦C;Vallejos,Peresin,&Rojas,2012)whoseglass tran-sitiontemperaturesaredistinctlyabovetheemployedoperation temperatureofthescCO2unit(40◦C)
WiththeexceptionofBC/PCLhybridaerogels,thebulk densi-tiesoftheobtainedsetsofreinforcedBCaerogelsrangedfrom16
to170mgcm−3,dependingontherespectiveconcentrationofthe loadingbathaswellastheextentofshrinkage(Fig.1).Theamount
ofsecondarypolymercontainedinacertainvolumeoftheloading bathwasalsofoundintheobtainedaerogel(Fig.1A,inset), indicat-ingtheabsenceofspecificinteractionsbetweenBCandtheloaded substances which could have caused an enrichment effect In
Trang 4Fig 1. Bulk density of reinforced BC aerogels vs mass ratio of the secondary polymer ( p ) in the aerogel (A; inset: p in the aerogel vs concentration of the secondary polymer
in the loading bath (c p )) Overall shrinkage of gels during loading, solvent exchange and scCO 2 extraction vs loading bath concentration (B).
particular at higher loadings, BC composites with CA
exhib-itedlowershrinkage ratesanddensities comparedtotheother
organogels
3.2 MorphologyofBChybridaerogels
The ‘biological spinnerets’ lined up in BC producing
bacte-riareleasecelluloseasanextracellularsubstanceintheformof
elementaryfibrilswhichaggregatetoribbons.Asthecellulose
syn-thesizingsitesareduplicatedduringcelldivision(Brown,Willison,
&Richardson,1976),motheranddaughtercellareconnectedtoone
andthesamecelluloseribbonwhichcausesformationofahighly
interconnectedandentangledthree-dimensionalnetworkof
cellu-lose(Fig.2A).Nitrogensorptionexperimentsat77K,theresultsof
thermoporosimetrymeasurements(Fig.2B)andSEMmicrographs
revealaverybroadporesizedistributionwithvoiddiameters
ran-gingfromthesingledigitnano-tomicrometerrange
Themorphologyoftheaerogelschangesgraduallywith
increas-ing content of loaded polymer once a second component is
introducedintothisnetwork(Fig.3).Theabove-described
aggluti-nativeeffectofPCLcanalreadybeseenatthelowestconcentration
level At higher loadings the formation of distinctly separated
regions,stronglydeviatingintheirmorphologyareclearlyvisible
intherespectiveSEMimages.Whilesomeareasappearvery
sim-ilartotheoriginalBCnetwork,inothersthereinforcedfibersare
agglomeratedtoclustersformingmulti-layeredstructures,
pene-tratingthecompositeperpendiculartothegrowthdirection.These
structuresareassociatedwiththecollapseofthecuboidsathigher
loadings
PLAisprecipitatedinformofsmall,individualsphereswith
par-ticlesizesof about0.5–2.0m(PLA10 andPLA20) or ellipsoids
(PLA40)atlowerPLAconcentrations intheloadingbath,
corre-spondingtoPLA/BCratiosof≤3.5.Athigherratios(PLA80and120;
PLA/BC:8.2and12.5)asecond,interpenetratingporousstructure
isformedwithintheBCaerogel.The establishmentofthis
sec-ondarynetworkisalsoapparentfromtheresponseofthesesamples
towardscompressivestress,asbothEmodulusandyieldstrength
increasesignificantly(Fig.6,Table1)
In contrast to thepolyesters PLA and PCL, cellulose acetate
and poly(methyl methacrylate) areevenly precipitatedin close
proximitytothesurfaceoftheBCfibrils.Uptoapolymer/BCratio
ofabout4(concentrationlevel≤40mgmL−1)theBCnetworkacts
asatemplatethatgovernsthemorphologyofthesecondary
poly-mernetwork andsupportstheformationofhighlyopen-porous
compositematerialswithporecharacteristicssimilartothoseof
pureBCaerogels.Atpolymer/BCratios≥5themorphologyofthe
obtainedaerogelsisincreasinglydominatedbythepropertiesofthe
pervadingpolymerandresemblestheopenporousmicrostructure
ofpureCAorPMMAfilmsobtainedbyvariousscCO2 processes (Reverchon&Cardea, 2004;Reverchon,Cardea,&Rappo,2006; SoaresdaSilva,Viveiros,Coelho,Aguiar-Ricardo,&Casimiro,2012) Theformationofanopen-porous,interpenetratingnetworkof thesecondpolymerwasconfirmedbytreatingselectedBC/PMMA hybrid aerogels with the cellulose solvent 1-ethyl-3-methyl-imidazoliumacetate(EMIMacetate).EvenatahighPMMA/BCratio
ofabout8,representingoneoftheleastfavorablecasewithregard
toeasinessofcellulosedissolutioncellulosewasextractedbythe ionicliquidat50◦C,leavingbehindorganogelswhichwerelargely transparentpriortodryingandwhosemorphologiescorresponded
tothoseoftherespectivecomposites(Fig.4).ATR-IRanalysisof theextractedsubstanceconfirmedtheextractionofpurecellulose (morethan90%oftheamountofcelluloseoriginallypresentinthe compositeaerogel)duringthisprocess(FigureS1,supplementary data)
3.3 Responsetowardscompressivestress Theanisotropicresponseofbacterialcellulosetowards mechan-ical stress is an issue that must be considered in both characterizationandutilizationofBC-basedmaterials.Static cul-tivationofBC-producingbacteriafor3–4weekstypicallyaffords
a bacterial cellulose fleece of a few centimeters in thickness However,asallBCproducingbacteriastrainsareaerobic microor-ganisms, the release of cellulosic elementary fibrils and their aggregationtoribbonsoccursonlyincloseproximitytothephase boundarybetweenculturemediumandair.Itisknownthatthe densityofBCfilmsthusvariesintherangeofmicrometersfromtop
tobottom(Bodin,Bäckdahletal.,2007).Overtime,gravitypulls thethickeningcellulose fleece deeperintothe culturemedium whichisassumedtohappeninmicrosteps.Asaresult,a trans-verselyisotropicbacterialcellulosenetwork isproduced, which features a higher density and degreeof entanglements parallel
totheliquid/airphaseboundarythaningrowthdirection.Even thoughthelesspronouncedentanglementanddensityofBC ribb-onsingrowthdirectionisnotdirectlyevidentfromrespectiveSEM
orESEMpictures,itcanbeindirectlyvisualizedbyscanning elec-tronmicroscopyoffreeze-driedmaterial(Fig.5A)orpolarization microscopy offrozen BCsamples (Fig.5B).During freezingthe expandingwaterpushesthecellulosenetworkalongitsweaker directionapart,formingalternatinglayersofcompactedandless compactedcelluloseribbons.Dependingonthefreezingconditions thedistancebetweenthose compactedcelluloselayersisinthe lowermicrometerrange(3–10m)whichisinaccordancewith theliterature(Bodin,Bäckdahletal.,2007)
The significantly lower stiffness and strength of BC sheets
in thedirection ofgrowth is alsoevident from theanisotropic
Trang 5Fig 2.SEM picture of an unmodified BC aerogel at 10.000× magnification (A) and its void size distribution as analyzed by thermoporosimetry using o-xylene as confined solvent (B; inset: Thermogram of a deep-frozen BC aerogel soaked with o-xylene).
response of BCaerogels towardscompressive stress.The latter
wereobtainedbyscCO2drying(40◦C,10MPa,3h)ofrespective
BCsamplesafterreplacingtheinterstitialwaterbyethanol.While
aYoung’smodulusofE=0.057±0.007MPaandyieldstrengthof
RP,0.2=4.65±0.48kPa wasobserved alongthe growthdirection,
therespectivevaluesfortheothertwospatialdirectionswere
sig-nificantlyhigher(A:E=0.149±0.023MPa,RP,0.2=7.05±0.55kPa;
B: E=0.140±0.036MPa, RP,0.2=7.84±1.06kPa) Because of this
anisotropy,mechanicaltestingofallpreparedBCcomposite
aero-gelswasperformedbyapplyingtherespectivecompressivestress
along one of its stronger directions, which can be
unambigu-ouslyidentifiedbythelongedgesofthesuppliedBCsamples(ca
120×20×20mm),whichdonotrepresentthegrowthdirection
The mechanical response profiles of BC/PLA, BC/CA and
BC/PMMA composite aerogels towards compressive stress are
largelysimilartothoseofaerogelspreparedfrompureBC,atleast
uptoapolymer/BCratioofabout4(Fig.6A–C;forfullresponse
curvesofthoseBCaerogelsthatwerereinforcedwiththe high-est amounts of PLA (A), PMMA (B) and CA (C)see Figure S2) Theyarecharacterizedbyanadjustmentphase(≤3–5%strain),in whichsample irregularitiesareevenedout,followedbya com-parativelynarrowrangeoflinearelasticdeformation(<10%).The most eye-catching feature however is the pronounced plateau region(15–40%),causedbyplasticdeformationthroughcell col-lapsingandeventuallyfollowedbyanexponentialincreaseofstress overstrainduetomaterialdensification.Similartoaerogelsfrom regeneratedcellulose(Liebner,Dunareanu etal.,2012)–andin contrasttobrittlefoamsandsilicaaerogels–allcompositeaerogels deformedinaductilewayonthemicroscale
WhilethestiffnessoftheBC/CAandBC/PMMAaerogels(Fig.6B andC)significantlyincreasedwitheachascendingconcentration level,thesameeffectwasobservedforBC/PLAonlyforthetwo highestconcentrations(Fig.6A).Themostregularreinforcingeffect was observed for theBC/CA composites, where the Emodulus
Table 1
Density and mechanical properties (n = 3) under uniaxial compression (rCA samples for comparison: Aerogels obtained by cellulose coagulation from Ca(SCN) 2 ·8H 2 O solution,
CA loading from acetone and subsequent scCO 2 anti-solvent precipitation and drying).
Trang 6Fig 3. Scanning electron images of reinforced BC aerogels at 10.000× magnification Numbers on the left side are referring to the concentration of the loading bath in mg
mL−1.
increasedlinearlyuptoaCA/BCratioof8(CA80;Fig.6D)which
isingoodagreementwithoneofourpreviousstudies(Liebner,
Aigneretal.,2012)
Thequotient of Young’s modulus and bulk density (specific
modulusE isaconvenientparametertocomparethestiffnessof
materialsofvaryingdensity.ForpureBCaerogelsitwascalculated
tobe19(ethanol),21(THF)and25MPacm3g−1(acetone;Table1)
whichisremarkablyhighcomparedtootherporousmaterials.For
apolyurethanefoamofadensityof90mgcm−3,whichis
compara-bletocompositeswithapolymer/BCratioof8,aspecificmodulus
of7.8MPacm3g−1hasbeenpreviouslyreported(Patel,Shepherd,
&Hukins,2008)whilethatoftherespectiveBC/PMMAcomposite
aerogelwas122MPacm3g−1
ComparedtopureBCaerogels,thehighestgaininspecific mod-uluswasachievedforPMMA80(4.8-fold)andPMMA120(5.5-fold) ForBC/PLAaerogelsthespecificmodulusfellbelowthatofthepure
BCaerogel(increaseindensitywithoutareinforcingeffect)and exceededitonlyaftertheinterpenetratingnetworkhadbeenfully developedwithintheBCnetwork(2.8-foldforPLA120)
Reinforcementwithcelluloseacetatewastheonlyvariantthat affordedproductswithEvaluesincreasingnearlylinearly, start-ingalready fromthe lowestloading(CA10) Thisindicatesthat
atcontentsofthesecondaryconstituent,comparabletothemass
ofthelowdensityBCstructureitself,CAhasthehighest suppor-tingfunctionamongtheappliedpolymers,promotingadhesionof
BCfibriljunctionsalreadyatlowconcentrations(Table1).Atthe
Trang 7Fig 4.BC/PMMA80 organogel during extraction of BC with an ionic liquid, containing regions of varying amounts of residual BC (opaque) SEM pictures: morphology of a BC/PMMA80 aerogel (A) and of an aerogel as obtained from (A) after extraction of BC by EMIM acetate.
Fig 5.SEM picture of freeze-dried BC (A) and cross-polarization micrograph of a frozen BC sample (B) The white arrows indicate the direction of BC growth.
Fig 6. Mechanical response profiles towards compressive stress for BC aerogels reinforced with PLA (A), PMMA (B) and CA (C) Grey areas indicate standard deviations (D) Correlation between Young’s modulus and bulk density of BC/CA composites (triangles: CA0-80; circles: values from Liebner, Aigner, Schimper, Potthast, & Rosenau, 2012 ) and silica aerogels (diamonds: values from Alaoui, Woignier, Scherer, & Phalippou, 2008 ).
Trang 8Table 2
Influence of aerogel composition on specific surface area and
surface-area-to-volume ratio.
highestloadingleveltheobtainedcompositeaerogels(CA120)
fea-tureda3.2-foldmultiplicationof specificmoduluscomparedto
pureBC
Comparedtosilicaaerogelswhicharealreadycommercialized
forhigh-performancethermalinsulation(Nanogel®,Spaceloft®),
theE-moduleofBC/CAandBC/PMMAcomposite aerogelsisnot
onlysignificantlyhigheratcomparabledensity,butalsoresponds
muchstrongertochangesindensity(Fig.6D).Thespecificmoduliof
lowdensitysilicaaerogelsareclearlyoutmatchedbytherespective
BC/CAcompositeaerogels.WhileEofBC/CAcompositeaerogels
equaled50MPa cm3g−1 ata bulkdensityof84.2mgcm−3,that
ofa comparablesilicaaerogelwasabout4MPacm3g−1 (Alaoui,
Woignier,Scherer,&Phalippou,2008)
Theapplicabilityoftheinvestigatedreinforcementstrategyfor
BC aerogels was also tested for aerogels obtained by
coagula-tionofcellulosefromsolutionstate,basicallyfollowingamethod
describedelsewhere(Hoepfner,Ratke,&Milow,2008).Inbrief,a
smallamountofcottonlinterswasdissolvedincalciumthiocyanate
octahydrateat140◦Caffordinga1wt%cellulosesolution
Coagula-tionofcellulose(‘regeneration’)wasthenaccomplishedbyaddition
ofethanol.Followingexhaustivesaltleechingwithwaterand
sol-ventexchangetoacetone,thereinforcingprocesswascarriedout
asdescribedforBCsamplesCA40andCA80.Accordingly,the
sam-pleswerelabeledrCA40andrCA80.SEManalyzesrevealedthat,
apartfromthehigherdensityofthecellulosemesh,theresulting
compositesfeaturedopenporousmorphologiessimilartotheirBC
counterparts.ComparedtotheBC/CAaerogels,thespecificmoduli
EoftheCA-reinforcedaerogelsfromregeneratedcellulosewere
foundtobesignificantlyhigher.WhileE wastwiceashighfor
rCA40,thenextloadinglevel (rCA80)afforded materialswhose
specificmoduliexceededthatoftherespectiveCA80samplesby
afactorofthree(Table1)
3.4 Porecharacteristics
Aspreviouslydiscussed,bacterialcelluloseisamaterialof
hier-archicalarchitecturecomprisingmicro-,meso-andmacropores
Accordingtothermoporosimetrymeasurements(datanotshown)
thepeaksizedistributionpeaksintherangeofsmallmacropores
(ca.80–100nm).Nitrogensorptionexperimentsat77Kconfirmed
thattheformationofasecondarypolymernetworkaffords
materi-alsoflowerspecificsurfacearea(SSA),comparedtothespecific
surface area of BC aerogels (77m2g−1, see Table 2; calculated
fromthedesorptionbranchof theisotherm) Asthisis
primar-ilyduethehigherdensityofthecompositeaerogels,thesurface
areawasrelatedtosamplevolume(surface-area-to-volumeratio;
SAV), rather thantomass It wasevidentthat, withthe
excep-tionofPMMA20andPMMA40,allBCcompositeaerogelsfeatured
significantly higher SAV values (1.1–6.0×106m2m−3)than the
BCaerogels(0.7×106m2m−3).ForBC/PLA,BC/CA,andBC/PMMA
aerogelsthehighestSAVvalueswereobtainedforthe120mgmL−1
loading concentration level In general, the far-reaching
main-tenance or even enhancement of the surface-area-to-volume
ratio confirms the preservation of the aerogel’s open-porous
morphologythroughouttheanti-solventprecipitationanddrying procedures
4 Conclusions
LoadingofPLA,CA,andPMMAfromsolutionsinTHFor ace-toneontobacterialcellulose,followedbyanti-solventprecipitation
oftherespectivepolymerinsidethehighlyporousBCorganogels andsubsequentscCO2 dryinghavebeendemonstratedtoafford
BCcompositeaerogelsofsignificantlyenhancedmechanical resis-tancetowardscompressivestressatfar-reachingpreservationof theopen-porousBCmorphology
TheuseofBC(oraerogelsfromregeneratedcellulose)as tem-poraryscaffold forthecreationofporousPMMA aerogels,with morphologiesresembling theguiding host network,as demon-stratedinthiswork,isaninterestingapproachwhichwillbefurther followedinfuturestudies
Acknowledgements
The financial support by the Austrian Science Fund (FWF: I848-N17),theFrenchL’AgenceNationaledelaRecherché (ANR-11-IS08-0002),andtheAustrianAgencyforInternationalCooperation
in Education and Research (OeAD: FR10/2010) is thankfully acknowledged
Appendix A Supplementary data
Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/ j.carbpol.2014.04.029
References
Alaoui, A H., Woignier, T., Scherer, G W., & Phalippou, J (2008) Comparison between flexural and uniaxial compression tests to measure the elastic modulus of silica aerogel Journal of Non-Crystalline Solids, 354(40–41), 4556–4561.
Amnuaikit, T., Chusuit, T., Raknam, P., & Boonme, P (2011) Effects of a cellulose mask synthesized by a bacterium on facial skin characteristics and user satisfaction Medical Devices: Evidence and Research, 4, 77–81.
Bodin, A., Bäckdahl, H., Fink, H., Gustafsson, L., Risberg, B., & Gatenholm, P (2007).
Influence of cultivation conditions on mechanical and morphological properties
of bacterial cellulose tubes Biotechnology and Bioengineering, 97(2), 425–434.
Bodin, A., Concaro, S., Brittberg, M., & Gatenholm, P (2007) Bacterial cellulose as
a potential meniscus implant Journal of Tissue Engineering and Regenerative Medicine, 1(5), 406–408.
Brown, R M., Jr., Willison, J H., & Richardson, C L (1976) Cellulose biosynthesis in Acetobacter xylinum: Visualization of the site of synthesis and direct measure-ment of the in vivo process Proceedings of the National Academy of Sciences of the USA, 73, 4565–4569.
Bruns, M., Lallemand, A., Quinson, J.-F., & Eyraud, C (1977) The thermoporometry Thermochimica Acta, 21(1), 59–88.
Buck, M., Diem, C., Schreyer, G., & Szigeti, R (1975) Eigenschaften von Acrylgläsern.
In R Vieweg, & F Esser (Eds.), Kunststoff-Handbuch (pp 57–438) Munich: Carl Hanser Verlag.
Deinema, M H., & Zevenhuizen, L P T M (1971) Formation of cellulose fibrils
by gram-negative bacteria and their role in bacterial flocculation Archives of Microbiology, 78(1), 42–57.
Dixit, M., Mathur, M., Gupta, V., Baboo, S., Sharma, M., & Saxena, K N S (2009) Investigation of miscibility and mechanical properties of PMMA/PVC blends Optoelectronics and Advanced Materials: Rapid Communications, 3(10), 1099–1105.
Haimer, E., Wendland, M., Schlufter, K., Frankenfeld, K., Miethe, P., Potthast, A.,
et al (2010) Loading of bacterial cellulose aerogels with bioactive compounds
by antisolvent precipitation with supercritical carbon dioxide Macromolecular Symposia, 294(2), 64–74.
Helenius, G., Bäckdahl, H., Bodin, A., Nannmark, U., Gatenholm, P., & Risberg, B (2006) In vivo biocompatibility of bacterial cellulose Journal of Biomedical Mate-rials Research Part A, 76A(2), 431–438.
Hobzova, R., Duskova-Smrckova, M., Michalek, J., Karpushkin, E., & Gatenholm,
P (2012) Methacrylate hydrogels reinforced with bacterial cellulose Polymer International, 61(7), 1193–1201.
Hoepfner, S., Ratke, L., & Milow, B (2008) Synthesis and characterisation of
Trang 9nanofib-Klemm, D., Schumann, D., Udhardt, U., & Marsch, S (2001) Bacterial synthesized
cellulose-artificial blood vessels for microsurgery Progress in Polymer Science,
26(9), 1561–1603.
Lacerda, P S S., Barros-Timmons, A M M V., Freire, C S R., Silvestre, A J D., &
Neto, C P (2013) Nanostructured composites obtained by ATRP sleeving of
bacterial cellulose nanofibers with acrylate polymers Biomacromolecules, 14(6),
2063–2073.
Liebner, F., Aigner, N., Schimper, C., Potthast, A., & Rosenau, T (2012) Bacterial
cellulose aerogels: From lightweight dietary food to functional materials In F.
Liebner, & T Rosenau (Eds.) Functional materials from renewable sources (pp.
57–74) American Chemical Society.
Liebner, F., Dunareanu, R., Opietnik, M., Haimer, E., Wendland, M., Werner, C., et al.
(2012) Shaped hemocompatible aerogels from cellulose phosphates:
Prepara-tion and properties Holzforschung, 66(3), 317–321.
Liebner, F., Haimer, E., Wendland, M., Neouze, M.-A., Schlufter, K., Miethe, P., et al.
(2010) Aerogels from unaltered bacterial cellulose: Application of scCO2 drying
for the preparation of shaped, ultra-lightweight cellulosic aerogels
Macromolec-ular Bioscience, 10(4), 349–352.
Maeda, H (2006) Preparation and properties of bacterial cellulose aerogel and its
application Cellular Communications, 13(4), 169–172.
Maeda, H., Nakajima, M., Hagiwara, T., Sawaguchi, T., & Yano, S (2006a) Bacterial
cel-lulose/silica hybrid fabricated by mimicking biocomposites Journal of Materials
Science, 41(17), 5646–5656.
Maeda, H., Nakajima, M., Hagiwara, T., Sawaguchi, T., & Yano, S (2006b) Preparation
and properties of bacterial cellulose aerogel Japanese Journal of Polymer Science
and Technology, 63(2), 135–137.
Nedelec, J.-M., Grolier, J.-P., & Baba, M (2006) Thermoporosimetry: A powerful
tool to study the cross-linking in gels networks Journal of Sol-Gel Science and
Technology, 40(2-3), 191–200.
Patel, P., Shepherd, D., & Hukins, D (2008) Compressive properties of commercially
available polyurethane foams as mechanical models for osteoporotic human
cancellous bone BMC Musculoskeletal Disorders, 9(1), 137.
Petersen, N., & Gatenholm, P (2011) Bacterial cellulose-based materials and medical
devices: Current state and perspectives Applied Microbiology and Biotechnology,
91(5), 1277–1286.
Reverchon, E., & Cardea, S (2004) Formation of cellulose acetate membranes using
a supercritical fluid assisted process Journal of Membrane Science, 240(1–2), 187–195.
Reverchon, E., Cardea, S., & Rappo, E S (2006) Production of loaded PMMA struc-tures using the supercritical CO 2 -phase inversion process Journal of Membrane Science, 273(1–2), 97–105.
Seifert, M., Hesse, S., Kabrelian, V., & Klemm, D (2004) Controlling the water content
of never dried and reswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium Journal of Polymer Science Part A: Polymer Chemistry, 42(3), 463–470.
Soares da Silva, M., Viveiros, R., Coelho, M B., Aguiar-Ricardo, A., & Casimiro, T (2012) Supercritical CO 2 -assisted preparation of a PMMA composite membrane for bisphenol A recognition in aqueous environment Chemical Engineering Sci-ence, 68(1), 94–100.
Sutherland, I W (1998) Novel and established applications of microbial polysac-charides Trends in Biotechnology, 16(1), 41–46.
Svensson, A., Nicklasson, E., Harrah, T., Panilaitis, B., Kaplan, D L., Brittberg, M.,
et al (2005) Bacterial cellulose as a potential scaffold for tissue engineering
of cartilage Biomaterials, 26(4), 419–431.
Vallejos, M., Peresin, M., & Rojas, O (2012) All-cellulose composite fibers obtained
by electrospinning dispersions of cellulose acetate and cellulose nanocrystals Journal of Polymers and the Environment, 20(4), 1075–1083.
Xu, Q., Ren, X., Chang, Y., Wang, J., Yu, L., & Dean, K (2004) Generation of micro-cellular biodegradable polycaprolactone foams in supercritical carbon dioxide Journal of Applied Polymer Science, 94(2), 593–597.
Yano, S., Maeda, H., Nakajima, M., Hagiwara, T., & Sawaguchi, T (2008) Preparation and mechanical properties of bacterial cellulose nanocomposites loaded with silica nanoparticles Cellulose, 15(1), 111–120.
Zaborowska, M., Bodin, A., Bäckdahl, H., Popp, J., Goldstein, A., & Gatenholm, P (2010) Microporous bacterial cellulose as a potential scaffold for bone regener-ation Acta Biomaterialia, 6(7), 2540–2547.
Zimmermann, K A., LeBlanc, J M., Sheets, K T., Fox, R W., & Gatenholm, P (2011).
Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications Materials Science and Engineering: C, 31(1), 43–49.